A Testable Theory of Memory and Choice

Stefan Bucher (joint with Andrew Caplin), NYU
stefan.bucher@nyu.edu
22nd February 2019

- How are choices affected by information gathered in the past?
- Goal: Theory of memory as pertaining to choice
- Model memory as goal-directed costly information acquisition
 - Where goal is unknown/blurry at time of acquisition

Importance and Context

- Memory is imperfect and limits what information is available when making a choice. Consider e.g.
 - choice of restaurant based on what we remember about it
 - doctor in the ER
 - multiple choice exam

- Memory is imperfect and limits what information is available when making a choice. Consider e.g.
 - choice of restaurant based on what we remember about it
 - doctor in the ER
 - multiple choice exam
- Potential for fruitful dialogue
 - Importance of memory recognized by economics (Bordalo, Gennaioli, Shleifer 2017)
 - Resource-rational models of working memory in psychology (van den Berg&Ma 2018)

The Research Process

Delayed Estimation Task

van den Berg&Ma (2018)

- Key feature of memory: Information was acquired for a more general context than the decision problem at hand
- We model DM acquiring costly information while unsure about decision to be faced

- Key feature of memory: Information was acquired for a more general context than the decision problem at hand
- We model DM acquiring costly information while unsure about decision to be faced
- Currently exploring model predictions
- Application to economic settings
- Results and experiments to follow

We model DM facing choice set A_n with probability F_n

- μ : prior over states $\omega \in \Omega$
- $u(a_n, \omega)$: utility of choosing a_n in state ω

We model DM facing choice set A_n with probability F_n

- μ : prior over states $\omega \in \Omega$
- $u(a_n, \omega)$: utility of choosing a_n in state ω

Model Timing

- Stage 1: Given F and μ, choose with what signal structure to memorize ω (at a cost, e.g. mutual information)
- n and signal realize
- Stage 2: Given signal, choose action from A_n

We model DM facing choice set A_n with probability F_n

- μ : prior over states $\omega \in \Omega$
- $u(a_n, \omega)$: utility of choosing a_n in state ω

Model Timing

- Stage 1: Given F and μ, choose with what signal structure to memorize ω (at a cost, e.g. mutual information)
- n and signal realize
- Stage 2: Given signal, choose action from A_n

Temporal separation of acquisition and use of information by n. For N = 1 this is a rational inattention problem. Importance and Context

The Research Process

Example 1: Delayed Estimation Problem

Example 2: Delayed Accept/Reject Decision

Challenges and Questions

Delayed Estimation Problem

- State: *N*-dimensional vector ω with $\omega_n \in \{I, O\}$
- Action set $A_n = \{I, 0\}$ encountered with probability F_n
- Utility $u(a_n, \omega) = \mathbb{1}\{a_n = \omega_n\}$
- E.g. for *N* = 2:

 $A = \begin{cases} A_1 = \{I^1, O^1\} & \text{with probability } F_1 \\ A_2 = \{I^2, O^2\} & \text{with probability } 1 - F_1 \end{cases}$

Illustration

Stage 2 choice is contingent on n and γ , and can thus be formulated as choice of *n*-contingent action plan. We establish formal equivalence to a rational inattention problem. Equivalent Problem

Accuracy in each problem depends on F

For μ uniform:

Set Size Effects: Increasing N for uniform F, different μ

Importance and Context

The Research Process

Example 1: Delayed Estimation Problem

Example 2: Delayed Accept/Reject Decision

Challenges and Questions

Delayed Accept/Reject Decision

- State: *N*-dimensional vector ω with $\omega_n \in \{I, O\}$
- Action set $A_n = \{accept, reject\}$
- These are encountered with probability F_n and give utility

 $u(accept, \omega) = \omega_n$ $u(reject, \omega) = u_0$ $\underline{u(a, \omega)} \quad \begin{pmatrix} I \\ I \end{pmatrix} \quad \begin{pmatrix} I \\ O \end{pmatrix} \quad \begin{pmatrix} O \\ I \end{pmatrix}$

Picking the good option, for different N and outside options u_0

Challenges and Questions

- Next step: Extend framework to account for time and forgetting
- Impact of time scale: seconds vs. years
- Most economically interesting comparative statics
 - Choice probabilities as a function of memory cost
 - As a function of prior