Habits as Adaptations: An Experimental Study

> Ludmila Matysková University of Bonn

jointly with Brian Rogers (Washington University in St. Louis), Jakub Steiner (CERGE-EI and University of Zurich), Keh-Kuan Sun (Washington University in St. Louis)

The Sloan-Nomis Workshop, New York February 22, 2019

Introduction

How do people respond to changing incentives?

Puzzling behavior: choice inertia

- inertia in consumption
- brand loyalty
- status quo bias

Habits in macroeconomics

Assuming preferences for habits

 $u(c_t-c^{t-1})$

Justification: Better fit to data (e.g. Constantinides 1990; Fuhrer, 2000)

Problems:

- No microfoundations evidence for inertia ≠ evidence for preferences for habits
- 2. Modeling choice of c^{t-1} not obvious
 - aggregate past consumption, past individual consumption, specific cathegories of goods (Schmitt-Grohé and Uribe, 2007)
- 3. No comparative statics predictions

This paper: Testing microfoundations of choice inertia

Microfoundations of choice inertia

Habits in psychology:

- "Automated responses triggered by cues to alleviate cognition costs" (e.g. Lally et al., 2010)
- Cue = element from history which (empirically) correlates with optimal current choice

Research questions

- 1. Do habits arise to save on cognition/information costs?
- 2. How are cues selected?
 - Mechanically?
 - In a predicted way (optimally)?

 \Rightarrow a model of costly information acquisition (Steiner, Steward, and Matějka, 2017)

One binary perception task in each of two periods

Time separable utility

Treatments:

predictions on when habit arises, its strength, and cue selection

Summary:

Habits and cue selection as second-best adaptations

Experimental design

Treatments and hypotheses

Results

Caplin and Dean (2014)

- 100 red and blue dots
- Two states: 49 red dots vs. 51 red dots
- Task: determine the predominant color
 - ► cognitive cost ⇒ cost-benefit analysis

Our paper: Two periods

1. State at t = 1 drawn from uniform prior

- 1. State at t = 1 drawn from uniform prior
- 2. Subjects make choice at t = 1

- 1. State at t = 1 drawn from uniform prior
- 2. Subjects make choice at t = 1
- 3. Feedback (correct answer)/No feedback revealed

- 1. State at t = 1 drawn from uniform prior
- 2. Subjects make choice at t = 1
- 3. Feedback (correct answer)/No feedback revealed
- 4. State at t = 2 drawn (known correlation)

- 1. State at t = 1 drawn from uniform prior
- 2. Subjects make choice at t = 1
- 3. Feedback (correct answer)/No feedback revealed
- 4. State at t = 2 drawn (known correlation)
- 5. Subjects make choice at t = 2

- 1. State at t = 1 drawn from uniform prior
- 2. Subjects make choice at t = 1
- 3. Feedback (correct answer)/No feedback revealed
- 4. State at t = 2 drawn (known correlation)
- 5. Subjects make choice at t = 2
- 6. Correct answers for both periods revealed

- 1. State at t = 1 drawn from uniform prior
- 2. Subjects make choice at t = 1
- 3. Feedback (correct answer)/No feedback revealed
- 4. State at t = 2 drawn (known correlation)
- 5. Subjects make choice at t = 2
- 6. Correct answers for both periods revealed

One treatment = 12 iterations of this two-period task

- 1. State at t = 1 drawn from uniform prior
- 2. Subjects make choice at t = 1
- 3. Feedback (correct answer)/No feedback revealed
- 4. State at t = 2 drawn (known correlation)
- 5. Subjects make choice at t = 2
- 6. Correct answers for both periods revealed

One treatment = 12 iterations of this two-period task

8 different treatments (each subject faces half of them)

Definition: Habit

DM forms a habit if payoff-irrelevant elements of history predict continuation behavior.

Definition: Habit

DM forms a habit if

$$\Pr[a_2 = 1 | \boldsymbol{a_1}, \boldsymbol{\theta_1}, \boldsymbol{\theta_2}] \neq \Pr[a_2 = 1 | \boldsymbol{\theta_2}].$$

Definition: Habit

DM forms a habit if

$$\Pr[a_2 = 1 | \boldsymbol{a_1}, \boldsymbol{\theta_1}, \boldsymbol{\theta_2}] \neq \Pr[a_2 = 1 | \boldsymbol{\theta_2}].$$

Which of $\{a_1, \theta_1\}$?

Definition: Habit

DM forms a habit if

$$\Pr[a_2 = 1 | \boldsymbol{a_1}, \boldsymbol{\theta_1}, \boldsymbol{\theta_2}] \neq \Pr[a_2 = 1 | \boldsymbol{\theta_2}].$$

Which of $\{a_1, \theta_1\}$?

Definition: Cues

 $z \in \{a_1, \theta_1\}$ is the cue for the habit if

1. $\Pr[a_2 = 1 | \theta_2, z, w] = \Pr[a_2 = 1 | \theta_2, z]$ and

2. $\Pr[a_2 = 1 | \theta_2, z = 1] > \Pr[a_2 = 1 | \theta_2, z = 0]$

where *w* is the complementary variable from $\{\theta_1, a_1\}$.

Experimental design

Treatments and hypotheses

Results

Weak treatments (W)

high stake ($s = \$10$)	no feedback (N)	feedback (F)
independent (I)	no habit	no habit
correlation (C)	weak habit	weak habit
low ($\gamma=0.75$)	cue a1	cue θ_1

Strong treatments (S)

low stake ($s = $ \$7)	no feedback (N)	feedback (F)
independent (I)	no habit	no habit
correlation (C)	strong habit	strong habit
high ($\gamma=0.9$)	cue a1	cue $ heta_1$

Weak treatments (W)

high stake ($s = \$10$)	no feedback (N)	feedback (F)
independent (I)	no habit	no habit
correlation (C)	weak habit	weak habit
low ($\gamma=0.75$)	cue a1	cue θ_1

Strong treatments (S)

low stake ($s = $ \$7)	no feedback (N)	feedback (F)
independent (I)	no habit	no habit
correlation (C)	strong habit	strong habit
high ($\gamma=0.9$)	cue a1	cue θ_1

Correlation \Rightarrow habits as a way to save on costly effort

Weak treatments (W)

high stake ($s = \$10$)	no feedback (N)	feedback (F)
independent (I)	no habit	no habit
correlation (C)	weak habit	weak habit
low ($\gamma=0.75$)	cue a1	cue θ_1

Strong treatments (S)

low stake ($s = $ \$7)	no feedback (N)	feedback (F)
independent (I)	no habit	no habit
correlation (C)	strong habit	strong habit
high ($\gamma=0.9$)	cue a1	cue 0 1

Correlation \Rightarrow habits as a way to save on costly effort

Weak treatments (W)

high stake ($s = \$10$)	no feedback (N)	feedback (F)
independent (I)	no habit	no habit
correlation (C)	weak habit	weak habit
low ($\gamma=0.75$)	cue a1	cue θ_1

Strong treatments (S)

low stake ($s = $ \$7)	no feedback (N)	feedback (F)
independent (I)	no habit	no habit
correlation (C)	strong habit	strong habit
high ($\gamma=0.9$)	cue a1	cue θ_1

Which cue? \Rightarrow depends on its information content

Weak treatments (W)

high stake ($s = \$10$)	no feedback (N)	feedback (F)
independent (I)	no habit	no habit
correlation (C)	weak habit	weak habit
low ($\gamma=0.75$)	cue a1	cue $oldsymbol{ heta}_1$

Strong treatments (S)

low stake ($s = $ \$7)	no feedback (N)	feedback (F)
independent (I)	no habit	no habit
correlation (C)	strong habit	strong habit
high ($\gamma=0.9$)	cue a1	cue θ_1

Which cue? \Rightarrow depends on its information content

Weak treatments (W)

high stake ($s = \$10$)	no feedback (N)	feedback (F)
independent (I)	no habit	no habit
correlation (C)	weak habit	weak habit
low ($\gamma=0.75$)	cue a1	cue θ_1

Strong treatments (S)

low stake ($s = $ \$7)	no feedback (N)	feedback (F)
independent (I)	no habit	no habit
correlation (C)	strong habit	strong habit
high ($\gamma=0.9$)	cue a1	cue θ_1

How strongly? \Rightarrow depends on cost and probability of possible mistakes

Experimental design

Treatments and hypotheses

Results

University of California, Santa Barbara

- 4 sessions, 76 subjects
 - 2 sessions 'Weak' treatments, 2 sessions 'Strong' treatments

Logit regressions: separately for each treatment

LHS: *a*^{*n*}_{2,*i*}

RHS: const., $a_{1,i}^n$, θ_1^n , θ_2^n , session, score_iⁿ, score_iⁿ θ_2^n

 a_t action at t = 1, 2 θ_t state at t = 1, 2*score* (adjusted) total number of correct answers *session* a session dummy

Logit regressions: separately for each treatment

LHS: *a*^{*n*}_{2,*i*}

RHS: const., $a_{1,i}^n$, θ_1^n , θ_2^n , session, score_iⁿ, score_iⁿ θ_2^n

 a_t action at t = 1, 2 θ_t state at t = 1, 2*score* (adjusted) total number of correct answers *session* a session dummy

Interested in how θ_1 and a_1 predict a_2 .

Res	sults		a_1	$ heta_1$	θ_2
-		Indep. F	021 (.036)	0.71 (.043)	.681*** (.032)
-	Weak	Indep. N	.034 (.041)	026 (.049)	.692*** (.054)
-		Corr. F	.017 (.032)	.258*** (.058)	.611*** (.046)
		Corr. N	.191*** (.051)	.002 (.036)	.629*** (.067)
		Indep. F	031 (.037)	.009 (.040)	.632*** (.045)
-	Strong	Indep. N	.037 (.045)	034 (.044)	.700*** (.036)
-		Corr. F	033 (.204)	.498*** (.098)	.425*** (.121)
-		Corr. N	.511*** (.110)		.367*** (.098)

F

Res	sults		<i>a</i> ₁	$ heta_1$	θ_2
-		Indep. F	021 (.036)	0.71 (.043)	.681*** (.032)
-	Weak	Indep. N	.034 (.041)	026 (.049)	.692*** (.054)
-		Corr. F	.017 (.032)	.258*** (.058)	.611*** (.046)
		Corr. N	.191*** (.051)	.002 (.036)	.629*** (.067)
		Indep. F	031 (.037)	.009 (.040)	.632*** (.045)
	Strong	Indep. N	.037 (.045)	034 (.044)	.700*** (.036)
-		Corr. F	033 (.204)	.498*** (.098)	.425*** (.121)
-		Corr. N	.511*** (.110)		.367*** (.098)

1. Subjects pay attention in period 2

Results		a_1	$ heta_1$	θ_2	
		Indep. F	021 (.036)	0.71 (.043)	.681*** (.032)
	Weak	Indep. N	.034 (.041)	026 (.049)	.692*** (.054)
		Corr. F	.017 (.032)	.258*** (.058)	.611*** (.046)
		Corr. N	.191*** (.051)	.002 (.036)	.629*** (.067)
		Indep. F	031 (.037)	.009 (.040)	.632*** (.045)
	Strong	Indep. N	.037 (.045)	034 (.044)	.700*** (.036)
		Corr. F	033 (.204)	.498*** (.098)	.425*** (.121)
		Corr. N	.511*** (.110)		.367*** (.098)

- 1. Subjects pay attention in period 2
- 2. Independent states \Rightarrow no habits

Results		a_1	$ heta_1$	θ_2	
		Indep. F	021 (.036)	0.71 (.043)	.681*** (.032)
	Weak	Indep. N	.034 (.041)	026 (.049)	.692*** (.054)
		Corr. F	.017 (.032)	.258*** (.058)	.611*** (.046)
		Corr. N	.191*** (.051)	.002 (.036)	.629*** (.067)
		Indep. F	031 (.037)	.009 (.040)	.632*** (.045)
	Strong	Indep. N	.037 (.045)	034 (.044)	.700*** (.036)
		Corr. F	033 (.204)	.498*** (.098)	.425*** (.121)
		Corr. N	.511*** (.110)		.367*** (.098)

- 1. Subjects pay attention in period 2
- 2. Independent states \Rightarrow no habits
- 3. Correlated states \Rightarrow habits

Results		a_1	$ heta_1$	θ_2	
		Indep. F	021 (.036)	0.71 (.043)	.681*** (.032)
	Weak	Indep. N	.034 (.041)	026 (.049)	.692*** (.054)
		Corr. F	.017 (.032)	.258*** (.058)	.611*** (.046)
		Corr. N	.191*** (.051)	.002 (.036)	.629*** (.067)
		Indep. F	031 (.037)	.009 (.040)	.632*** (.045)
	Strong	Indep. N	.037 (.045)	034 (.044)	.700*** (.036)
		Corr. F	033 (.204)	.498*** (.098)	.425*** (.121)
		Corr. N	.511*** (.110)		.367*** (.098)

- 1. Subjects pay attention in period 2
- 2. Independent states \Rightarrow no habits
- 3. Correlated states \Rightarrow habits
 - i) and feedback \Rightarrow cue θ_1

Re	Results		a_1	$ heta_1$	θ_2
		Indep. F	021 (.036)	0.71 (.043)	.681*** (.032)
	Weak	Indep. N	.034 (.041)	026 (.049)	.692*** (.054)
		Corr. F	.017 (.032)	.258*** (.058)	.611*** (.046)
		Corr. N	.191*** (.051)	.002 (.036)	.629*** (.067)
		Indep. F	031 (.037)	.009 (.040)	.632*** (.045)
	Strong	Indep. N	.037 (.045)	034 (.044)	.700*** (.036)
		Corr. F	033 (.204)	.498*** (.098)	.425*** (.121)
		Corr. N	.511*** (.110)		.367*** (.098)

- 1. Subjects pay attention in period 2
- 2. Independent states \Rightarrow no habits
- 3. Correlated states \Rightarrow habits
 - i) and feedback \Rightarrow cue θ_1
 - ii) and no feedback \Rightarrow cue a_1

Results			<i>a</i> ₁	$ heta_1$	θ_2
		Indep. F	021 (.036)	0.71 (.043)	.681*** (.032)
	Weak	Indep. N	.034 (.041)	026 (.049)	.692*** (.054)
		Corr. F	.017 (.032)	.258*** (.058)	.611*** (.046)
		Corr. N	.191*** (.051)	.002 (.036)	.629*** (.067)
		Indep. F	031 (.037)	.009 (.040)	.632*** (.045)
	Strong	Indep. N	.037 (.045)	034 (.044)	.700*** (.036)
		Corr. F	033 (.204)	.498*** (.098)	.425*** (.121)
		Corr. N	.511*** (.110)		.367*** (.098)
		,			

- 1. Subjects pay attention in period 2
- 2. Independent states \Rightarrow no habits
- 3. Correlated states \Rightarrow habits
 - i) and feedback \Rightarrow cue θ_1
 - ii) and no feedback \Rightarrow cue a_1
- 4. Lower stakes and higher correlation \Rightarrow stronger habits

Challenges and questions

Internalizing continuation value of information?

- - \Rightarrow accuracy in period 1 (should) \uparrow
- BUT Aggregate accuracy (high and) homogeneous across treatments and periods
- ⇒ Myopia?