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Motivation

DM needs to choose multiple attributes/inputs

Any arbitrary correlation allowed between attributes

Optimal learning strategy: what and how much to learn?

Examples: agricultural input choices, job assignment etc.
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Why Multidimensional Decision Problem?

Selective Learning: Productivity of only a subset of attribute learned
separately (Hanna et al 2014, Bloom et al 2014 etc)

Belief about correlation affects learning choice
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Research Agenda

Solve for the optimal learning strategy in the multidimensional choice
setting

Find conditions under which selective learning is optimal

Policy Implication: optimal information provision
extension services
management practices training
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Choice Problem: n = 2 inputs

A = X × Y; action/decision space

X = {x1, x2, . . . xn}, Y = {y1, y2, . . . yn}: two inputs

Y = {0, 1}: output

π : A→ Y: payoff function

Ω: state space (set of all possible payoff function),

ω: one realization of π, typical state

µ0 ∈ ∆(Ω) : prior

µ∗: true state; supp(µ∗) ⊆ supp(µ0)
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Learning Technology

y1 y2 y3

x1 1 0 0 1/3
x2 0 1 1 2/3
x3 0 0 0 0

1/3 1/3 1/3

Table 1: Example of payoff matrix/state

DM can uncover any cell for a fixed cost of cl: observe 0 or 1

DM can uncover any average for a fixed cost of ca: observe the true row
or column average

DM can open any number of cells or average in any order sequentially

Bayesian updating
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Properties of belief

Expected payoff given belief µt : πt

Uncertainty given belief µt: H(µt)

i. H(µt): Shannon entropy of belief at round t

H(µt) = −
∑
ω∈Ω

µt(ω) lnµt(ω)

ii. H(µt) ∈ R+
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Decision Problem

Learning strategy
Learning strategy specifies a conditional sequence of observations (γ(P))
such that observation of tth round depends on the belief after of the (t − 1)

observations.

Decision Problem
DM chooses a learning strategy to maximize his expected payoff subject to
the cost of learning,

W(µ0) = max
γ(P)

E
[
π(aij)− c(P)|γ, µ0

]
(DP)
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Recursive Problem: Main Results

1. When is learning optimal?
Uncertainty is in an interval, i.e., not too low or too high

2. Whether to observe a cell of an average?
Higher uncertainty⇒ observe a average
Lower Uncertainty⇒ observe a cell

3. Which cell or average to observe?
Cell: highest one-round ahead expected payoff
Average: Reduces most uncertainty

Srijita Ghosh (New York University) selective learning February 22, 2019 9 / 13



Recursive Problem: Main Results

1. When is learning optimal?
Uncertainty is in an interval, i.e., not too low or too high

2. Whether to observe a cell of an average?
Higher uncertainty⇒ observe a average
Lower Uncertainty⇒ observe a cell

3. Which cell or average to observe?
Cell: highest one-round ahead expected payoff
Average: Reduces most uncertainty

Srijita Ghosh (New York University) selective learning February 22, 2019 9 / 13



Recursive Problem: Main Results

1. When is learning optimal?
Uncertainty is in an interval, i.e., not too low or too high

2. Whether to observe a cell of an average?
Higher uncertainty⇒ observe a average
Lower Uncertainty⇒ observe a cell

3. Which cell or average to observe?
Cell: highest one-round ahead expected payoff
Average: Reduces most uncertainty

Srijita Ghosh (New York University) selective learning February 22, 2019 9 / 13



Stopping problem: Main results

Optimal learning strategy: start with averages then switch to cell
permanently

Selective Learning: optimal if averages are sufficiently informative and
learning is costly

Policy Implication: reducing only one cost can decrease learning
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Alternate Mechanism

Sequential search: informationally inefficient

Optimal Categorization: no bias-variance trade-off
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Higher Dimensions: General Cost functions?

For n > 2: scalability issues

Research Question: does there exist a cost of learning function that is
observationally equivalent to the prescribed learning mechanism?

Symmetric Prior: Shannon entropy
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Breadth vs Depth: Tree algorithms

For n > 2 tree representation more tractable

Tree structure assumes sequence of observation
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