Multidimensional and Selective Learning Sloan-Nomis Workshop

Srijita Ghosh

New York University

February 22, 2019

Motivation

- DM needs to choose multiple attributes/inputs
- Any arbitrary correlation allowed between attributes
- Optimal learning strategy: what and how much to learn?
- Examples: agricultural input choices, job assignment etc.

Why Multidimensional Decision Problem?

- Selective Learning: Productivity of only a subset of attribute learned separately (Hanna et al 2014, Bloom et al 2014 etc)
- Belief about correlation affects learning choice

- Solve for the optimal learning strategy in the multidimensional choice setting
- Find conditions under which selective learning is optimal
- Policy Implication: optimal information provision
 - extension services
 - management practices training

Choice Problem: n = 2 inputs

- $A = X \times Y$; action/decision space
- $X = \{x_1, x_2, \dots, x_n\}, Y = \{y_1, y_2, \dots, y_n\}$: two inputs
- $Y = \{0, 1\}$: output
- $\pi: A \to Y$: payoff function
- Ω : state space (set of all possible payoff function),
- ω : one realization of π , typical state
- $\mu_0 \in \Delta(\Omega)$: prior
- μ^* : true state; $supp(\mu^*) \subseteq supp(\mu_0)$

Learning Technology

	<i>y</i> 1	<i>y</i> ₂	У3	
<i>x</i> ₁	1	0	0	1/3
<i>x</i> ₂	0	1	1	2/3
<i>x</i> ₃	0	0	0	0
	1/3	1/3	1/3	

Table 1: Example of payoff matrix/state

- DM can uncover any cell for a fixed cost of c_l : observe 0 or 1
- DM can uncover any average for a fixed cost of c_a : observe the true row or column average
- DM can open any number of cells or average in any order sequentially
- Bayesian updating

Properties of belief

- Expected payoff given belief $\mu_t : \pi_t$
- Uncertainty given belief μ_t : $H(\mu_t)$
 - i. $H(\mu_t)$: Shannon entropy of belief at round t

$$H(\mu_t) = -\sum_{\omega \in \Omega} \mu_t(\omega) \ln \mu_t(\omega)$$

ii. $H(\mu_t) \in \mathbf{R}_+$

Decision Problem

Learning strategy

Learning strategy specifies a conditional sequence of observations ($\gamma(\mathcal{P})$) such that observation of t^{th} round depends on the belief after of the (t-1) observations.

Decision Problem

DM chooses a learning strategy to maximize his expected payoff subject to the cost of learning,

$$W(\mu_0) = \max_{\gamma(\mathcal{P})} E\left[\pi(\mathbf{a}_{ij}) - c(\mathcal{P})|\gamma, \mu_0\right]$$
(DP)

Recursive Problem: Main Results

- 1. When is learning optimal?
 - Uncertainty is in an interval, i.e., not too low or too high
- 2. Whether to observe a cell of an average?
 - Higher uncertainty \Rightarrow observe a average
 - Lower Uncertainty \Rightarrow observe a cell
- 3. Which cell or average to observe?
 - Cell: highest one-round ahead expected payoff
 - Average: Reduces most uncertainty

Recursive Problem: Main Results

- 1. When is learning optimal?
 - Uncertainty is in an interval, i.e., not too low or too high
- 2. Whether to observe a cell of an average?
 - Higher uncertainty \Rightarrow observe a average
 - Lower Uncertainty \Rightarrow observe a cell
- 3. Which cell or average to observe?
 - Cell: highest one-round ahead expected payoff
 - Average: Reduces most uncertainty

Recursive Problem: Main Results

- 1. When is learning optimal?
 - Uncertainty is in an interval, i.e., not too low or too high
- 2. Whether to observe a cell of an average?
 - Higher uncertainty \Rightarrow observe a average
 - Lower Uncertainty \Rightarrow observe a cell
- 3. Which cell or average to observe?
 - Cell: highest one-round ahead expected payoff
 - Average: Reduces most uncertainty

Stopping problem: Main results

- **Optimal learning strategy**: start with averages then switch to cell permanently
- Selective Learning: optimal if averages are sufficiently informative and learning is costly
- Policy Implication: reducing only one cost can decrease learning

Alternate Mechanism

- Sequential search: informationally inefficient
- Optimal Categorization: no bias-variance trade-off

Higher Dimensions: General Cost functions?

- For *n* > 2: scalability issues
- **Research Question:** does there exist a cost of learning function that is observationally equivalent to the prescribed learning mechanism?
- Symmetric Prior: Shannon entropy

Breadth vs Depth: Tree algorithms

- For n > 2 tree representation more tractable
- Tree structure assumes sequence of observation