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The Random Element in Economic Decisions

Standard theory implies that a given DM’s choice should be a
perfectly predictable function of the distribution of returns
associated with alternative options

— they should with certainty choose the option that implies the
highest expected utility (or at any rate, the distribution of
returns that is most preferred under some well-defined ordering)
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The Random Element in Economic Decisions

This postulate isn’t easily testable in the case of decisions
observed “in the wild”

— hard for an observer to be sure exactly how the possible
returns are understood by a given DM

But it can be tested in the case of laboratory experiments, in
which both possible payoffs and their probabilities are stated by
the experimenter

— and there choices are observed to be random, though with
probabilities that vary systematically with the properties of the
gambles offered
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Mosteller and Nogee (1951)

AN EXPERIMENTAL MEASUREMENT OF UTILITY 

was determined (these are rounded val- 
ues). These, and the arbitrarily defined 
points [U(oo) = o utiles and U(-5S) = 
- i utiles] can be connected by straight- 
line segments to form the utility curve of 
a subject. In Figure 3, illustrations of the 
utility curves are given for a few sub- 
jects. For reasons of scale we have shown 
values for only a few different utile po- 
sitions. Logarithmic scales would be 
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FIG. 2.-In this graph the data of Table 8 for subject B-I, hand 5522i, are plotted to show how the in- 
difference point is actually obtained. 

somewhat misleading because some in- 
terest attaches to the curvature. 

It was not possible to secure utility 
curves as complete as those in Figure 3 
for all subjects. The behavior of one sub- 
ject in the pilot study was so erratic that 
no utility curve at all could be derived 
for him. For two student subjects in the 
experiment it was possible to derive only 
a short section of the curve. Their in- 
difference points for the high hands (i.e., 
those in which the probability of winning 
was small and which gave the values for 
IO, 20, and ioi utiles) were so high that 
the experimenters felt they could not af- 

ford to make the offers necessary to get 
the subjects to choose to play (if such 
offers existed). 

There was nothing in the experimental 
procedure which coerced any subject to 
play at any time. It was possible for a 
subject to take his dollar at the beginning 
of a session and not play, thus assuring 
himself of $i.oo. It is interesting that this 
never happened. 

One subject showed markedly super- 
stitious behavior toward one hand. He 
seldom played against it for any of the 
offers made, even though he would ac- 
cept the same, or even smaller, offers 
against a hand which was less likely to be 
beaten. When asked about this after the 
project was completed, the subject said 
that he had been aware of his behavior 
but that he simply felt that the particu- 
lar hand was unlucky for him and that he 
"just didn't like it." 

In Table 9 are the indifference offers 
corresponding to each utility. When 
these are graphed, a rough utility curve 
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Understanding Randomness of Choice

A common interpretation of such observations: people have a
well-defined valuation for each possible option, which depends
only on its features (and hence is invariant across contexts)

— but instead of choosing the highest-valued option with
certainty, the probability of choosing a given option depends on
how great the difference in value relative to the alternatives

This explains Mosteller and Nogee’s method: they expect
vonN-M utility to explain when two lotteries are equally
valued, as revealed by 50-50 choice frequency
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Stochastic Choice From Comparison Noise

0

1

1
2

∆ = uA − uB
0

P (choose A over B)

common functional form: Φ(∆) = e∆/ϕ

e∆/ϕ+1
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Understanding Randomness of Choice

This interpretation consistent with many familiar models of
stochastic choice:

Luce (1959) model

“softmax” choice

additive random utility models

drift-diffusion model

quantal-response model
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“Late Noise” vs. “Early Noise”

In such models, noise only enters at the end of the choice
process, when the (accurately computed) values of the various
choice options must be compared in order to choose between
them

But there is an alternative possible source of randomness in
responses: the hypothesis that the features that define the
available options are corrupted by noise, before they can be
integrated to compute assessments of value

Woodford Cognitive Noise June 2022 8 / 69



“Late Noise” vs. “Early Noise”

This would then result in random choice [as a function of the
objective features], even if the value estimates (and hence
choices) are perfectly optimal, conditional on their being based
on noisy representations

A common interpretation of randomness of perceptual
judgments

early stages of processing of many sensory features are
demonstrably random [random firing of cortical neurons can be
measured, and can in some cases be shown to explain
randomness of judgments: e.g., Newsome et al., 1989]

yet judgments may be modeled as optimal, conditional on noisy
sensory data [e.g., signal detection theory, Bayesian models]
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“Late Noise” vs. “Early Noise”

But the “early noise” need not be perceptual: even in the case
of data that are accurately perceived [e.g., because presented
symbolically], the data may be recorded and/or retrieved with
noise when they need to be integrated to form an overall value
assessment

such noise in integration processes is observed even in the case
of perceptual judgments [Drugowitsch et al., 2016]
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“Late Noise” vs. “Early Noise”

But the “early noise” need not be perceptual: even in the case
of data that are accurately perceived [e.g., because presented
symbolically], the data may be recorded and/or retrieved with
noise when they need to be integrated to form an overall value
assessment

Even when numerical data are presented symbolically, there is
evidence that the brain also represents the semantic content of
the number symbols in an approximate way, similar to the
representations of sensory magnitudes [Dehaene, 2011]

— can be detected from the structure of errors when responses
to the numbers must be made rapidly [e.g., Dehaene et al.,
1990], or when data must be recalled after a delay [e.g.,
Dehaene and Marques, 2002]
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Does the Nature of the Noise Matter?

But is there any observationally distinguishable difference
between models with

noisy evidence about the situation, but a reliable (perhaps
optimal) response to the noisy data [“early noise”]

VS.

reliable recognition of the situation, and computation of the
values of presented choices, but a noisy response on basis of
that info [“late noise”]?
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Does the Nature of the Noise Matter?

Cases where the hypothesis of early noise + optimal decoding has
different implications:

1 Biases in the estimation of individual features of a choice
option, resulting from noisy encoding of the individual features,
can result in estimates of its overall value that are not simply a
function of the true overall value [i.e., the value that would be
computed from the true features]

for example, even if decision rule is adapted to maximize DM’s
average financial reward from decisions [arguably the right
objective, when all gambles are small, so that marginal utility of
wealth should be essentially the same across outcomes], the
probability of choosing one lottery over another need not be a
function solely of their respective expected values
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Illustration: Choice Between Lotteries

Khaw et al. (2021): model subjects’ choice between a lottery
offering payoff X with probability p < 1, and a certain amount C

decision problem on a given trial defined by two (variable)
amounts X and C

each quantity assumed to have a noisy internal representation

rY ∼ N(m(Y ), ν2)

where Y = X or C

optimal decision rule [to max expected financial wealth], if based
on noisy representations of these quantities: choose lottery iff

p · E[X |rx ] > E[C |rc ]
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Khaw et al. (2021)

Khaw et al. assume m(Y ) = logY

chosen to fit observed biases in estimation of numerosity —
assuming that similar “approximate number system” determines
pattern of imprecision in both domains

Implication: if prior (for either variable) is also log-normal
(logY ∼ N(µ, σ2)),

E[Y |rY ] = exp(α + βrY ), where β ≡ σ2

σ2 + ν2

⇒ optimal decision rule: accept gamble if and only if

log p + βrx > βrc
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Khaw et al. (2021)

Predicted probability of acceptance of gamble, as function of
objective data:

P(accept) = Φ
(
log(X/C ) − β−1 log p−1

√
2ν

)

Continuously increasing “psychometric function,” as obtained by
Mosteller and Nogee (1951)

predicts not only randomness of choice, but “indifference
point” above C/p

thus apparent risk aversion, even though decision actually
maximizes expected value
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Risk Attitude as Response to Cognitive Noise
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Risk Attitude as Response to Cognitive Noise

Are the parameters required to fit the Mosteller-Nogee figure
plausible?

Required prior uncertainty about monetary amounts: σ = 0.26
means that the difference between max and min values of logX
used in the trials reported in M-N figure (1.16 log points)
amounts to 4.5 standard deviations

— a not unreasonable range if these were indeed draws from the
log-normal prior
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Risk Attitude as Response to Cognitive Noise

Why not (more conventionally) explain the risk aversion as a
consequence of concave utility for monetary payoffs, and then
add comparison noise to explain the randomness of choice?

1 the existence of a concave utility for the payoff from an
individual small gamble only makes sense if one assumes that
this source of funds isn’t integrated with the rest of the DM’s
wealth

— they must care about this payoff and not just their overall
budget (regardless of its sources)

that “narrow bracketing” then requires an explanation

— in Khaw et al. model, it follows naturally from separate
encoding of the individual payoff
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Risk Attitude as Response to Cognitive Noise

Why not (more conventionally) explain the risk aversion as a
consequence of concave utility for monetary payoffs, and then
add comparison noise to explain the randomness of choice?

2 Khaw et al. model implies scale-invariant choice probabilities
[P(accept) depends only on X/C ], for all small enough gambles

— a comparison-noise model in which choice probability is a
function of EU difference would not

experimental data in Khaw et al. support the prediction of
scale-invariance
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Testing Scale Invariance (Khaw et al., 2021)
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Testing Scale Invariance (Khaw et al., 2021)
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Risk Attitude as Response to Cognitive Noise

Why not (more conventionally) explain the risk aversion as a
consequence of concave utility for monetary payoffs, and then
add comparison noise to explain the randomness of choice?

3 Conventional model gives no reason for degree of risk aversion
and degree of stochasticity to be related to one another; Khaw
et al. model instead ties them together

if parameters µ, σ of the prior are given by the range of values of
logX used in experiment, then model has only a single free
parameter ν to explain both degree of stochasticity (slope of
psychometric function) and degree of risk aversion (location of
indifference point)

in fact, Khaw et al. find that these two features of behavior are
strongly correlated across subjects
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Noise and Risk Aversion: Across Subjects

[dashed line: predicted relation if optimal decisions, common prior]
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Does the Nature of the Noise Matter?

2 Noisy-coding theory implies that manipulations that change the
degree of coding precision should change estimation bias

for example, varying time pressure

— if internal evidence is a stream of noisy signals [as for
example in the DDM], then less time for collecting additional
signals should mean noisier cumulative evidence

— Bayesian decoding of the noisier internal representation can
result not just in more variable estimates, but in larger
average bias in valuations

Polania et al. (2019) find that increased time pressure changes
average ratings of food items

— in a way consistent with Bayesian decoding of noisy internal
representation of items’ values
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Does the Nature of the Noise Matter?

Other methods of manipulating encoding noise can similarly
influence valuation biases

Enke and Graeber (2021) elicit “certainty equivalent” values for
simple lotteries [an amount x is paid with probability p;
otherwise, payoff is zero]

— look at how bias in valuation [CE/x different on average
from p] varies with p

— finding: CE/x > p for small p, while CE/x < p for large p,
regardless of sign of x [replicating findings of Tversky and
Kahneman, 1992]
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Does the Nature of the Noise Matter?

As also proposed by Khaw et al., this can be interpreted as
consequence of Bayesian decoding of a noisy internal
representation of p

— internal noise [“cognitive uncertainty”] ⇒ estimates of p
biased toward the prior mean [p̄ = 0.5]

Enke and Graeber (2021) manipulate the degree of noise in the
internal representation by presenting the payoff probability in a
more complex form [compound lottery, rather than simply
stating the implied probability p of the non-zero payoff]

— and show that increasing noise in this way leads to increased
bias in the elicited certainty equivalents
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Enke and Graeber (2021)
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Figure 2: Probability weighting function separately for subjects above / below average cognitive uncer-
tainty. The partition is done separately for each probability × gains / losses bucket. The plot shows av-
erages and corresponding standard error bars. The figure is based on 2,525 certainty equivalents of 700
subjects.

Table 1 provides a regression analysis of these patterns, which directly corresponds

to estimating the neo-additive weighting function in equation (7). Our object of interest

is the extent to which a subject’s normalized certainty equivalent is (in)sensitive to vari-

ations in the probability of the non-zero payout state. Thus, we regress a participant’s

absolute normalized certainty equivalent on (i) the probability of receiving the non-zero

gain / loss; (ii) cognitive uncertainty; and (iii) an interaction term. In our baseline spec-

ification, we do not include subject fixed effects, meaning that we embrace the variation

that results from across-subject heterogeneity in cognitive uncertainty.

The results show that higher cognitive uncertainty is associated with lower respon-

siveness to variations in objective probabilities, in both the gains and the loss domain. In

terms of quantitative magnitude, the regression coefficients suggest that with cognitive

uncertainty of zero, the slope of the neo-additive weighting function is given by 0.65,

yet it is only 0.34 for maximum cognitive uncertainty of one. A different way to gauge

quantitative magnitudes is to standardize cognitive uncertainty into a z-score. When

doing so, the regression results (not reported) suggest that an one standard deviation

increase in cognitive uncertainty decreases the slope of the neo-additive weighting func-

17

cognitive uncertainty increased by more complex presentation
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Does the Nature of the Noise Matter?

3 Noisy-coding hypothesis can also explain another type of
sensitivity of choice to the context in which options are
encountered: more random choice between two given options,
when they are drawn from a wider range of possibilities
(presented on other trials)

this is another example of sensitivity of choice to the DM’s
prior about what the data are likely to be

but not because of how the prior is used in interpreting noisy
evidence; instead, the precision of the encoding can vary with
the prior (and hence across contexts)

predicted by theories of “efficient coding”
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Efficient Coding

Idea: the neural system used to produce internal representations
of particular quantities has only a finite capacity to represent
different amounts in sufficiently distinguishable ways

— like the finite capacity of a communications channel, in
Shannon’s theory

Woodford Cognitive Noise June 2022 30 / 69



Efficient Coding

Idea: the neural system used to produce internal representations
of particular quantities has only a finite capacity to represent
different amounts in sufficiently distinguishable ways

Efficient coding: the hypothesis that external stimuli are
mapped into the limited variety of possible internal states in
such a way as to make decisions as accurate as possible

— worse discrimination between some states may be accepted,
as the price of allowing sharper discrimination between other
states, that it matters more to be able to distinguish

This implies that the encoding scheme should depend on the
prior (Payzan-LeNestour and Woodford, 2022)
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Efficient Coding

A particularly robust implication of efficient coding theories:
range normalization

Idea: the accuracy of discrimination between any two
magnitudes will be worse when these two magnitudes are drawn
from a prior distribution with a wider range

the larger range of objective magnitudes must be mapped into
the same range of possible internal representations

hence the two magnitudes will be closer together in
“psychological space” when the objective difference between
them is a smaller fraction of the overall range

making the encoding noise more significant relative to the
degree of difference in their internal representations
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Range Normalization

An illustration, where the internal representations can actually
be observed:

Padoa-Schioppa (2009) measures the internal representation of
the values of different choice options, by the rate of firing of
certain cells in the macaque OFC [“offer cells”], when monkeys
choose between offers of different quantities of two types of
juice

the firing rate is higher when the quantity of apple juice offered
is higher [this is what identifies the cells as “offer cells”]

but the firing rate associated with a given quantity of juice is
smaller, when the range of quantities of juice that occur on
different trials [in that experimental session] is greater
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Padoa-Schioppa (2009)
VOL. VOL NO. ISSUE ADAPTIVE CODING: A PUZZLE 3

Figure xx. a. Range adaptation in orbitofrontal cortex. Each line represents the average neuronal response 
(baseline-substracted) plotted against the offer value. Different colors indicate different value ranges.  b. Challenge 
posed by range adaptation. In this simplified model, choices result from the activity of two neurons encoding offer 
value A (left) and offer value B (right) When the range of juice B increases (light blue), the offer value B cell adapts.
The indifference point, for which the two cells have equal firing rate, shifts such that juice B. If decisions are made 
by comparing firing rates, juice B woulde be devalued.
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Figure xx. a. Range adaptation in orbitofrontal cortex. Each line represents the average neuronal response 
(baseline-substracted) plotted against the offer value. Different colors indicate different value ranges.  b. Challenge 
posed by range adaptation. In this simplified model, choices result from the activity of two neurons encoding offer 
value A (left) and offer value B (right) When the range of juice B increases (light blue), the offer value B cell adapts.
The indifference point, for which the two cells have equal firing rate, shifts such that juice B. If decisions are made 
by comparing firing rates, juice B woulde be devalued.
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FIGURE 1. CHALLENGE POSED BY RANGE ADAPTATION.

Note: Left Panel: Range adaptation in orbito-frontal cortex. Each line represents the average neuronal response (baseline-subtracted)
plotted against the offer value. Different colors indicate different value ranges.
Right Panel: In this simplified model, choices result from the activity of two neurons encoding offer value A (left) and offer value B
(right) When the range of juice B increases (lighter line), the offer value B cell adapts. The indifference point, for which the two cells
have equal firing rate, shifts such that juice B. If decisions were made by comparing firing rates, the same quantity of juice B would be
chosen less frequently.
Source: Reproduced from Padoa-Schioppa (2009)

pears unlikely that this result simply reflect lack
of statistical power.

A second alternative solution to the challenge
posed by range adaptation would be if the num-
ber of cells encoding the offer value of one par-
ticular juice depended on the value range for that
juice. Specifically, one could imagine that more
neurons are added to the population encoding
the value of one particular juice when the range
of that juice is increased. This increase could
in principle balance the effect of range adapta-
tion to keep behavioral preferences stable. To
test this hypothesis we considered again the data
set of Padoa-Schioppa (2009). Recordings were
generally obtained from multiple neurons in par-
allel. Offer value responses (937 in total) were
recorded in 240 sessions. For each session, we
determined the juice with the maximum value
range. (Value ranges were compared taking into
account the relative value of the juices.) We also
counted the number of responses encoding the
offer value of A or B. Across the population, we
constructed a 2× 2 contingency table represent-
ing the number of responses encoding the offer
value of A and B (rows) recorded in sessions
in which 1A > 1B or 1A < 1B (columns).
Contrary to the hypothesis under consideration,
we found that the two classifications were statis-
tical independent (p = 0.51, chi-square test).

To conclude, our analysis indicates that deci-
sions are not simply made by comparing the fir-

ing rates of different groups of offer value cells.
To the contrary, the neuronal network that gener-
ates the decision must essentially ”undo” range
adaptation in such a way that indifference func-
tions do not depend strongly on the value range.

II. Model of choice

To formulate precisely how choices depend on
the firing rate of the offer neurons, we present
a model of choice. The heart of the model is
a system of equations describing time evolution
of the gating variables (fraction of NMDA re-
ceptors that are open at time t , see Wong and
Wang, (2006) for details). We use here the re-
duced form model, 2 described for i = A, B by:

(2)
d Si

dt
(t) = −

Si (t)
τ
+ (1− Si (t))H(X i )

where Si (t) ∈ [0, 1] are the gating variables,
Si (0) = 0, X i

≡ αSi (t) − βS j (t) + I i (t), i =
A, B, j 6= i , and I i (t) is the input for the op-
tion i at t . Input goes from offer value neurons
to taste neurons, whose firing rate eventually de-
termines the choice. The quantities τ, α, β > 0
are dimensional parameters. The function H de-
scribes the neuronal response to the current in-

2See Appendix, page 1327, of Wong and Wang (2006)

vertical axis = probability of staying
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Range Normalization

The fact that two drops of juice are differently encoded when 4
is the upper bound, than when 10 is the upper bound, doesn’t
mean that they are valued more (on average) in the former case

the “decoding” of the internal representation seems to adjust to
the range in an efficient way as well (Rustichini et al., 2017)

But the change in encoding when the range is 10 does mean
that two drops are not as accurately distinguished from four
drops, as is the case when the range is 4

resulting in less predictable choices
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Range Normalization

Frydman and Jin (2022) show that the same seems to be true of
the internal representation of numerical quantities in humans

task: a two-digit Arabic numeral is presented, and the subject
must (rapidly) say whether it is greater or less than 65

idea: when such a judgment must be made rapidly enough, it is
based on an approximate semantic representation of the
number [triggered by recognition of the numeral], rather the
kind of exact representation used in arithmetic calculations
(Dehaene et al., 1990)

consequence: more mistakes (and slower responses) when the
number presented is closer to 65

but for numbers near 65, responses are slower (and yet more
mistakes) when the numbers are drawn from a wider range
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Number Comparison [Frydman and Jin (2022)]

Figure 8. Classification performance and response time for the perceptual choice task

Panel A: the x-axis denotes the integer X that is presented on each trial. The y-axis denotes the
proportion of trials for which subjects classified X as greater than 65. Panel B: the y-axis denotes
the average response time for the subject to execute a decision, for those trials on which the subject
responded correctly. Data are pooled across subjects over all test trials in the first condition, and
thus represent between subjects comparisons. The length of the vertical bar inside each data point
denotes two standard errors of the mean. Standard errors are clustered by subject.
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thus represent between subjects comparisons. The length of the vertical bar inside each data point
denotes two standard errors of the mean. Standard errors are clustered by subject.
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Range Normalization

This suggests that in our model above of noisy encoding of
numerical magnitudes,

r ∼ N(logX , ν2),

the parameter ν should vary with the range of values of logX

or alternatively: that there is a noisy representation

r ∼ N(m(X ), ν2)

with a fixed value for ν;

but the mapping m(X ) must adjust so that m has the same
bounded range, regardless of the range over which logX varies

Consequence: larger range of variation in logX should result in
noisier choice between lotteries
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Lottery Choice [Frydman and Jin (2022)]

Figure 5. Average probability of risk taking across volatility conditions

Panel A: the graph plots, for each volatility condition, the probability of risk taking against the
difference in expected values between the risky lottery and the certain option, pX − C. The
probability of risk taking is computed as the proportion of trials on which subjects choose the risky
lottery. Data are pooled across subjects over all common trials in the first condition, and thus
represent between subjects comparisons. For each volatility condition, we bin the running variable,
pX − C, to its nearest integer value, and plot the mean for each bin. The length of the vertical
bar inside each data point denotes two standard errors of the mean. Standard errors are clustered
by subject. Panel B: each point represents one of the 30 common trials in the first condition.
The x-axis measures the probability of risk taking in the high volatility condition, while the y-axis
measures the probability of risk taking in the low volatility condition. Inside each data point, the
length of the vertical bar denotes two standard errors of the mean probability of risk taking in the
low volatility condition; the length of the horizontal bar denotes two standard errors of the mean
probability of risk taking in the high volatility condition.
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Does the Nature of the Noise Matter?

4 Noisy-encoding hypothesis also has different implications from
those of comparison noise for the nature of coordination of
different DMs’ decisions in a situation of strategic interaction
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A Coordination Game

Game studied (experimentally) by Frydman and Nunnari (2021):

leave stay

leave (θ, θ) (θ, 47)

stay (47, θ) (63, 63)

each of two players must simultaneously make a binary decision

payoffs for each depend on their joint decision

payoff matrix: in each cell, (a, b) means row player gets a,
column player gets b

parameter θ is different on different trials
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A Coordination Game

Game studied (experimentally) by Frydman and Nunnari (2021):

leave stay

leave (θ, θ) (θ, 47)

stay (47, θ) (63, 63)

Nash equilibrium: situation in which each player’s choice
frequencies are optimal (= maximize their expected payoff),
given the choice frequencies of the other player

If θ < 47, only NE is for both to stay (with prob. 1); if θ > 63,
only NE is for both to leave
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A Coordination Game

leave stay

leave (θ, θ) (θ, 47)

stay (47, θ) (63, 63)

But if 47 ≤ θ ≤ 63, both of these patterns are equilibria:
optimal to stay if you expect other will, optimal to leave if you
expect other will

— hence predicted outcome not determined by economic
“fundamentals”; and (over some range) changes in θ don’t
reduce extent to which either outcome makes sense
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A Coordination Game

What difference does cognitive noise make?

Common approach: “quantal response equilibrium”
(McKelvey and Palfrey, 1995) generalizes NE to introduce
comparison noise

— each player’s frequencies adapted to those of the other; but
choice frequencies increasing in the difference in expected
payoff of one’s two choices

Consequence: if only a small amount of noise, still multiple
equilibria

— though now the higher-expected-payoff choice isn’t chosen all
of the time
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Quantal Response Equilibrium

1

P(stay)

0

net expected reward from stay

•
NE

•NE

◦
QRE

◦
QRE

choice (zero noise)

choice (small noise)

green line: net expected reward as function of other’s prob of staying
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Frydman and Nunnari (2021)

Conclusions different in the case of early noise [the “cognitive
imprecision” model of F&N]

Suppose each player’s choice must be based on noisy internal
representation

r ∼ N(m(θ), ν2)

Equilibrium: each player leaves if and only if r > r ∗ (for them),
where each player’s threshold r ∗ is the point at which expected
payoff from leaving is exactly equal to expected payoff from
staying [given other player’s decision rule, and optimal Bayesian
decoding of the noisy representation r ]
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Frydman and Nunnari (2021)

Result: if cognitive noise is small enough (though non-zero),
there will be unique equilibrium strategies

— unique threshold r ∗ such that r ∗ is optimal choice for a
player, given that other uses threshold r ∗
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Determination of Equilibrium r ∗

0

1

P(stay)

E[q(θ)|r]

q(r)

r
r∗

BNE

range of NE thresholds

small noise
zero noise limit

q̄(θ) = required prob. other stays, to make it optimal to stay (if state θ)
q(r) = P[r−i < r |ri = r ]
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Frydman and Nunnari (2021)

Result: if cognitive noise is small enough (though non-zero),
there will be unique equilibrium strategies

— unique threshold r ∗ such that r ∗ is optimal choice for a
player, given that other uses threshold r ∗

Moreover, the unique equilibrium prediction is that the
probability that players leave should be an increasing function
of θ [even for values of θ in the range where there are multiple
NE]

This prediction of sensitivity to fundamentals is more
consistent with behavior observed in laboratory experiments
(Heinemann et al., 2004, 2009), and arguably with what is
observed in real-world financial crises (Gorton, 1988, 2012)
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Frydman and Nunnari (2021)

A further difference: QRE implies that the possible equilibrium
choice frequencies, for a given game (specified by θ), should be
independent of the prior distribution from which the θ is
drawn on different trials

The CI model (with Bayesian decoding) instead makes the prior
relevant to the equilibrium decision rules

— and if we further assume efficient coding, the model
predicts greater sensitivity to θ when the value of θ varies
over a smaller range

This is what Frydman and Nunnari find in their experiment
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Frydman and Nunnari (2021)
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Figure 4: Observed Probability of Investing as a Function θ. Note: For each value of θ
between 47 and 63, we plot the proportion of rounds in which a subject chooses to invest,
separately for each of the two experimental conditions. Data are pooled across subjects and
are shown for rounds 31-300, after an initial 30-round adaptation period. Vertical bars across
each dot denote two standard errors of the mean. Standard errors are clustered by subject.

of noise is reflected in the shape of the psychometric curve. Thus, in both conditions, the

aggregate data are consistent with cognitive imprecision.

In order to provide a more targeted test of cognitive imprecision, we exploit the varia-

tion in the distribution of θ across our two experimental conditions. Specifically, efficient

coding predicts systematically different behavior across conditions, and any evidence of effi-

cient coding necessarily implies some degree of cognitive imprecision in subjects’ perception.

Consistent with the hypothesis of efficient coding, we see from Figure 4 that the probability

of investing is more sensitive to the fundamental in the low volatility condition, compared

to the high volatility condition.

To formally test the difference in slope, we estimate a series of mixed effects logistic

17

vertical axis = probability of staying
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Summary

The hypothesis that decisions are based on noisy internal
representations of the presented data can explain phenomena
that a mere assumption of comparison noise (or more
generally, response noise) cannot

especially when the hypothesis of noisy coding is combined with
the further assumptions of efficient coding and Bayesian
decoding [often used in the literature on perceptual errors]

This doesn’t mean that there may not also be comparison noise

— only that a hypothesis of comparison noise by itself doesn’t
adequately capture the role of cognitive noise in decision making

Study of cognitive noise in other domains may help to improve
economic modeling
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Further Explanation of Slide 45

If p is the probability that the other player chooses to stay, then
one’s own expected payoff from staying is

ustay (p) = p · 63 + (1− p) · 47.
Instead, one’s expected payoff from leaving is

uleave = θ,

regardless of the value of p. The expected payoff differential is
therefore

∆(p) ≡ ustay (p) − uleave = (47− θ) + 16p.
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Further Explanation of Slide 45

The function ∆(p) is graphed by the green line on slide 44, for
some single value of θ. The vertical axis shows p and the
horizontal axis the corresponding value of ∆(p). The graph of
this function is an upward-sloping straight line (the location of
which depends on θ).

The graph is drawn for a case in which 47 < θ < 63, so that
∆(0) < 0 while ∆(1) > 0. (This is the case in which Nash
equilibrium will be non-unique.)

If one expects the other player to stay with probability p,
optimal behavior requires one to stay with probability zero if
∆(p) < 0, and with probability 1 if ∆(p) > 0, but is consistent
with any probability of staying if ∆(p) = 0 exactly.
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Further Explanation of Slide 45

Thus optimal behavior requires that the value of ∆ (given one’s
expectation about the other’s choice) and one’s own probability
of staying must be the coordinates of a point on the choice
correspondence C shown by the thick black lines on slide 44.

A symmetric Nash equilibrium is a probability of staying p∗

(for both players) with the property that

(∆(p∗), p∗) ∈ C
Thus the point (∆, p∗) must belong to both the green line and
the correspondence C.

When 47 < θ < 63, there are multiple intersections. The two
solid dots indicate the two symmetric NE that involve pure
strategies (deterministic behavior); these are the NE that are
locally stable under plausible learning dynamics.
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Further Explanation of Slide 45

Introducing comparison noise: suppose that each player
chooses randomly, with the probability of staying an increasing,
sigmoid function Φ(∆)

— for example, Φ(∆) ≡ e∆/ϕ

e∆/ϕ+1
, where ϕ > 0 indexes the

degree of noise [low noise ↔ large ϕ]

A symmetric quantal response equilibrium is a probability of
staying p∗ (for both players) with the property that

p∗ = Φ(∆(p∗))

— or alternatively, such that Φ−1(p∗) = ∆(p∗) [hence a point
of intersection of the sigmoid curve and the green line, in the
figure]
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Further Explanation of Slide 45

In the case of small enough noise [e.g., large enough ϕ in the
parametric model of comparison noise proposed above], the
graph of the sigmoid curve will be close to the graph, and hence
will intersect the green line at points close to each of the
intersections between the green line and C

Hence in the case of small enough noise, there will again be a
multiplicity of equilibria

— the points labeled “QRE” in the figure are two different
quantal response equilibria, again each locally stable under
learning dynamics
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Further Explanation of Slide 48

Instead introducing noise in perception of the state θ: player’s
decision must then be a function of internal representation r ,
rather than of the true value of θ [which is not accessible]

Optimality of decision by player i , given the behavior of the
other player −i : one can’t define i ’s optimal response to
representation r , taking as given how −i is expected to respond
to that same representation r

— because when i ’s internal state is r , they can’t be sure what
the external state θ is, and hence can’t be sure what −i ’s
internal state is

Must instead consider optimal decision by i given a rule of
behavior for player −i , specifying what they will they will do in
the case of any possible internal representation r−i
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Further Explanation of Slide 48

Bayesian Nash Equilibrium: a pair of rules [specifying how
each player acts as a function of their internal state] with the
property that each player’s rule is optimal for them [note: no
fuzziness of their choice, conditional on their internal state],
given the rule of the other player, and the joint distribution of
the states (θ, ri , r−i )

— optimal response for i to internal state ri depends on the
conditional distribution over actions of −i , given the conditional
distribution p(r−i |ri ) and −i ’s rule of behavior [this is where
Bayesian inference comes in]

We will further look only at equilibria where the rules of behavior
are threshold rules: for any player i , there is a threshold r̂i
such that i stays if and only if ri < r̂i
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Further Explanation of Slide 48

Nash equilibrium in threshold strategies, in the case of no
cognitive noise: in this case, r reveals the value of θ with
perfect precision [implied value = θ(r)], and each player can be
certain that the other perceives θ in the same way that they do

It is then an NE for the two players to choose identical thresholds
(r̂ , r̂), where r̂ is any number such that 47 ≤ θ(r̂) ≤ 63

this is the range of possible thresholds identified as “range of
NE thresholds” in the figure

i.e., range of values of r such that 0 < q̄(θ(r)) < 1

Note that this is just a translation to the discussion of
equilibrium rules of behavior of our previous conclusions about
the multiplicity of NE in the absence of cognitive noise
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Further Explanation of Slide 48

If instead a noisy internal representation of θ: player i must
infer possible θ, and other’s prob. of staying, from state ri

Given any true state θ, net reward to i from staying is

∆(p) = 16[p − q̄(θ)],

where we use the notation q̄(θ) ≡ (θ − 47)/16 for the
probability of other player’s staying that is required to make it
worthwhile for player i to stay

Then given ri , optimal for player i to stay if and only if

E[∆(p) |ri ] > 0 ⇔ E[p |ri ] > E[q̄(θ) |ri ]
⇔ Prob(−i stays |ri ) > E[q̄(θ) |ri ]
⇔ Prob(r−i < r̂−i |ri ) > E[q̄(θ) |ri ]
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Further Explanation of Slide 48

Hence optimal threshold r̂i for player i is value such that

Prob(r−i < r̂−i |ri = r̂i ) = E[q̄(θ) |ri = r̂i ]

A symmetric BNE in threshold strategies is a threshold r ∗ such
that r̂−i = r ∗ makes it optimal to choose r̂i = r ∗

— this is an r ∗ such that

Prob(r−i < r ∗ |ri = r ∗) = E[q̄(θ) |ri = r ∗]

— i.e., an intersection of the curves

q(r) ≡ Prob(r−i < r |ri = r) and E[q̄(θ) |ri = r ]

shown in the figure
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Further Explanation of Slide 48

In the limit as cognitive noise of this kind becomes negligible:

q(r) approaches constant value 1/2 for all r [horizontal dashed
line in figure: other’s internal state equally likely to be above or
below one’s own]

E[q̄(θ) |ri = r ] approaches q̄(θ(r)) [downward sloping straight
line, as shown, if m(θ) is linear]

Hence in the case of small enough cognitive noise of this kind,
the intersection must be unique, as shown

set of solutions for r ∗ as ν → 0 [single point labeled BNE] not
the same as the set of solutions for r ∗ in the zero-noise model
[entire interval marked by the curly bracket]
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Implications of Slide 48

In the unique equilibrium, the players’ probability of staying will
vary depending on θ:

Prob(stay |θ) = Prob(ri < r ∗ |θ) = Φ
(
r ∗ −m(θ)

ν

)
,

where now Φ(z) is the CDF of the standard normal distribution.

This should be a decreasing function of θ (as seen in slide 51).

If when the range of values of θ in the support of the prior is
wider, the encoding function m(θ) must be flatter [range
normalization], then the function Prob(stay |θ) should also be a
flatter function of θ (as is also seen in slide 51).
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