## Cognitive Uncertainty: Measurement and Economic Consequences

#### **Benjamin Enke**

(with Thomas Graeber and other co-authors)

## **Cognitive uncertainty**

- Standard models: people maximize and have no doubt about ex-ante optimality of their decisions
- Vast majority of behavioral models: people may make mistakes but are never nervous about screwing up
- Introspecting:
  - When you take a decision, do you really know what your utility-maximizing action is?
  - People often have meta-cognition that they may not be able to maximize
- Cognitive uncertainty: subjective uncertainty about which decision maximizes DEU

## **Examples of cognitive uncertainty**

- Ex 1: given your preferences and beliefs, which equity share maximizes your expected utility? Are you sure?
- Ex 2: given your intrinsic patience, how many hours of exercise this week maximize your discounted utility? Are you sure?
- Ex 3: What is your certainty equivalent for a 70% chance of getting \$25? \$15? Really?
- Ex 4: Your prior is it rains with prob 10%, now you read a weather forecast that predicts rain; forecast is correct 80% of the time; what's the correct posterior belief? 65%? Or maybe 57%?

## **Examples of cognitive uncertainty**

- Ex 1: given your preferences and beliefs, which equity share maximizes your expected utility? Are you sure?
- Ex 2: given your intrinsic patience, how many hours of exercise this week maximize your discounted utility? Are you sure?
- Ex 3: What is your certainty equivalent for a 70% chance of getting \$25? \$15? Really?
- Ex 4: Your prior is it rains with prob 10%, now you read a weather forecast that predicts rain; forecast is correct 80% of the time; what's the correct posterior belief? 65%? Or maybe 57%?

#### Why does this matter for economics?

#### Why meta-cognition matters for econ

#### 1. Understanding and predicting biases / anomalies in individual DM

- Predicts systematic judgment and decision errors
- > Ties together behavioral anomalies that are typically viewed as distinct
- Can be deployed to test formal economic models
- Intuition: When clueless, we tend towards "intermediate" options

### Why meta-cognition matters for econ

#### 1. Understanding and predicting biases / anomalies in individual DM

- Predicts systematic judgment and decision errors
- Ties together behavioral anomalies that are typically viewed as distinct
- Can be deployed to test formal economic models
- Intuition: When clueless, we tend towards "intermediate" options

#### 2. Understanding whether biases matter for aggregate economic outcomes

- Determines whether people are likely to "select out" of economic interactions, e.g., don't bet aggressively in markets
- Such self-selection can filter the effect of individual biases on aggregate outcomes

#### References

- Enke and Graeber: Cognitive Uncertainty (2019)
- Enke and Graeber: Cognitive Uncertainty in Intertemporal Choice (2021)
- Enke, Graeber and Oprea: Confidence, Self-Selection and Bias in the Aggregate (2021)

# Cognitive Uncertainty: Predicting and Tying Together Anomalies

#### How much chance of \$100 is worth to people



#### How people update beliefs from information



#### How people forecast economic events



#### How much \$100 in future is worth to people today



#### Tradeoffs between two future dates



## What is going on?

#### One view in the literature: domain-specific preferences or biases

- "Probability-dependent risk preferences"
- "Extreme-belief aversion" / conservatism
- Base rate insensitivity
- Regression in economic forecasts
- Hyperbolic discounting

Another view: common mechanism: complexity and cognitive noise

Measurable product of cognitive noise: cognitive uncertainty

## Why should cognitive uncertainty predict anomalies? I

Consider two extreme benchmarks for behavior:

- No cognitive constraints / endless deliberation: agent picks utility-maximizing decision a\*(p) that depends on some problem parameter p
- 2. Prior to any deliberation: agent picks "cognitive default decision" d
  - Default = initial reaction to decision problem, no deliberation
  - Key feature: independent of specific problem features

#### Why should cognitive uncertainty predict anomalies? II

- Observed decision:  $a^o = \lambda s(a^*(p)) + (1 \lambda)d$ 
  - where  $s(\cdot)$  is noisy cognitive signal about optimal decision
  - ▶  $\lambda \in [0, 1]$  reflects magnitude of cognitive noise, proxied by cognitive uncertainty
- Interpretation of decision process:
  - 1. Loosely: Anchoring-and-adjustment as in Kahneman-Tversky
  - Bayesian noisy cognition models / drift-diffusion models: agent holds prior and adjusts after mentally simulating his optimal action

#### Why should cognitive uncertainty predict anomalies? III

- Average observed decision:  $E[a^o] = \lambda a^*(p) + (1 \lambda)d$
- Main implication: compression effect: decisions look like they treat different values of parameter p to some degree alike
- Cognitive attenuation"
  - Like attenuation bias in econometrics, except happens inside people's minds

(Never mind specific location of default)



(Never mind specific location of default)











# Getting to work: Measuring cognitive uncertainty

### Intertemporal choice behavior

| Voucher A                     |   |   | Voucher B                 |  |  |  |  |  |  |
|-------------------------------|---|---|---------------------------|--|--|--|--|--|--|
|                               | ۲ | 0 | Valid today: \$2 Voucher  |  |  |  |  |  |  |
|                               | ۲ | 0 | Valid today: \$4 Voucher  |  |  |  |  |  |  |
|                               | ۲ | 0 | Valid today: \$6 Voucher  |  |  |  |  |  |  |
|                               | ۲ | 0 | Valid today: \$8 Voucher  |  |  |  |  |  |  |
|                               | ۲ | 0 | Valid today: \$10 Voucher |  |  |  |  |  |  |
|                               | ۲ | 0 | Valid today: \$12 Voucher |  |  |  |  |  |  |
|                               | ۲ | 0 | Valid today: \$14 Voucher |  |  |  |  |  |  |
|                               | ۲ | 0 | Valid today: \$16 Voucher |  |  |  |  |  |  |
|                               | ۲ | 0 | Valid today: \$18 Voucher |  |  |  |  |  |  |
| Valid in 1 year: \$40 Voucher | ۲ | 0 | Valid today: \$20 Voucher |  |  |  |  |  |  |
|                               | ۲ | 0 | Valid today: \$22 Voucher |  |  |  |  |  |  |
|                               | 0 | ۲ | Valid today: \$24 Voucher |  |  |  |  |  |  |
|                               | 0 |   | Valid today: \$26 Voucher |  |  |  |  |  |  |
|                               | 0 |   | Valid today: \$28 Voucher |  |  |  |  |  |  |
|                               | 0 | ۲ | Valid today: \$30 Voucher |  |  |  |  |  |  |
|                               | 0 | ۲ | Valid today: \$32 Voucher |  |  |  |  |  |  |
|                               | 0 |   | Valid today: \$34 Voucher |  |  |  |  |  |  |
|                               | 0 |   | Valid today: \$36 Voucher |  |  |  |  |  |  |
|                               | 0 |   | Valid today: \$38 Voucher |  |  |  |  |  |  |
|                               | 0 | ۲ | Valid today: \$40 Voucher |  |  |  |  |  |  |

#### Elicitation of cognitive uncertainty

Your choices on the previous screen indicate that you value a \$40 voucher that is valid **in 1 year** somewhere between a \$22 and a \$24 voucher that is valid **today**.

| Но     | How certain are you that you actually value a \$40 voucher that is valid in 1 year somewhere between a \$22 and a \$24 voucher that is valid today? |   |   |   |     |   |      |   |   |      |      |     |     |   |     |   |   |   |      |   |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|-----|---|------|---|---|------|------|-----|-----|---|-----|---|---|---|------|---|
| 0%     | 504                                                                                                                                                 | 0 | 0 | 0 | 25% | 0 | 2594 | 0 | 0 | 5096 | 5504 | 60% | 65% | 0 | 75% | 0 | 0 | 0 | 0594 | 0 |
| very u | مان مرد مان مدر مان مدر مان مدر مان مدر مان مدر مان                                                             |   |   |   |     |   |      |   |   |      |      |     |     |   |     |   |   |   |      |   |

#### Heterogeneity in CU in intertemporal decisions



Clear evidence for cognitive uncertainty "types":

- Large fraction of variation (50%) explained by subject fixed effects
- 2. CU highly correlated within subject across decision domains / tasks

#### Heterogeneity in CU in lottery choices



Choice under risk

#### **Discussion of cognitive uncertainty measure**

Composite measure of uncertainty; could have many different origins:

- Struggle with combining utils and probabilities
- Don't know your own preferences
- Don't know Bayes rule
- Imperfect perception
- Etc
- Very simple and costless to elicit
- Can easily be tweaked to be applicable to large set of experiments and surveys
- No incentives, BUT validation with across-trial choice variability / inconsistencies

#### Validation: Across-trial inconsistency and CU



Correlation very similar in lottery choice, intertemporal choice and belief updating ( $\rho \approx 0.3$ )

# Linking cognitive uncertainty to behaviors and beliefs

#### Probability weighting and cognitive uncertainty



#### Beliefs and cognitive uncertainty



#### Intertemporal choice and cognitive uncertainty



# Experimentally manipulating cognitive noise

## **Experimental manipulations**

#### Two broad classes of approaches:

- 1. Manipulate cognitive resources that are available for mental simulation of decision
  - Cognitive load
  - Time pressure
- 2. Manipulate complexity of decision problem
  - Math manipulation: Leverage normative equivalence between (i) 40% chance of \$50 (ii) 22 × 3/6 + 29% chance of \$50
  - Compound manipulation: Leverage normative equivalence between (i) 40% chance of \$50 (ii) p ~ U[30, 50]% chance of \$50

#### $\Rightarrow$ Hypothesis is always that behavior becomes more "compressed"

#### Illustration: compound manipulation in choice under risk



Cognitive uncertainty increases by 30%

#### Wrap: Cognitive Uncertainty and Behavioral Anomalies

- Cognitive uncertainty helps to understand empirical regularities that seem unrelated at first
- Key insight: in presence of cognitive uncertainty, decisions look like treat different values of problem parameter alike
- Contributes to "cognitive turn in behavioral economics": many decision anomalies that were previously thought of as due to non-standard preferences now attributed to fundamentals such as attention, memory, cognitive noise, complexity

# Meta-Cognition and Bias in the Aggregate

#### Individual errors and aggregate outcomes

- ► We've uncovered numerous individual-level biases, in both lab and field
- Yet: much of econ concerned with outcomes from interactions in markets and orgs
- Success of behavioral research partly rests on idea that irrationalities affect aggregate: matter for prices, distort allocative efficiency, or have redistributive effects
  - $\rightarrow$  Many "classical" objections: arbitrage, wealth dynamics, learning...

# Does behavioral econ itself provide potential limit to the role of individual errors for economic quantities?

#### Self-selection and biases in the aggregate

- Experimenters typically force people into difficult tasks
- In reality: people often have freedom to self-select into or out of decisions:
  - Bet conservatively in financial markets competition that exploits fallibility
  - Avoid bidding aggressively in auctions for objects you don't fully understand
  - Hold back opinion from discussion in organizations / committees when unsure
- Gary Becker: "[self-selection] strongly attenuates if not eliminates any effect of bounded rationality"

#### When does self-selection filter out errors?

It depends on who selects in / out, which will partly depend on...

Meta-cognition: to what degree are people aware of their own biases?

- 1. Error-prone people LESS confident  $\Rightarrow$  more cautious  $\Rightarrow$  Institutions attenuate errors
- 2. Error-prone people MORE confident  $\Rightarrow$  more aggressive  $\Rightarrow$  Institutions amplify errors
- Theoretically, correlation between objective performance and confidence more important than average overconfidence

### **Experimental setup: Institutional filtering**

- Subjects do 15 widely-studied tasks organized around Econ101 core principles
- > Part 1: Provide answer to cognitive task (e.g., CRT, corr neglect, base rate neglect)
- Part 2: Participate in one of three institutions (between-subjects)
  - 1. Betting market: Bet on whether Part 1 decision is correct
  - 2. Committee voting: Vote for Part 1 decision to be adopted by cohort
  - 3. Auction: Bid for right to earn a bonus that pays iff own Part 1 decision correct
  - ⇒ Part 2 decision reflects how aggressively people "self-select" in institution

### **Part 2: Institutions**

- 1. Betting markets: Well-informed bidders in speculative markets are incentivized to bid more aggressively, producing prices that aggregate information
  - Parimutuel betting on accuracy of own Part 1 decision
  - Aggregate Outcome: price of Arrow security linked to optimal decision
- 2. Allocative markets: People who highly value products or factor inputs will bid more for them, causing markets to direct resources to "their most highly valued use"
  - Discriminatory Auction where highest bidders pay bid and get bonus iff Part 1 is correct
  - Aggregate Outcome: optimality rate of auction winners.
- 3. Committees: Organizations aggregate opinions through discussion or voting
  - Utilitarian voting: subjects can submit votes for own Part 1 solution
  - Aggregate Outcome: vote share on optimal decision

#### Compare bias in Aggregate Outcome to raw Part 1 optimality rate!

#### **Example**

Part 1: Subjects answer Kahneman-Tversky base rate neglect question.

Part 2: Subjects assigned to group of 10 (all of whom solved same Part 1 question)

- Each can submit up to 100 votes for decision to be "adopted by group".
- Everyone makes same profit that depends on fraction of votes for correct answer

**Question:** Is the group decision (i.e. vote share on optimal choice) better than average individual decisions? For which tasks?

#### Do subjects with correct decisions vote / bet / bid more?



Similar differences across institutions: 30% in Voting, 37% in Betting, 29% in Auction

#### Which errors do institutions reduce?

All



AC=Acquiring-a-company; BRN=Base rate neglect; BU=Balls-and-urns belief updating; CN=Correlation neglect; CRT=Cognitive reflection test; EGB=Exponential growth calc.; EQ=Predict others' play; GF: Predict sequence of draws; IR=Backwards induction; KS=Knapsack; PC=Portfolio choice; RM=Attribution; SSN=Account for sample size; TM=Thinking at the margin; WAS=Wason. 41

#### Varies little across institutions



#### Institutions help on average but...

- Average effect of self-selection is positive but modest.
- Massive variation across tasks. For some, institutions don't help or hurt.
- ► Why?
- Pre-registered hypothesis: variation in relative confidence calibration across tasks generates heterogeneity in institutional filtering

#### How strongly are performance and confidence correlated?



AC=Acquiring-a-company; BRN=Base rate neglect; BU=Balls-and-urns belief updating; CN=Correlation neglect; CRT=Cognitive reflection test; EGB=Exponential growth calc.; EQ=Predict others' play; GF: Predict sequence of draws; IR=Backwards induction; KS=Knapsack; PC=Portfolio choice; RM=Attribution; SSN=Account for sample size; TM=Thinking at the margin; WAS=Wason. 44

# Putting the pieces together: Does calibration of confidence predict institutional filtering?



Calibration predicts improvement:  $\rho = 0.76$  (between),  $\rho = 0.91$  (within)

#### Summary: Meta-cognition and bias in the aggregate

- Relative confidence calibration crucial for understanding whether individual-level irrationalities actually matter for aggregate quantities
- Massive variation in quality of meta-cognition across different cognitive biases
- Highlights need to study distribution and determinants of meta-cognition more systematically
  - ▶ For social science, meta-cognition as relevant as biases and preferences themselves.
  - Why is confidence well-calibrated in some tasks but not others?

# Discussion: Moving Forward with Research on Meta-Cognition and Cognitive Uncertainty

#### **Discussion I**

- Meta-cognition massively understudied in economics
- We now know it matters for understanding:
  - What people do when they find a problem complex
  - How different seemingly-unrelated behavioral anomalies can be tied together through logic of cognitive noise / cognitive uncertainty
  - Whether individual-level irrationalities affect outcomes of interactions in markets and orgs

## **Discussion II**

- Many open questions:
- What about other pull-to-center anomalies in economics?
  - Famous newsvendor game (OR, econ, business)
  - Well-known pull-to-center effect in performance evaluations in businesses
- What determines whether meta-cognition is good or bad in a given task?
- Learning about quality of confidence calibration in richer institutions?
- ► Field evidence?

