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Overview

• in the past decade, psychologists and neuroscientists have increasingly
embraced a new framework for thinking about human decision-making
in experimental settings

– work of Daw; Niv; Gershman; Dayan; O’Doherty...

• the framework combines two algorithms, or systems

– model-free learning

– model-based learning

• computer scientists have contributed significantly to the development of
these algorithms

– use them to solve complex dynamic problems

– e.g. Backgammon and Go

• psychologists are also very interested in these algorithms

– because of neural evidence that they reflect the brain’s actual compu-
tations when evaluating different possible courses of action



Overview, ctd.

In this paper:

• we import this framework into a simple financial setting

• examine its properties and implications

• use it to account for a range of empirical facts about investor behavior



Overview, ctd.

Models

• model-free system

• a portfolio-choice setting

• model-based system

• hybrid system

Properties

• despite its simplicity, the model-free system has rich implications and
delivers novel intuitions
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Applications

• extrapolative demand

• experience effects

• the disconnect between investor beliefs and investor allocations in both
the frequency domain and the cross-section

• dispersion and inertia in investor allocations

• non-participation in the stock market

• persistent investment mistakes

Broader theme:

• try to make sense of investor behavior using a framework rooted in al-
gorithms the brain appears to use when evaluating different courses of
action



Overview, ctd.

• full name of “model-free learning” is “model-free reinforcement learning”

– reinforcement learning has received much less attention in finance and
economics than in psychology and neuroscience

– closest antecedent in economics is in behavioral game theory

• model-based learning is closer to traditional frameworks in economics

– novelty in this paper is model-free learning

– and on how it compares to model-based learning



Psychological background

• psychologists have increasingly adopted a new framework for studying
human decision-making in experimental settings

– Daw, Niv, and Dayan (2005); Daw (2014)

• combines two algorithms, or systems

– model-free learning

– model-based learning

• the framework has found support in both behavioral and neural data

– e.g., in the “two-step task” (Daw et al., 2011)



Psychological background, ctd.
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• participant behavior in this experiment points to both model-free and
model-based influences

– as does neural activity



Models

• model-free and model-based algorithms are both intended to solve dy-
namic decision problems of the following form:

t t+1

state
action

state
reward

– probability distribution p(st+1, rt+1|st, at) and Markov structure

• goal is to

max{at}
E0

⎡
⎣ ∞∑
t=1

γt−1rt
⎤
⎦



Models, ctd.

• economists almost always tackle problems of this kind using dynamic
programming (DP)

– and often use the DP solution to interpret observed behavior

• however, it is not clear how people would come to act according to the
DP solution

• goal here: to explain observed behavior with a framework rooted in al-
gorithms the brain appears to use when estimating the value of different
courses of action



Models, ctd.

• there is growing evidence from psychology research that the way people
tackle these problems is with a combination of model-free and model-
based algorithms

• we discuss the model-free algorithm first

– two prominent model-free algorithms that psychologists have focused
on are Q-learning and SARSA

– we work with Q-learning here



Model-free learning

• goal of both model-free and model-based approaches is to estimateQ∗(st, at)

– the value of taking an action at at time t in state st, and then contin-
uing optimally thereafter

• suppose that we take action at at time t in state st and then observe a
reward rt+1 at time t + 1 and land in state st+1

• the model-free algorithm updates its estimate of Q∗(st, at) as follows

Qt+1(st, at) = Qt(st, at)

+ αMF [rt+1 + γmax
a′

Qt(st+1, a
′)−Qt(st, at)]

– the quantity in square brackets is the “reward prediction error” (RPE)

– αMF is the learning rate

• there is substantial evidence that the brain computes such RPEs

– Montague, Dayan, Sejnowski (1996), Schultz, Dayan, Montague (1997),
McClure, Berns, Montague (2003), O’Doherty et al. (2003)



Model-free learning, ctd.

• the algorithm chooses the action at at time t probabilistically:

p(at = a) =
exp[βQt(st, a)]

∑
a′ exp[βQt(st, a′)]

– allows for “exploration”

– as β → ∞, choose action with the highest Q value



Model-free learning, ctd.

Why is Q-learning sensible?

• recall that Q∗(st, at) satisfies

Q∗(st, at) = Et[rt+1 + γmax
a′

Q∗(st+1, a
′)]

• we can rewrite the updating equation as

Qt+1(st, at) = (1− αMF )Qt(st, at)

+αMF [rt+1 + γmax
a′

Qt(st+1, a
′)]



Model-free learning, ctd.

• psychologists often make an adjustment to the basic Q-learning update
equation

– allow for different learning rates for positive and negative RPEs

Qt+1(st, at) = Qt(st, at) + αMF
+ (RPE), RPE ≥ 0

Qt+1(st, at) = Qt(st, at) + αMF
− (RPE), RPE < 0



A portfolio-choice setting

• infinite horizon, and two assets

– risk-free asset with constant gross return Rf

– risky asset with lognormal return Rm,t

Rm,t = eμ+σεt, εt ∼ N(0, 1), i.i.d.

• an investor maximizes the expected log utility of wealth at some future
horizon

• if an investor is still in financial markets entering time t

– with probability 1−γ, he receives a liquidity shock, leaves the markets
at time t, and derives log utility of wealth at that time

• his objective then reduces to

max
{at}

E0

⎡
⎣ ∞∑
t=1

γt−1 logRp,t

⎤
⎦

– where Rp,t is the portfolio return from t− 1 to t

– and at is the fraction of wealth in the risky asset



A portfolio-choice setting, ctd.

• we can solve this mathematically

– solution is to allocate a constant fraction of wealth a∗ to the risky
asset

a∗ = argmax
a

Et log((1− a)Rf + aRm,t+1)

• however, it is not clear how ordinary investors would find their way to
this solution

• we want to investigate the implications, in this setting, of a decision-
making algorithm that reflects the brain’s actual computations

– e.g. a model-free algorithm like Q-learning



Model-free learning, ctd.

• we could apply earlier Q-learning equation directly to this problem

Qt+1(st, at) = Qt(st, at)

+αMF [logRp,t+1 + γmax
a′

Qt(st+1, a
′)−Qt(st, at)]

• instead, assume that investors take there to be only one state, and drop
dependence of Q(s, a) on s

– a simplification on the part of the investor

• investor’s goal is then to estimate Q∗(a)

• after trying action a at time t, update estimate of Q∗(a) at time t + 1:

QMF
t+1 (a) = QMF

t (a)

+αMF
+/−[logRp,t+1 + γmax

a′
QMF

t (a′)−QMF
t (a)]



Model-free learning, ctd.

• the correct Q∗(a) is

Q∗(a) = Et log((1− a)Rf + aRm,t+1)

+
γ

1− γ
Et log((1− a∗)Rf + a∗Rm,t+1)



Model-free learning, ctd.

Generalization

• in the basic version of model-free learning, the algorithm updates only
the value of the most recently-chosen action

• research in both psychology and computer science has studied “model-
free generalization”

– the algorithm generalizes from its experience of action a to also update
the values of other actions

• we have implemented such generalization using the notion of similarity

– the algorithm uses the RPE from taking allocation a to also update,
to a lesser extent, the Q values of similar allocations

QMF
t+1 (â) = QMF

t (â) + αMF
t,± κ(â)[logRp,t+1 + γmax

a′
QMF

t (a′)−QMF
t (a)]

κ(â) = exp(−(â− a)2

2b2
)



Model-free learning, ctd.

• the model-free algorithm uses no information about the structure of asset
returns

– it does not know what a “risk-free asset” is or what the “stock market”
is

• nonetheless, it may still be an important driver of decisions in financial
markets

– the model-free system is a fundamental part of human decision-making

– many investors may be unfamiliar with the structure of asset returns



Model-based learning

• psychologists use a framework that combines model-free and model-based
learning

• dynamic programming is one possible model-based framework

– we use an alternative motivated by neural evidence on the brain’s
computations

– Glascher et al. (2010), Lee, Shimojo, O’Doherty (2014), Dunne et al.
(2016)

• after observing the market return Rm,t = R at time t, the algorithm
updates the probability distribution using

pt(Rm = R) = pt−1(Rm = R) + αMB[1− pt−1(Rm = R)]

– the quantity in square brackets is again a prediction error

– and αMB is a learning rate

– there is evidence that such prediction errors are encoded in the brain
(Glascher et al., 2010)



Model-based learning, ctd.

• in a continuous-distribution setting, can simplify the above to

pt(Rm = R) = αMB

• after observing three returns R1, R2, and R3 in sequence, update per-
ceived distribution as follows

(R1, 1)

(R1, 1− αMB;R2, α
MB)

(R1, (1− αMB)2;R2, α
MB(1− αMB);R3, α

MB)

• we allow for different learning rates for positive and negative returns

pt(Rm = R) = αMB
+ for R ≥ 1

pt(Rm = R) = αMB
− for R < 1



Model-based learning, ctd.

• given this return distribution, the investor estimates Q∗(a) using the
correct formula, but where the expectation is taken using his perceived
distribution

QMB
t (a) = Ep

t log((1− a)Rf + aRm,t+1)

+
γ

1− γ
Ep

t log((1− a∗)Rf + a∗Rm,t+1)

a∗ = argmax
a

Ep
t log((1− a)Rf + aRm,t+1)



Hybrid system

• following the psychology literature, we use a framework that combines
the two algorithms

– Glascher et al. (2010), Daw et al. (2011)

QHYB
t (a) = (1− w)QMF

t (a) + wQMB
t (a)

p(at = a) =
exp[βQHYB

t (a)]
∑
a′ exp[βQHYB

t (a′)]

• one difference between the two algorithms is that they likely apply to
different intervals

– if an investor starts participating in financial markets at time 0, the
model-free system starts operating at that point

– but before entering, the investor can observe prior data going back to
time t = −L, which the model-based system can learn from

• this is consistent with experimental evidence (Dunne et al., 2016)



Properties

• we use the following structure

– each investor enters financial markets at time 0

– we track their behavior until time T

– before entering, each investor observes data going back to t = −L

– we take each period to be one year, and set L = 30 and T = 30

– at each date from 0 to T, each investor chooses from the 11 allocations
{0%, 10%, . . . , 90%, 100%}

L 1 0 1 T

model free system

model based system

. . . . . . . .



Properties, ctd.

• focus on learning rates that are constant over time

– initially, learning rates are also the same across investors, but later
allow for dispersion

• parameters:

parameter value

αMF
+ , αMF

− , αMB
+ , αMB

− 0.5
β 30
γ 0.97
w 0.5
μ 0.01
σ 0.2



Properties, ctd.

The mechanics of each system

• consider an investor who observes a sequence of returns over time

• to understand how the two systems work, we first consider the cases
where behavior is determined only by the model-free system

– or only by the model-based system



Properties, ctd.

The mechanics of each system, ctd.

Model-free Q values

date 0 1 2 3 4 5
net return -17.4% 18.3% -1.3% 12.8% -16.6%

0% 0 0 0 0 0 0
10% 0 0 0 0 0 0
20% 0 0 0.006 0.006 0.01 0.01
30% 0 0 0.027 0.027 0.045 0.041
40% 0 0 0.006 0.006 0.01 -0.007
50% 0 0 0 0 0 -0.004
60% 0 -0.015 -0.015 -0.015 -0.015 -0.015
70% 0 -0.065 -0.065 -0.065 -0.065 -0.065
80% 0 -0.015 -0.015 -0.014 -0.014 -0.014
90% 0 0 0 0.001 0.001 0.001
100% 0 0 0 0.006 0.006 0.006



Properties, ctd.

The mechanics of each system, ctd.

Model-based Q values

date 0 1 2 3 4 5
net return -17.4% 18.3% -1.3% 12.8% -16.6%

0% 0.72 0 1.352 0.464 2.179 0
10% 0.723 -0.007 1.357 0.466 2.187 -0.005
20% 0.726 -0.015 1.362 0.468 2.194 -0.01
30% 0.729 -0.022 1.367 0.47 2.201 -0.015
40% 0.731 -0.03 1.372 0.472 2.208 -0.02
50% 0.733 -0.039 1.376 0.473 2.215 -0.026
60% 0.736 -0.047 1.38 0.475 2.222 -0.031
70% 0.737 -0.056 1.384 0.476 2.228 -0.037
80% 0.739 -0.065 1.387 0.477 2.234 -0.044
90% 0.741 -0.075 1.39 0.478 2.241 -0.05
100% 0.742 -0.085 1.393 0.479 2.247 -0.057



Properties, ctd.

Dependence on past returns

• consider many investors, each of whom is exposed to a different sequence
of stock market returns

– examine how investors’ date T allocation aT depends on the past
market returns investors have been exposed to

• for both systems:

– the allocation puts weights on past stock market returns that are
positive and that decline, the further back we go into the past

• importantly, the decline is much faster in the case of the model-based
system



Properties, ctd.

Dependence on past returns, ctd.
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Properties, ctd.

Dependence on past returns, ctd.

• it is clear why the model-based allocation depends positively on past
returns

• the intuition for the model-free system is more novel

– after a positive market return, the RPE is larger when the investor’s
starting allocation is high

allocation
0% 20% 80% 100%

reward
prediction
error



Properties, ctd.

Dependence on past returns, ctd.

• it is clear why, for the model-based system, the weights on past returns
decline as we go further into the past

• the model-free system exhibits the same pattern, but the decline is much
slower

– the model-free system learns slowly

– at each time, it updates primarily the Q value of the action just taken



Properties, ctd.

Dependence on past returns, ctd.

• the model-free system can exhibit substantially richer behavior

• the relationship between allocations and past returns is affected by factors
that play no role in the model-based system

– exploration parameter β

– discount rate γ

– the number of allocation choices



Properties, ctd.

Dependence on past returns, ctd.
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Applications

• before considering applications, enrich the framework on two dimensions

– allow for dispersion in learning rates across investors

– allow for different cohorts of investors who enter financial markets at
different times

– six cohorts, which enter at t = 0, 5, 10, 15, 20, 25, respectively

30 0 5 10 15 20 25 30

Cohort 1

Cohort 2

Cohort 3

Cohort 4

Cohort 5

Cohort 6



Applications, ctd.

• show that, for a simple parameterization, obtain a qualitative and ap-
proximate quantitative fit to several empirical facts

• later, formally estimate key model parameters

parameter value
L 30
T 30

αMF
+ , αMF

− , αMB
+ , αMB

− ∼ [0.25, 0.75]
β 30
γ 0.97
w 0.5
μ 0.01
σ 0.2



Applications, ctd.

Our framework is helpful for thinking about:

• extrapolative demand

• experience effects

• the disconnect between investor beliefs and investor allocations in both
the frequency domain and the cross-section

• dispersion and inertia in investor allocations

• non-participation in the stock market

• persistent investment mistakes



Applications, ctd.

Extrapolative demand

• many models assume that investors have extrapolative demand for risky
assets

– e.g. demand is based on a weighted average of past returns, with more
weight on recent returns

• our framework provides a new foundation for such demand, through the
mechanics of the model-free system

• it also says that extrapolative demand has two distinct sources operating
at different frequencies

– a model-based source that puts heavy weight on recent returns

– a model-free source that puts substantial weight even on distant past
returns



Applications, ctd.

Extrapolative demand
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Applications, ctd.

Experience effects

• Malmendier and Nagel (2011) find that stock market allocations can be
explained in part by a weighted average of the stock market returns an
investor has personally experienced

Two features:

• investors put more weight on returns they have experienced than on those
they have not

– e.g. if an investor enters the market at time t, he puts significantly
more weight on Rm,t+1 as opposed to Rm,t

• weights on experienced returns decline the further back we go



Applications, ctd.

Experience effects, ctd.

• our framework can capture both features

– the model-free system puts weight only on experienced returns

– both systems put less weight on more distant past returns

• to check this, we regress, for each cohort, the date T allocation aT on
past stock market returns

– observe both features



Applications, ctd.

Experience effects, ctd.
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Applications, ctd.

The frequency disconnect

• investor expectations of future stock market returns depend heavily on
recent past market returns (Greenwood and Shleifer, 2014)

– but investor allocations depend even on distant past returns (Mal-
mendier and Nagel, 2011)

• our framework can help explain this

– only the model-based system has an explicit role for beliefs

• when asked for their beliefs, investors consult the model-based system
and give an answer that depends primarily on recent past returns

• allocations depend on both the model-based and model-free systems

– and the model-free system puts substantial weight even on distant
past returns



Applications, ctd.

The frequency disconnect, ctd.
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Applications, ctd.

The cross-sectional disconnect

• Giglio et al. (2021) regress investors’ allocations on their expectations of
future stock market returns

– find a positive relationship, but weaker than traditional models suggest

• our framework can account for this

– beliefs are generated by the model-based system, which puts substan-
tial weight on recent returns

– allocations are also affected by the model-free system, which puts a
lot of weight on distant past returns

• following a good stock market return

– an investor’s expected return, generated by the model-based system,
goes up significantly

– his allocation, which is also affected by the model-free system, goes
up less



Applications, ctd.

The cross-sectional disconnect, ctd.

w Sensitivity

0.2 0.7
0.5 1.25
1 1.91



Applications, ctd.

Dispersion in allocations

• there is substantial dispersion in investors’ allocations to the stock market

• our framework points to two sources of this dispersion

– differences in learning rates across investors

– reinforcement of earlier probabilistic choices

Inertia in allocations

• there is also substantial inertia in investor allocations

• the model-free system can generate such inertia

– it learns slowly: at each time, it updates primarily the Q value of the
action taken

⇒ from one period to the next, there is little variation in the Q values
of the 11 possible allocations



Applications, ctd.

Non-participation

• the model-free system can help account for widespread non-participation
in the stock market

• if there is a poor stock market return, this raises the likelihood that the
investor will move to a 0% allocation

• once there, the model-free system updates only the Q value of the riskless
asset

– and so will fail to learn that the stock market has good properties

• through simulations, confirm that relative to the model-based system,
the model-free system is much more likely to generate non-participation



Applications, ctd.

Persistent investment mistakes

• the framework can explain the persistence of investment mistakes

– due to the slow learning of the model-free system

• consider a setting with ten risky assets

– nine have the same low mean return

– one has a substantially higher mean return

• we show, through simulations, that the model-free system is much slower
in figuring out which of the ten assets has the higher mean

– after 30 years, individuals using the model-free system are less likely
to be invested in the higher-mean asset



Parameter estimation

• we estimate four key parameters of our framework

– the mean model-free learning rate ᾱMF

– the mean model-based learning rate ᾱMB

– the exploration parameter β

– the weight w on the model-based system

• we search for values of these parameters that best match:

– the empirical relationship between investor beliefs and past market
returns

– experience effects, as summarized by Malmendier and Nagel (2011)

– the sensitivity of allocations to beliefs, as measured by Giglio et al.
(2021)

• we obtain ᾱMF = 0.66, ᾱMB = 0.38, β = 20, and w = 0.46



Extensions, ctd.

Other directions:

• allow for time-varying learning rates

• allow for time-varying weight w on the model-based system

• allow for state dependence

• allow investors to make inferences about beliefs from the model-free Q
values



Broader themes

(1)

• the parameters that best fit the data put substantial weight on the model-
free system

– a system that uses little information about financial markets

• this is initially surprising, but may reflect:

– how fundamental the model-free system is to human decision-making

– and investors’ unfamiliarity with the structure of asset returns



Broader themes, ctd.

(2)

• we usually start with beliefs and preferences as primitives, and derive a
value function from them

– in the model-free system, the value function is the primitive

– the investor may infer beliefs from the value function

(3)

• the framework offers a way of thinking about investor behavior that is
rooted in algorithms that the brain appears to use when estimating the
value of different courses of action



Summary

• in the past decade, psychologists and neuroscientists have increasingly
embraced a new framework for thinking about human decision-making
in experimental settings

• the framework combines two algorithms, or systems

– model-free learning

– model-based learning

In this paper:

• we import this framework into a simple financial setting

• examine its properties and implications

• use it to account for a range of facts about investor behavior


