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Introduction

I The purpose these lectures is to discuss two important class of
learning models and how they can be used in economics.

I I start with the case of chess, a well understood “hard”
problem, to make the point that even for this well defined
problem there is not a single, best algorithm.

I Rather, decision making and learning relies upon a variety of
algorithms.

I An open question remains on how best to model the
heterogeneity in decision processes observed in human
populations?
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Chess

I We begin with a classic problem in the theory of learning and
artificial intelligence, namely how to play chess.

I Chase and Simon (1973a) report the results from an elegant
experiment showing that skilled players are better able to
recognized and recall legal chess positions.

I However, they are no better than an unskilled player with a
random allocation of pieces to the board.

I We use this example to illustrate three distinct approaches to
decision making and learning.
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Approaches to Decision Making

I Game theory and dynamic programming
I Bayesian decision making
I Rule based decision making
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The Game of Chess

I White and black alternative moves, with with while playing at
odd dates, t = 1,3,5, ... and black playing at even dates,
t = 2,4,6, ....

I Let dt denote a move at date t and let ~dt = {d1,d2,d3...dt}
be a sequence of moves up to date t, where ~d0 represents the
start of the game..

I Let Dt be the set consisting of legal moves of length t, and
D
(
~dt
)
the legal moves at date t +1.

I The sets Dt define the set of all legal moves of length t in
chess, while all moves are given by: D = ∪t≥1Dt .

I The board position after the move at date t is denoted by
xt = X

(
~dt
)
, where by definition x0 is the starting position,

with white moving at t =1.
I Recently, the governing bodies of chess brought in mandatory

5 repetition and 75 move limits that result in automatic
stalemates. Hence, game of chess is a finite game. However,
D is a very large set - greater than the number of atoms in
known universe.
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Chess is a Zero Sum Game

I The set of endpoints of the game is given by the set, at which
point the outcome is stalemate, white wins or black wins:

Z =
{
~dt |D

(
~dt
)

= /0
}
.

I For each ~d ∈ Z we can define:

V
(
~d
)

=


1, checkmate by white

0, stalemate

−1 checkmate by black
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The Game Theory Solution

I Game theory, as used in economics, views chess as a “simple”
game because it is a finite, zero-sum game of perfect
information, and hence has be solved by dynamic programming

I At date t +1 suppose that V
(
~dt+1

)
∈ {0,0.5,1} (black wins,

stalemate, white wins) is defined for each ~dt+1 ∈ Dt+1.
I Let:

V
(
~dt
)

=

maxdt+1∈D(~dt)V
({

~dt ,dt+1

})
, whitemoves− t = 0,2,4, ...

mindt+1∈D(~dt)V
({

~dt ,dt+1

})
, black moves− t = 2,4,6, ...

I The value function is well defined for ~dt ∈ Z , and thus one can
readily verify that it is well defined for moves due to the fact
that all plays are of finite play.

8 / 58



Optimal Play - Bellman Principle

Theorem
The value function for chess satisfies V

(
~dt
)
∈ {0,0.5,1} for all

~dt ∈ D.

I Hence, chess is a solved game, and the optimal move, d∗t at
date t for ~dt ∈ Dt\Z is given by:

d∗t+1 = d∗
(
~dt
)

=

arg maxdt+1∈D(~dt)V
({

~dt ,dt+1

})
, t = 1,3,5, ...

arg mindt+1∈D(~dt)V
({

~dt ,dt+1

})
, t = 2,4,6, ...
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Observations

I Zermelo’s Lemma: Suppose at date t (odd) white has a
winning position (V

(
~dt
)

= 1), then white can force a win in a
finite number of moves.

I Even though the game is finite, it is not known if V
(
~d0

)
is 0,

0.5 or 1!
I This approach suggests two solutions to actual play:

I If one can assign a value to a future board position, then this
can direct choice.

I If one can assign a stored optimal choice to a current position,
this can also direct choice.

I Chess playing programs use a combination of strategies
(Maharaj et al. (2022)), though theory models tend to focus
on one approach only.
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Savage’s Approach to Decision Making

1. Build a model of the uncertainty relevant to the problem at
hand.

2. Model the relationship between choices, uncertainty and the
outcomes one cars about.

3. Choose a course of action.

Theorem
Under the appropriate conditions a person acts as if they maximize
expected utility, where the probability of an event is given by their
beliefs.
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Savage’s Approach Applied to Chess

I Suppose that you are white, the date is t, and the current
board position is given by the sequence of moves ~dt .

I Let us suppose that you have an evaluation function,
V
(
~dt
)
∈ [0,1] that is the probability that white will win given

the moves ~dt .
I In general, different opponents will have different styles of play.

Hence, we can define your payoff from different moves, dt+1
given beliefs over your opponent:

Q
(
~dt+1

)
= u

(
~dt+1

)
+ ∑

dt+2∈D(~dt+1)

Pr
[
dt+2|~dt+1

]
V
(
~dt+1,dt+2

)

where u
(
~dt+1

)
= 1 if white checkmates and 0.5 if stalemate.

I See Maharaj et al. (2022) for a discussion of Q learning and
how it is applied to chess programs.
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Learning about ability

I Consider an infinitely lived agent, with time indexed by
t = 0,1,2, ....

I Each period, the agent chooses effort at ≥ 0 and produces
output:

yt = η +at + εt ,

where η denotes the ability of the agent, with prior
distribution N

(
mη ,σ

2
η

)
, while εt is an i.i.d. sequence of error

terms with distribution N
(
0,σ2

ε

)
.

I In the subsequent development, it is convenient to use
precision as a parameter. It is defined by the reciprocal of the
variance: ρη = 1/σ2

η and ρε = 1/σ2
ε .
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Timing

1. At the beginning of period t, worker is paid
wt = E [yt |y0, . . . ,y−1] - expected productivity as a function of
information based upon previous periods’ output.

2. The agent selects effort at .
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Solving for Effort and Wage

I It is assumed that worker chooses effort to maximize expected
income:

U = E

{
∞

∑
t=0

(wt −g (at))δ
t

}
,

where δ is the discount rate per period, and g (·) is the
dis-utility of effort.

I At the end of the period, the market observes a signal of agent
ability given by:

xt = yt − ât = η + εt ,

where the market correctly anticipates effort ât
I The wage offered to the agent will be:

wt = mt + ât ,

where mt = E {η |x0,x1, ...,xt−1} is the expected ability of the
agent in period t.
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Bayes Rule 1

I

E {η |x0,x1, ...,xt−1}= mt =
ρηmη + ρtx t

ρη + ρt
, (1)

1
var (mt)

= ρt = tρε , (2)

where x t = 1
t ∑

t−1
s=0 xs .
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Implications of Strong Beliefs under Bayes Rule

I With addition observations, precision increases and one learns
true ability limt→∞mt = η .

I The effect of data has a smaller effect, the more “stongly held”
are one’s views, as measured by ρη :

∂mt

∂ x̄t
=

ρt

ρη + ρt
.

I For example, if one believes that vaccines are not effective,
then regardless of the evidence, one will not get a shot.

I More importantly, Bayes rule implies that the same data will
have different impact upon different individual’s views.
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Implications of Weak Beliefs under Bayes Rule

I Notice that we have assumed that xt = yt− ât , where ât is the
expect effort.

I We can use this to compute effort in period t = 0.
I Consider a worker who chooses a0 > â0, say a∆ = a0− â0. In

this case the change in discounted income is:

∆W = W (a)−W (â0) =
∞

∑
t=0

ρta∆/t

ρη + ρt
δ
t

= ∆
∞

∑
t=0

1
ρη/ρε + t

δ
t

I When the employer has strong beliefs (ρη → ∞), then ∆W→0
- in other words when firm has strong beliefs, then there are
low incentives to work hard.

I However, when δ → 1, and firm as weak beliefs, ρη is small,
then ∆W→∞. In other words when a firm has little
information about a person, they have high incentives to work
hard.
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Empirical Applications

I Gibbons and Murphy (1992)
I Farber and Gibbons (1996)
I Altonji and Pierret (2001)
I MacLeod and Urquiola (2015); MacLeod et al. (2017)
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The Problem of Drug Choice

I Drug choice is not simply one of choosing the best one
conditional upon patient Xi .
I Physicians must try a drug and then be prepared to change if

it does not work - technically this is a correlated multi-armed
bandit problem (CMAB).

I How should they choose the sequence of trials?
I How can we characterize variation in observed practice styles?
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Physician Choice: A 2 Drug 2 Period Example

I Two drugs, d ∈ {0,A,B} with unknown idiosyncratic effect
ed ∼ N (µd ,1/ρd) - d = 0 is no drug.
I Observation error (physician skill ρ): εt ∼ N (0,1/ρ)
I Timing:

I Period 0: Physician observes patient condition y0 = ed0+ ε0
and choose drug d1.

I Period 1: Physician observes patient condition y1 = ed1+ ε1
and choose drug d2.

I Period 2: Patient condition is y2 = ed2+ ε2
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Physician Decision Rule and Preferences

I Decision rule is given by δ = {d1,d2 = δ1 (y0,d1)} .
I Physician cares about outcome today and tomorrow:

U (δ ,ζ ) = E {(1−ζ )y1 + ζy2|δ}

I When ζ = 1 physician cares only about long term condition,
while ζ = 0 implies that physician cares only about short term
condition.
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Experimentation vs Exploitation.

I Suppose that µA > µB > 0 (ex ante A is the better treatment)
but ρA > ρB (B has more variance in effects across individuals)

I If ζ = 0 then optimal choice is d1 = A.
I If ζ = 1 then optimal choice is d1 = B - learn about B and

then use best drug in period 2.
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More Precisely

Proposition
The value of learning about drug d ∈ {A,B} is:

Vd = sdL

(
µA−µB

sd

)
,

sd =

√
ρ

ρd (ρ + ρd)
,

L(x) = (1−F (x))(f (x)−x) ,x ≥ 0,

Where L(x) is unit-normal loss function, and F,f are normal cdf and
pdf. Notice L(0) = f (0)/2 and limx→∞L(x) = 0.
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Implications

I From the value of information we can derive the physician’s
optimal choice. Choose d = A iff:

(1−ζ )(µA−µB) + ζ (VA−VB)≥ 0

I Notice that the value of information:
I Increases with physician skill
I Falls with an increase in precision ρd
I Increases when drugs are more similar (a feature of

anti-depression drugs is the magnitudes of their effects are
quite similar!)

I Big take away - there are gains from experimenting with
choices known to be sub-optimal in expected value.

26 / 58



Outline

Introduction
The Game Theory Solution

Savage and Bayesian Learning
Learning about ability
Exploitation versus Exploration

Dual Process Theory and Human Capital

Bayesian Model of Fast Decision Making and Human Capital

Extending to Bayesian Planning

Extending to Continuous States
Example: Unemployment

Summary of Talk

27 / 58



The Role of Time

I From cognitive science the well known (in psychology)
Hicks-Hyman law and Fitts Laws relate the time required to
make a decision the quality of a decision.

I The early literature characterizes these decisions using fast
thinking (look-up tables - Churchland and Sejnowski (1993),
chapter 3) or slow thinking (search Nilsson (1980), MacLeod
(2002)) - the dichotomy is popularized in Kahneman (2011)’s
Thinking Fast and Slow (2011).

I However, the two way classification is a major simplification,
and maybe too simple for economics?
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The View from Cognitive Science - Newell 1987

State (secs) Time Units (secs) - ta System World (theory) Econ

107 Months (107)

106 weeks (107) Social Band Institutions

105 days (107)

104 hours (107) task Work

103 10 min (107) task Rational Band and

102 minutes (107) task Consumption

101 10 sec (107) unit task

100 1 sec (107) operations Cognitive Band Experience

10−1 100 msec (107) deliberate act and

10−2 10 msec (107) neural circuit Human Capital

10−3 1msec (107) neuron Biological Bank

10−4 100 µs (107) Organelle
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Very Fast, Fast, Slow and Very Slow

I Very fast (millisecond-seconds)- human capital/skill - surgery,
trading, flying

I Fast (seconds) - biased decision making/behavioral economics
I Slow (seconds to hours) - Rational choice - pursuit of well

defined goals using Savage’s model and scientific knowledge
I Very slow (days to years)- RCTs (randomized control trials)

and doing science to build better decision making models.
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Why is the distinction useful?

I The economic theory of the 1950s can be viewed as developing
a unitary model based upon extensions of the Arrow-Debreu
model.

I Modern economics is characterized by plethora of seemingly
conflicting models:
I Dynamic extensions of general equilibrium theory
I Structural IO models
I Behavioral models describing a number of behaviors that are

inconsistent with the simple utility maximization model.

I Thinking in terms of the time scale can assist in delineating
the scope of a model - this is common practice in physics
where they explicitly use both time and distance scales for
determining the scope of a model (e.g. cosmology vs quantum
mechanics).
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Pattern Recognition in Chess

I In a seminal study, Chase and Simon (1973b) proved that skill
at chess is in part memory and simply knowing what is a good
move.

I Chess skill is a form of human capital in which individuals over
years learn more strong positions, and how to make choices in
strong position.

I MacLeod (2016) observes that one can associate the skill that
is associated with fast think with human capital.

I In economics, human capital is the financial cost of acquiring a
certain level of skill, and hence can be viewed as explicit
measure of bounded rationality.

I If individuals had perfect decision making skills then there
would be no need for education!
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Learning from Experience (MacLeod (2016))

Consider a situation where each period, t = 0,1,2, ... an individual
faces the following sequence of events:
1. An event ωt ∈ Ω is observed, Ω has N < ∞ elements.
2. The agent makes a choice dt ∈ D, using decision rule σt (ωt).
3. The agent evaluates the outcome using criteria U (dt |ωt) and

updates the decision rule to σt+1 (.) to be used the next
period.
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The Decision Rules

I Let D = {0,1} and let the decsion rule σ (ω) ∈ [0,1] be the
probability of choosing d = 1.

I The optimal choice is given by σ∗ (ω) = arg maxd∈D U (d |ω) .

I Suppose that at date t = 0 the agent has no experience and
we set Ω0 = /0.

I Each period t the agent experiences ωt and we set
Ωt = Ωt−1∪{ωt}.
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Learning by Doing

I Suppose that maxd∈D U (d |ω) = ug > ub = mind∈DU (d |ω).
I The basic learning by doing begins by guessing, and then

following the optimal strategy for experienced events:

σt (ωt) =

{
σ∗ (ωt) , if ωt ∈ Ωt .
1/2 ifωt /∈ Ωt .

I The idea is simple - after experiencing event ωt , it becomes
salient, and the individual figures out the optimal choice for
that event.

I Note: E (U (σ0 (·) |ω)) =
ug+ub

2 and
limt→∞E (U (σt (·) |ω)) = ug
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Extending to Bayesian Planning

I MacLeod (2016) illustrates an extension of the simply learning
by doing to Bayesian learning (see also Jovanovic and Nyarko
(1995) for a low dimensional version).

I Suppose that at date t the agent can explore nt new states at
a cost c (nt).

I The gain from exploring a state is that when it occurs the
decision maker gets ug rather than ug+ub

2 .
I The states she should explore depends upon the probability

that they will occur - suppose there are N states, then beliefs
are given by µ ∈∆N .
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Learning

I We can learn about µ if we suppose that µ comes from a
distribution over ∆N give by the Dirichlet distribution:

f (µ|α) =
Γ(α1 + ...+ αN)

Γ(α1) ...Γ(αN)
µ

α1−1
1 ...µαN−1

N .

I If we let αi = b for all i , then the prior is uniform over states.

I Let ~αt be parameter at date t, then Pr [ωi ] =
αt
i

∑αt
j
.

I The cool part is that if we observe state i occurs at date t,
then the posterior distribution of µ is Dirichlet with
α
t+1
i = αt

i +1 and the other values remain unchanged.
I Notice that with larger b, the effect of learning is smaller -

thus b is level of dogmatism.
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Results

I The optimal number of states explored in period t, nt , falls
with t.

I The optimal number of states explored rises with b.
I If b is sufficiently small, then there is no planning, and person

engages in pure learning by doing.
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Extending to Continuous States

I The model can be easily extended to Ω⊂ℜn, where Ω is
compact.

I Given a history of events and corresponding optimal responses
at time t, Ht =

{(
ω1,z1) ,(ω2,z2) , . . . ,(ωt−1,z t−1)}.

I For a new event ωt , suppose the individual uses the response
for the previously experience event that minimizes the
Euclidean distance:

σ
(
ω

t |Ht
)
∈

{
zτ = σ∗ (ωτ ) |‖ωτ −ω‖ ≤

∥∥∥ωτ ′−ω

∥∥∥ ,
∀τ,τ ′ ∈ {1, . . . , t−1} , (ωτ ,zτ ) ∈ Ht

}
.

(3)
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Learning Result

Theorem
Suppose that Ω is a compact subset of ℜd , the optimal behavior,
σ∗ (ω) , is Borel measurable, and µ is absolutely continuous with
respect to Lebesgue measure. Then

lim
t→∞

E
{∥∥σ

∗ (
ω

t
)
−σ

(
ω

t |Ht
)∥∥}= 0, (4)

where
Ht = {(ω1,σ (ω1,T )) ,(ω2,σ (ω2,T )) , . . . ,(ωt−1,σ (ωt−1,T ))}.
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Discussion

I This decision rule is a version of the nearest neighbor rule from
machine learning - the result shows that it is a universally
consistent learning rule.

I The main requirement is that there is a stable relationship
between events and the optimal choice.

I The history Ht can be viewed as a micro-foundation for
human capital.

I It highlights the two ways we learn
I Learning from others and being taught the right response to

an event.
I Learning by trial and error, and improve with experience.
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Long Run Choices: The Unemployment Problem

I In the 1970’s to 1980’s we witness an increasing gap between
the Canadian and US unemployment rates.

Source: Card and Ridell (1993).
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The puzzle - Card and Ridell (1993)

I

I
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UI Incentives

I Source: Lemieux and MacLeod (2000) - notice that the big
bump in unemployment rate differences occurred after 1980,
at the same time as the big disincentive increase!.
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Learning Effects

I Lemieux and MacLeod (2000) use Canadian administrative
data to explore a simple idea:
I The time at which the policy change occurs is not the time at

which individuals consider the impact of UI upon labor supply.
I That occurs when they actually lose their job, at which point

they update their labor supply in the light of the current UI
parameters.

I Hence there is a lag between the treatment effect of the policy,
and when the recipient observes, and then responds to the
treatment.
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The Effect of Learning

I Source: Lemieux and MacLeod (2000)
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Implications

I In this example the long run effects of UI upon behavior are much
larger than the short run effects.

I In terms of the causal impact of UI on unemployment:
I The short run effects for ty in the order of days/months is

small/zero.
I The long run effect with twon the order of years is large and

significant.
I However, empirically convincing causal effects typically rely upon

short run responds (e.g. regression discontinuity designs), and hence
careful work such as Card and Ridell (1993) cannot measure these
long run effects.

I A simple mechanism/learning model is needed to figure out what is
happening.
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Lessons from Playing Chess

I The fact that a problem is finite and solvable in principle does
not imply that it can be solved in practice - uncertainty arises
from complexity rather than from risk.

I This implies that there is not a single algorithm that is optimal
for playing chess.

I Successful algorithms use a variety of approaches - Bayesian
learning, random search and experimentation, reinforcement
learning and pattern recognition.

I A feature of successful game playing algorithms is
experimentation - see Silver et al. (2017).
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Implications for Human Decision Making

I These observations are consistent with Marvin Minsky (1986)’s
society of theory mind view - since humans must act in
complex environments, then they necessarily use a complex set
of algorithms.

I Moreover, for the same problem, different individuals may use
different algorithms.

I An implication of these models is even if two individuals are
using the same algorithm to make choice, if they have different
life experiences, then they may make different choices with the
same data.

I For social scientists the challenge is how to incorporate such
heterogeneity into empirically useful models of social behavior
and performance
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Why the utility maximization model is still the Best for
economics

I A feature of all the algorithms we have discussed is that their
goal to learn the best strategy for a particular situation.

I In the short run different individuals will make different
decisions because of variation in their experiences, and the use
of different algorithms to make choices.

I However, if the goals of a population are known, and the
algorithms used are “good”, then the utility maximization
model will provide a good first order model of observed
behavior.

I Thus, for many substantive economic questions, the utility
maximization model remains the most useful approach.
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The Commodification Problem

I The Savage approach to decision making highlights the idea
that individuals build their own private models of the world.

I In particular, when commodities are not standardized, then
individuals will conceptualize the same commodities in different
ways, and hence two individuals with the same preferences (say
a desire to be rich) and facing the same decision (which career
to choose) may make different decisions.

I This problem is particularly acute today due to the tsunami of
new online products - facebook, instagram, twitter and so on
for which there does not exist an accepted framework to model
these complex commodities.
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Questions for Cognitive Scientists

I How do individuals adapt and learn in dynamic environments
and deal with new commodities and choices with unforeseeable
consequences?

I How do individuals learn from each other and form groups
with coherent world views?

I How does one modify mistaken beliefs held by a group?
I Finally, the complexity of human decision making implies that

they is always a great deal of variance in observed performance
- it would be helpful to find ways to characterize that
heterogeneity?
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Summary of Learning Algorithms

1. Backwards induction and the Bellman principle.
2. Learning ability from repeated observations of performance.
3. Experimentation and learning from different treatment choices.
4. Pattern recognition and learning by doing in a complex feature

space.
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