Algorithms for decision-making and
decision-making for algorithms

Fred Callaway



Rational decision-making

Perfect rationality Metalevel rationality
> [ake the action with » Use the cognitive strategy that
maximal expected utility. best trades off utility anad

computational cost.
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‘Do the right thing” ‘Do the right thinking”
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Metalevel MDPs

Simple decisions

Multl-attribute decisions

Sequential decisions AP



Markov decision process (MDP)
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Metalevel Markov decision process (meta MDP)
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We must be prepared to accept the possibility that
what we call “the environment™ may lie, in part,
within the skin of the biological organisms.

Simon (1955)



Simple decisions




Background: Attention in preferential choice

accumulate noisy
evidence biased In evidence about the
favor of fixated option aDDM value of the options

Right  Left Right

Left value =5
Right value = 8

How do we decide
what to look at?
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Model: Bayesian evidence accumulation




Model: Meta MDP

cognitive costs external reward
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Model: Optimal policy

> Approximate value of Loy
computation with a linear
combination of value of
Information teatures.
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Model: Optimal policy
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Results: People choose things they like more
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Results: People quickly choose things they like a lof more

Two 1tems Three items
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Results: | east valuable item fixated less |later in trial

P(fixate worst)
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Results: Fixations are longer later in the trial

Two 1tems Three items
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Summary: Rational attention in simple choice

> Directing one’s attention when making a decision can be modeled
as a meta MDP where an agent estimates the value of each choice
option from a sequence of noisy signals.

» Human fixations in simple choice tasks are consistent with a near-
optimal solution to that meta MDP.

» | ke the optimal model, people selectively attend to options they
think are valuable, but only when there are more than two options.
= People might be only partially sensitive to the qualification.




Multl-attribute decisions

A: 3 points
B: 2 points
C: 2points
J: 21 points

E: 2 points

A

Basket 1

Basket 2
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Model: Multi-attribute choice

option A option B

feature 1
feature 2

utility




Model: Belief updating
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Model: Meta MDP

cognitive costs external reward
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Results: Optimal decision heuristics
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Results: Adaptation to the environment
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Application: Nudging

» Use findings from psychology to
improve decisions by redesigning
choice architectures: changing how
cholices are presented.

» Don't change economic incentives
or restrict freedom of choice.

Examples
» Default options

> “Traffic light” labeling

Choose a side dish: | Fruit salad v




Model: Nudging as moditying a meta MDP

Original architecture

choose A
or

Nudged architecture




Model: Detault options as recommendations

no default with a default
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Experiment: Default options in Mouselab

Do you want to choose basket 37
It pays the most when the prizes are equally valuable.

Basket 1 Basket 2 Basket 3 Basket 4 Basket 5




Results: Defaults more effective on complex decisions
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Results: Defaults more beneficial for typical preferences
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Experiment: Traffic light l[abeling in Mouselab

box
- E

reduce cost of
computations for
one feature




Results: Most effective for moderate preferences
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Experiment: Traffic light l[abeling in Mouselab

Clicks to reveal Basket 1 Basket 2 Basket 3 Basket 4 Basket 5

IS this the best
iINnformation we can

highlight™?




Model: Optimal nudging

Calories: 0.3
Sodium: 0.2
Price: 0.5

Calories: 140,300
Sodium: 70mg, 50mg
Price: $1.00, $3.00

low price
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Chooses modified meta MDP Decides with modified meta MDP



Model: Optimal nudging

architect knowledge
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Prize values

Experiment: Optimal nudging

B

4 2
7 3 7 6 7
6 7 4 5 6
7 7 5 3 6
5 3 3 6 7

Original choice architecture Optimal choice architecture

Basket 2 Basket 3 Basket 4 Basket 5

Basket 5 Basket 1

Basket 1 Basket 2 Basket 3 Basket 4

—_—)
optimal

nudging

7
7

SLIRRE




Results: Optimal nudges improve decisions

Total Points

Random Extreme Optimal Random Extreme Optimal

Nudge type



Summary: Predicting and nudging complex choices

» Multi-attribute decision problems can be modeled as a meta MDP
where an agent sequentially considers features of each option.

> The optimal policy for that meta MDP depends on one’s prior
beliets as well as the cost of considering different features.

» Moditying the meta MDP changes which features a rational agent
considers, leading to predictable changes in behavior.

» [nis allows us to construct optimal nudges, changes to the meta
MDP that maximized a desired outcome.



Metalevel MDPs
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Background: Planning as decision-tree search

Which future state should you
think about next?
what should |
O

O

nypothetical
future states

U

action




Model: Decision-tree search
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Model: Meta MDP

cognitive costs external rewarad
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Co Ci.. 1
computations expand expand execute

node node plan



Experiment: Mouselab-MDP

» Route-planning problem: A
maximize total reward over three
steps.

» Rewards are initially occluded,
revealed by clicking.

> Extends the Mouselab paradigm 10
to planning problems.


http://fredcallaway.com/web-of-cash

Results: Best-first search is optimal
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(depending on the cost)

Results: Best-first search is optimal
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Results: Relative and absolute stopping rule

Best Path Value
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Model: Alternative search strategies

Best-First search expands
nodes on high value paths — @

Depth-First search expands
nodes that are far from the root

search expands
nodes that are



Model: Heuristics

depth limit pruning satisficing



Results: Moadel comparison
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Results: Adapting to the environment
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Application: Teaching efficient planning strategies

» Challenge: Learning strategies is hard because of the
- which computations
contributed to making a good decision”

+10



Application: Teaching efficient planning strategies

» Solution: Use to make the long-term conseguences
of thinking immediately salient.

lOSS(b, C) — Inax Qmeta(ba C,) — Qmeta(ba C)

C



Experiment: leaching backward planning

You should have inspected one of the highlighted nodes.
Please wait 7 seconds.
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Results: Metacognitive feedback accelerates learning
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Experiment: Transfer and retention
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Results: Strategy retained & applied on bigger problem
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Experiment: Far transfer

Erokanroost

Barrendowns

Looking up Barrendowns

Time cost: $82



Results: \Weak transfer to new problems
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Summary: Discovering and teaching optimal planning strategies

» Planning can be modeled as a meta MDP where an agent decides
which hypothetical future action to evaluate next.

» Human planning algorithms are more adaptive than previously
poroposed heuristic models can account for.

» \We can help people learn even more efficient strategies using
reward shaping, rewarding good thoughts immediately.
= But transfer to new contexts presents a challenge.
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Conclusion: Making decisions in the world and the ming

MDP meta MDP

reward,
state




Conclusion: A general framework for resource-rationality
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Conclusion: Explaining how people make decisions
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Conclusion: And helping them make better decisions
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