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Apologia

▶ Unfamiliar question and non-standard notation

▶ Conceptual as much as technical

▶ Not enough time to go deeply into technical details

▶ Builds on prior work on Bayesian learning: Caplin and Martin (2015),
Caplin and Dean (2015), and Caplin, Martin, and Marx (2022a,b)

▶ Diverse applications underway, but only present the first step today
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Motivation (1/4)

▶ Machine learning is increasingly important

▶ Has become central to the modern economy

▶ Is improving prediction across a range of economic problems

▶ But machine learning algorithms are also increasingly opaque

▶ Training protocols have become more complex, the number of
parameters has exploded, protocols more and more nested, etc.

▶ Even if an analyst knows all of the code behind an algorithm, it is
nearly impossible to fully grasp its inner-workings (“black box”)

▶ Because of this, most modern machine learning algorithms are
analytically intractable and accurately predicting them is impossible

▶ e.g., CheXNeXt (Rajpurkar et al. 2018) a 121-layer convolutional
neural net based on a DenseNet architecture
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e.g., DenseNet Architecture
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Motivation (2/4)

▶ For analytical tractability, we need a parsimonious “as if” model of
machine learning

▶ For accurate predictions, we need this model to match behavior of
machine learning algorithms

▶ To help bridge this gap, we offer two possible models of machine
learning:

1. Feasibility-based machine learning: the algorithm chooses what it
learns in a way that suits its loss function, but is restricted to a fixed
set of ways to learn

2. Cost-based machine learning: the algorithm adjusts its learning in
response to unobservable costs of learning
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Motivation (3/4)

▶ We show how to test if machine learning predictions are consistent
with these models

▶ We also show how to recover the parameters of these models

▶ We apply our methods to a 121-layer convolutional neural net that
predicts pneumonia from chest x-rays (Rajpurkar et al. 2018)

▶ We find this algorithm is consistent with cost-based machine learning,
but not feasibility-based machine learning

▶ We also recover the costs of learning for this algorithm
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Motivation (4/4)

▶ Why do we want to model machine learning?

▶ Modeling machine learning as we do for human decisions opens up
the tools of economics, psychology, and neuroscience to this setting

▶ Much potential value in using these tools to help understand what
algorithms will do in “unknown territory”

▶ Applications: robustness, counterfactuals, optimization, etc.

▶ Also value in using these tools to help interpret machine learning
algorithms

▶ Many applications underway, including a finished companion paper

▶ But the goal today is to provide the necessary first step
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Talk Structure

1. Provide modeling foundation

2. Define the machine learning models

3. Show how to test these models

4. Show how to recover costs

5. Present empirical implementation
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1. Provide modeling foundation
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Notation

▶ Employ very general setup to capture vast majority of machine
learning algorithms

▶ Finite set of instances X (digital photographs, text excerpts, etc.)

▶ Finite set of outcomes Y (image types, numeric rating, etc.)

▶ Deterministic map between instances and outcomes given by
f : X → Y , called the ground truth

▶ Set of possible predictions A (confidence scores, outcomes, etc.)

▶ Confidence scores become outcome predictions via threshold rule

▶ Analyst can model either scores or downstream outcome predictions

▶ Application: X is over 100,000 chest x-ray images, Y is pneumonia
(y = 1) or no pneumonia (y = 0), and A is a confidence score [0, 1]

▶ We use scores because we want to model raw output of algorithm
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Loss Functions

▶ An important input to an algorithm is a loss function L : A× Y → R

▶ Application: Loss function is weighted cross-entropy with β ≈ .99

L(a, y) =

{
−βlog(a) if y = 1

−(1− β)log(1− a) if y = 0

▶ Using L in training generates a trained model gL : X → A

▶ Typically assess performance at aggregate level (by outcome)

▶ e.g., how often an algorithm correctly predicts pneumonia instead of
whether it correctly predicts pneumonia for a particular x-ray

▶ Aggregate level summarized by performance data PL : A× Y → [0, 1]

PL(a, y) =
|{x ∈ X |gL(x) = a & f (x) = y}|

|X |
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Foundation

▶ Our models build on information theoretic foundation in which we
conceive of algorithms as decision-makers that follow the Blackwell
(1953) model of experimentation, signal processing, and choice

▶ We assume that an algorithm is an optimizing agent that:

1. Starts off with prior beliefs about the outcome

2. Gets signals that provide information about the outcome

3. Forms posterior beliefs via Bayesian updating

4. Makes predictions based on these posteriors to minimize expected losses

▶ This foundation is testable, normatively-grounded, easy to impose,
and has empirical support (Caplin, Martin, and Marx 2022a)

12 / 47



Foundation: Model

Definition
For a given loss function L, PL has a signal-based representation (SBR)
if there exist prior beliefs µ, a Bayes consistent distribution of posteriors
Q ∈ Q, and a prediction function q : supp(Q) → ∆(A) such that:

1. Prior beliefs are correct: µ(y) = ∑a∈supp(PL
A)
PL(a, y)

2. Predictions are optimal at all possible posteriors:

q ∈ arg inf
q

∑
γ∈supp(Q)

Q(γ) ∑
a∈A

q(a|γ) ∑
y∈Y

γ(y)L(a, y)

3. Predictions are generated by the model:

PL(a, y) = ∑
γ∈supp(Q)

Q(γ)q(a|γ)γ(y)
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Foundation: Model

▶ Testable: Algorithm loss-calibrated to loss function L if a wholesale
switch of predictions does not reduce losses according to L

a ∈ argmin
a′∈A

∑
y∈Y

PL(a, y)L(a′, y) for all a ∈ supp(PL
A)

▶ Combines loss function variation with NIAS (Caplin and Martin 2015)
and Obedience (Bergemann and Morris 2016)

▶ Normatively-grounded: Rules out trivial prediction errors

▶ Easy to impose: Algorithm loss re-calibrated when make
loss-calibrated through wholesale switches

▶ Empirical support? Caplin, Martin, and Marx (2022a) varied the class
weights in a pneumonia detection deep learning neural net (Rajpurkar
et al. 2018) for ChestX-ray14 data (Wang et al. 2017)
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Here are the predicted relationships between scores and rates for a
loss-calibrated algorithm for class weights β = 0.7, 0.9, 0.99
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And here are the actual relationships: The algorithm becomes increasingly
miscalibrated with higher weights, but is always loss-calibrated
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Calibration

▶ Caplin, Martin, and Marx (2022a) use SBR to resolve an important
machine learning challenge

▶ Desirable for downstream purposes and interpretability that
predictions calibrated to ground truth probabilities (Guo et al., 2017,
Jiang et al., 2012, Kompa et al., 2021, Cosmides and Tooby, 1996)

▶ Class imbalance (e.g. pneumonia) or external objective leads to class
weighting and asymmetric loses (Thai-Nghe, Gantner, and
Schmidt-Thieme 2010, Zadrozny, Langford, and Abe 2003)

▶ SBR explains why class weighting generates miscalibration, and offers
a solution: recover “as if” revealed posterior beliefs of the algorithm,
and interpret them as loss-corrected confidence scores
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The loss-corrected confidence scores are calibrated for all weights
Takeaway: Can treat these transformed scores as a likelihoods
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2. Define the machine learning models
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Models

▶ SBR provides a solid foundation, but leaves open the question of
where the algorithm’s signal structure comes from

▶ Our models represent central (and nested) possibilities:

1. Feasibility-based machine learning: the algorithm chooses from a fixed
set of signal structures

2. Cost-based machine learning: the algorithm chooses from signal
structures of varying costs

▶ Note that these will be familiar from earlier presentation of Revealed
Bayesian Learning

▶ Advantages relative to human learning applications: data set is
standard in ML; loss function is known in ML; loss function
manipulable in ML; less concern about behavioral biases in ML
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Feasibility-Based Machine Learning

▶ Our first model class imagines an algorithm as choosing from a fixed
feasible set of signal structures

▶ Because the algorithm can choose its Q, we expand the algorithm’s
strategy space Λ to include both Q and q as in Revealed Bayesian
Learning:

Λ = {(Q, q)|Q ∈ Q, q : supp(Q) → ∆(A)}

▶ We define a fixed set of experiments Q∗ ⊂ Q
▶ No assumptions on this set beyond being non-empty

▶ Given loss function L and fixed set Q∗, the set of optimal strategies is

arg inf(Q,q)∈Λ,Q∈Q∗ ∑
γ∈supp(Q)

Q(γ) ∑
a∈A

q(a|γ) ∑
y∈Y

γ(y)L(a, y)
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Feasibility-Based Machine Learning

▶ For notational understanding, unpack optimization

arg inf(Q,q)∈Λ,Q∈Q∗ ∑
γ∈supp(Q)

Q(γ) ∑
a∈A

q(a|γ) ∑
y∈Y

γ(y)L(a, y)

▶ Take some possible posterior and prediction possible at that posterior,
(γ, a) with Q(γ) > 0, q(a|γ) > 0

▶ Term ∑y∈Y γ(y)L(a, y) is corresponding expected loss

▶ Sum across possible predictions at that posterior

▶ Sum across possible posteriors

▶ Arrive at expected loss

▶ Minimize across strategies (restricted to fixed set)
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Cost-Based Machine Learning

▶ Our second model class assumes the algorithm chooses from signal
structures of varying costs

▶ Define a learning cost function K : Q → R̄

▶ The resource-adjusted loss L̂ of strategy (Q, q) is

L̂((Q, q)|L,K ) ≡ ∑
γ∈supp(Q)

∑
a∈A

Q(γ)q(a|γ) ∑
y∈Y

γ(y)L(a, y) +K (Q)

▶ The corresponding set of optimal strategies is then

arg inf(Q,q)∈ΛL̂((Q, q)|L,K )

23 / 47



Interpretations (1/2)

▶ Feasibility-based learning imagines an algorithm as having a fixed set
of mathematical operations it can use, and that it selects among
these to best match the incentives provided by the loss function

▶ Cost-based machine learning imagines that there is relative difficulty
in performing different mathematical operations, and that it balances
the trade-offs with the incentives provided by the loss function
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Interpretations (2/2)

▶ Why might an algorithm use more or fewer resources depending on
the loss function?

▶ The amount of resources spent could be driven by the algorithm’s
choice of a particular hyperparameter, which can be influenced by the
loss function through “hyperparameter optimization”

▶ Also, an algorithm might perform more or fewer epochs if the losses
under a particular loss function have not converged sufficiently

▶ Of course, while resource use may vary with the loss function, it is not
immediately clear that an algorithm can be modeled as optimally
balancing losses and resource costs

▶ To investigate this possibility, we ask whether there are “as if” costs
of learning that explain the algorithm’s performance
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3. Show how to test these models
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Loss Function Variation

▶ Central to testing and recovery: what the machine learns is optimal
given the loss function

▶ Thus, whether or not algorithm is consistent with these models has
testable content as we vary the loss function across a set L

▶ Because indexing will be useful, in what follows we will take as given
a finite set of M loss functions, indexed by 1 ≤ m ≤ M

▶ For notational simplicity, we denote the performance data set from
training the algorithm with the m-th loss function as Pm = PLm
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Cross-Loss Matrix T̂

▶ Central to testing our models is to see if losses could be changed by
counterfactually switching to the predictions from training with a
different loss function

▶ All such comparisons are visible in the cross-loss matrix T̂ , which
summarizes a large number of counter-factual switches and their
impact on losses

▶ The M ×M cross-loss matrix T̂ has generic element T̂mn in row m
and column n that specifies the minimized expected losses when the
loss function is Lm and the performance data is Pn:

T̂mn ≡ ∑
a∈supp(Pn

A)

min
a′∈A ∑

y∈Y
Lm(a′, y)Pn(a, y)
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Consider the following loss functions for binary predictions/outcomes:

L1 =

y = 0 y = 1( )
0 .5 a = 0
.5 0 a = 1

& L2 =

y = 0 y = 1( )
0 .6 a = 0
.4 0 a = 1

Imagine an algorithm that produces the following performance data:

P1 =

y = 0 y = 1( )
.25 .1 a = 0
.25 .4 a = 1

& P2 =

y = 0 y = 1( )
.3 .2 a = 0
.2 .3 a = 1

The cross-loss matrix can be computed as:

T̂ =

P1 P2( )
.175 .2 L1

.16 .2 L2

Lower losses under L2 if use P1 (performance data from training with L1)
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Loss-Difference Matrix D

▶ The key to testing both models is to see if any combination of
switches in performance data could lower losses

▶ This is readily visible in the loss-difference matrix D, which has
generic element Dmn defining the minimum change in the sum of
losses by switching performance data along a path from m to n

Dmn ≡ min
{⃗h∈H(m,n)}

J (⃗h)−1

∑
i=1

[
T̂ h(i)h(i+1) − T̂ h(i)h(i)

]
where:

1. h⃗ is an arbitrary length J sequence of indices h⃗ = (h(1), ..., h(J (⃗h))

with 1 ≤ h(j) ≤ M and the first J (⃗h)− 1 entries distinct

2. H is the set of all such vectors

3. The set of paths from Pm to Pn is given by
H(m, n) = {⃗h ∈ H |h(1) = m, h(J (⃗h)) = n)}
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To illustrate, consider the following T̂ matrix:

T̂ =

P1 P2( )
.175 .2 L1

.16 .2 L2

The corresponding loss-difference matrix is

D =

P1 P2( )
−.015 .025 L1

−.04 −.015 L2

D11 = −.015 because starting from L1 the indirect path back to L1

involves first raising losses by .025 switching P1 to P2 and then lowering
losses by .04 switching P2 to P1
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Testing Feasibility-Based Machine Learning

Definition
An algorithm is strongly loss-adapted if for all 1 ≤ m, n ≤ M,

Dmn ≥ 0

▶ This condition is equivalent to the NIAAS property of Caplin, Martin,
and Marx (2022b): T̂mm ≤ T̂mn

▶ NIAAS has a natural interpretation in our setting: we would expect
that when the loss function is Lm, training with Lm generates lower
losses than can be achieved by training with any other loss function

▶ Caplin, Martin, and Marx (2022b) can be applied to show that being
strongly loss-adapted (in addition to being loss-calibrated) is both
necessary and sufficient for feasibility-based machine learning
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Testing Cost-Based Machine Learning

Definition
An algorithm is loss-adapted if for all 1 ≤ m ≤ M,

Dmm ≥ 0

▶ This condition combines variation in the algorithm’s loss function
with the NIAC property of Caplin and Dean (2015)

▶ The main result in Caplin and Dean (2015) can be applied to show
that being loss-adapted (in addition to being loss-calibrated) is
equivalent to being consistent with cost-based machine learning

▶ The only adjustments necessary to apply their result in our setting are
to change utility maximization to loss minimization and to map
variation in actions to variation in loss functions
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4. Show how to recover costs
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Recovery

▶ We also show how to use D to recover an algorithm’s learning costs

▶ Identifying a learning cost function boils down to identifying a suitable
(“qualifying”) learning cost for each observed performance data set

▶ For notational simplicity, we denote the learning cost for the m-th
performance data set as Km = K (Pm)
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Theorem
For an algorithm with an SBR:

1. Recovery: {Km}Mm=1 are qualifying learning costs if and only if,
given 1 ≤ m, n ≤ M, Km −Kn ≤ Dmn.

2. Convex Geometry: Normalizing to KM = 0, qualifying learning
costs {Km}M−1

m=1 define a convex polyhedron in RM−1 with
(−DM1, · · · ,−DM(M−1)), the sign-inverted M-th row, and the M-th
column (D1M , · · · ,D(M−1)M) as extreme points.

3. Computation: If an algorithm is loss-adapted, the matrix D can be
computed by applying the Floyd-Warshall algorithm to the complete
weighted directed graph with

Wmn = T̂mn − T̂mm

on the directed edge from node 1 ≤ m ≤ M to node 1 ≤ n ≤ M.
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Illustration

▶ Consider a Loss Calibrated algorithm for which we specify the
corresponding T̂ matrix directly as:

T̂ =

P1 P2 P3( )3 1 10 L1

5 2 5 L2

10 1 3 L3

▶ The only elements of D that reflect lowering losses through indirect
paths are D13 and D31:

D13 = T̂ 12 − T̂ 11 + T̂ 23 − T̂ 22 = 1;

D31 = T̂ 32 − T̂ 33 + T̂ 21 − T̂ 22 = 1
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Illustration

▶ Writing out the D matrix we therefore get:

D =

P1 P2 P3( )0 −2 1 L1

3 0 3 L2

1 −2 0 L3

▶ The negative entries reveal this algorithm to be not strongly adapted,
but the zeros on the diagonal reveal this algorithm to be loss-adapted

▶ Thus, it is not consistent with feasibility-based machine learning, but
it is consistent with cost-based machine learning
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Illustration

▶ The theorem also implies directly that (-1,2) and (1,3) are extreme
points of the cost polyhedron normalized to K 3 = 0

▶ The entire normalized polyhedron involves also the upper and lower
bounds on K 1 −K 2,

K 1 −K 2 ≤ D12 = −2;

K 2 −K 1 ≤ D21 = 3

▶ This is marked in Figure 1
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Recovery

(0,2)

(1,3)(0,3)

(-1,2)

0 K 1

K 2

Figure 1. Example 2-dimensional learning cost polyhedron.
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Recovery

▶ One can directly confirm that the other normalizations, while
producing a different geometry, reconstitute precisely the same set of
qualifying cost functions

▶ Geometry suggests a simple “representative” cost (average of the
centers of the M normalized cost polyhedra) directly computable from
D matrix

▶ Finishes theoretical material for this paper
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5. Present empirical implementation
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Algorithm

▶ We vary the loss function for a deep learning neural net used to
predict pneumonia in the ChestX-ray14 dataset (Wang et al. 2017)

▶ Essentially a replication from the publicly available codebase of
Rajpurkar et al. (2018)

▶ The ChextX-ray14 dataset consists of 112,120 frontal chest X-rays
which were labeled with thoracic diseases

▶ In the binary classification task, the labels of interest are pneumonia
(y = 1) or not (y = 0)

▶ We vary the loss function with class weights β = 0.7, 0.9, 0.99
(β ≈ 0.99 in Rajpurkar et al. 2018)
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Results (1/3)

▶ We start by calculating the D matrix

D = 0.15

P0.7 P0.9 P0.99( )0 2.548 12.467 L0.7

−2.529 0 9.938 L0.9

−6.993 −4.463 0 L0.99

▶ Negative entries, so not strongly loss-adapted

▶ Performed statistical test by bootstrapping covariance matrix from
10,000 samples of ensemble predictions

▶ Null hypothesis: H0 : Dmn ≥ 0 for all m, n

▶ Bonferroni correction on set of one-sided Wald tests, p = 0.0014
▶ Conservative test for multivariate one-sided, yet still reject
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Results (2/3)

D = 0.15

P0.7 P0.9 P0.99( )0 2.548 12.467 L0.7

−2.529 0 9.938 L0.9

−6.993 −4.463 0 L0.99

▶ But Dmm ≥ 0 for all m, so algorithm is loss-adapted

▶ Thus, while data is not consistent with feasibility-based machine
learning, it is consistent with cost-based machine learning

▶ How strong is loss-adapted condition?

▶ Generated 100m random monotonic choice probabilities in this setting,
and loss-adapted condition failed 83.3% of the time
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Results (3/3)

▶ Since data is loss-adapted, can recover set of possible learning costs

6 7 8 9 10 11 12 13

5
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10

K0.7

K
0.

9

▶ What is a possible explanation? By telling the algorithm to care more
about non-pneumonia cases, it chooses to learn more about these
cases, and the large number of such cases leads to costlier learning
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Motivation Recap

▶ Why do we want to model machine learning?

▶ Modeling machine learning as we do for human decisions opens up
the tools of economics, psychology, and neuroscience to this setting

▶ Much potential value in using these tools to help understand what
algorithms will do in “unknown territory”

▶ Applications: robustness, counterfactuals, optimization, etc.

▶ Also value in using these tools to help interpret machine learning
algorithms

▶ Many applications underway, including a finished companion paper

▶ But the goal today was to provide the necessary first step
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