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Big Picture

▶ Bayesian learning models ubiquitous across economics, psychology,
and neuroscience

▶ They provide a shared cognitive foundation for decision-making in
informationally rich environments

▶ Key assumptions: agents acquire informative signals, update using
Bayes’ rule, and choose the action that maximized expected utility

▶ Common questions: Are Bayesian learning models appropriate for
capturing choices? If so, what can they tell us about what agents like
and what they learn?
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Three Model Classes

▶ Most learning models fall into one of three large and nested classes:

1. Fixed learning: information structures not impacted by payoffs

▶ Exogenous learning in markets, observational/social learning, etc.

2. Capacity-constrained learning: feasible information structure chosen to
match payoffs

▶ Fixed information-processing capacity (Sims 2003), optimal encoding
(Woodford 2014), etc.

3. Costly learning: costly information structure chosen given net payoffs

▶ Search, bandits, rational inattention, etc.

▶ Note they are nested: fixed implies capacity constrained implies costly
learning not vice versa
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Revealing Bayesian Learning

▶ What is the behavioral imprint of each of these model classes?

▶ Fundamental challenge: Utility is unknown to econometrician and
learning is private

▶ Recent advances: characterizations of fixed learning (Lu 2016) and
costly learning (Caplin and Dean 2015 CD15) provide partial answers
in different data (Lu, perfect information, CD15 known utility)

▶ As yet no characterization of capacity-constrained learning
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Results

▶ We characterize all three Bayesian learning model classes within a
unified framework

▶ Our characterizations make testing these models possible

▶ Our characterizations identify what can be known about utility

▶ And what can be known about learning

▶ Definitive results in our framework
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Apologia

▶ Quite a few definitions just to set up the questions

▶ The theorems are conceptually straight forward but nonetheless
intricate

▶ I will cover what I can in talk

▶ I expect that it will not all sink in first time

▶ Talk is being recorded so possible to review finer points

▶ There is no paper so I am including technicalities in an Appendix for
those who want to pursue
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What Next?

▶ Opens the door to applications such as:

1. Machine learning (presentation in Summer School which closes out
characterizations)

2. Psychometrics (ongoing with Bustamente, Daw, Grahek, Ham,
Musslick)

3. Labor economics (ongoing with Deming, Leth-Petersen, Weidmann)

4. Judicial, Medical, Educational...

▶ Demonstrates ubiquity of Bayesian learning models and strong
potential for interdisciplinary collaboration
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Talk Structure

1. Definitions

2. Motivating example

3. FIR and mean and optimality preserving spreads

4. CCR and the NIAAS Cone

5. CIR and the NIAC Cone

6. Recovery: Example revisited

7. Concluding remarks
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1. Definitions

9 / 78



Objects

▶ Finite states of the world ω ∈ Ω

▶ Fixed prior µ ∈ ∆(Ω)

▶ Global set of actions A
▶ Decision problem a finite set of such actions A ⊂ A
▶ Finite prize set Z = {zk}Kk=1 and mapping z : A× Ω → Z makes it

important for the decision maker (DM) to learn before choosing
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Strategies

▶ State dependent stochastic choice (SDSC) P(a,ω) that reflects prior

∑
a∈A

P(a,ω) = µ(ω).

▶ As in Caplin and Martin (2015 CM15), characterize by revealed
information structure which is defined by unconditional action
probabilities

P(a) = ∑
ω∈Ω

P(a,ω);

and revealed posteriors for all chosen actions

γa
P ≡ P(a,ω)

P(a)
.
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Strategies

▶ As in CD15, DM observed making choices from a finite set of decision
problems {Am}Mm=1.

▶ Paired action sets and corresponding SDSC {(Am,Pm)}Mm=1 are the
objects of analysis.

▶ As in Kamenica and Gentzkow (2011) learning a Bayes consistent
distributions of posteriors γ ∈ ∆(Ω):

Q ≡ {Q ∈ ∆(∆(Ω)) with | supp Q | < ∞| ∑
γ∈ supp Q

γQ(γ) = µ}.
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Strategies

▶ Post-learning mixed action strategy based on the resulting posterior
q(a|γ).

▶ The overall strategy space is Λ(A):

Λ(A) ≡ {(Q, q)|Q ∈ Q, q : supp Q −→ ∆(A)}.

▶ Questions concern how to interpret strategies that might have
produced observed data. Define P(Q,q) as the SDSC that any strategy
(Q, q) ∈ Λ(A) would generate,

P(Q,q)(a,ω) = ∑
γ∈supp Q

q(a|γ)Q(γ)γ(ω).

▶ RHS: add across possible posteriors how likely is action given
posterior, how likely is posterior, how likely is state given posterior.
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CIR

▶ CIR defined as in CD15 but now with unknown utility.

▶ Costs of learning: K : Q → R̄ extended real line.

▶ Associate with each strategy (Q, q) ∈ Λ (A) the corresponding
expected prize utility less costs of learning:

V (Q, q|u,K ) ≡ ∑
γ∈supp Q

∑
a∈A

Q(γ)q(a|γ) ∑
ω∈Ω

γ(ω)u(z(a,ω))−K (Q).

▶ The value function and the corresponding optimal strategies standard:

V̂ (A|u,K ) ≡ sup
{(Q,q)∈Λ(A)}

V (Q, q|u,K )

Λ̂(A|u,K ) ≡
{
(Q, q) ∈ Λ (A) |V (Q, q|u,K ) = V̂ (A|u,K )

}
.
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CIR

▶ Goal is to identify necessary and sufficient conditions on
{(Am,Pm)}Mm=1 for there to exist a fixed utility function over prizes
and a learning cost function such that the data can be rationalized by
a model in which total expected prize utility less learning costs is
maximized.

▶ Logic is sequential. The key is to identify utility functions for which
costs of learning and strategies can be identified that together
rationalize the data.

Definition
{(Am,Pm)}Mm=1 have a costly information representation (CIR) if
there exist u,K and (Qm, qm) ∈ Λ̂(Am|u,K ) for 1 ≤ m ≤ M such that
Pm = P(Qm,qm). u admits a CIR of {(Am,Pm)}Mm=1 if there exists K and

(Qm, qm) ∈ Λ̂(Am|u,K ) that in combination with u provide a CIR.
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CCR and FIR

▶ Technically, data admit a capacity constrained representation
(CCR) if the learning in each decision problem is optimal for some
fixed feasible set of experiments Q∗ ⊂ Q.

▶ Nested: CCR is a CIR in which costs of all revealed information
structures are equal and those of all others are infinity.

▶ Again logic sequential. We want to pin down utility functions that
admit a CCR.

▶ A fixed information representation (FIR) is a special case of a CCR
in which the feasible set of learning strategies is a singleton.
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2. Motivating example
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Example

▶ Two choice sets and two equiprobable states, Ω = {ω1,ω2} with
µ = ( 12 ,

1
2 ).

▶ Three prizes, zB , zM , zG ; data will reveal good, medium, and bad
prizes, with uG > uM > uB .

▶ Three actions ak for 1 ≤ k ≤ 3 with corresponding prizes as follows:

Action State ω1 State ω2

a1 zG zB
a2 zB zG
a3 zM zM
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Revealed Posteriors

▶ Two decision problems are faced: A1 = {a1, a2} and
A2 = {a1, a2, a3}. SDSC recorded in matrix row actions column states

P1 =

ω1 ω2( )
.4 .1 a1
.1 .4 a2

& P2 =

ω1 ω2( ).25 .0 a1
.05 .2 a2
.2 .3 a3

▶ Column sums reflect prior, row sums unconditional action
probabilities.

▶ Data set P1 reveals symmetric partial understanding.

▶ Data set P2 is somewhat asymmetric. It reveals partial understanding
when actions a2, a3 are chosen, full understanding only when a1 is.

▶ Best summary of data is revealed information structure.

19 / 78



Revealed Posteriors

P1 =

ω1 ω2( )
.4 .1 a1
.1 .4 a2

& P2 =

ω1 ω2( ).25 .0 a1
.05 .2 a2
.2 .3 a3

▶ Unconditional choice probabilities (row sums):

P1(a1) = P1(a2) = P2(a3) = 0.5 and P2(a1) = P2(a2) = 0.25

▶ Revealed posteriors (normalized rows):

γa1
P1 =

( )
.8 ω1

.2 ω2 & γa2
P1 =

( )
.2 ω1

.8 ω2

γa1
P2 =

( )
1 ω1

0 ω2 & γa2
P2 =

( )
.2 ω1

.8 ω2 & γa3
P2 =

( )
.4 ω1

.6 ω2
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BEU and NIAS

▶ All representations require post-learning choice rationalizable by
Bayesian expected utility maximization. Differ in what is learned
before deciding

▶ u : Z −→ R can rationalize P in A if there exists a strategy
(Q̂, q̂) ∈ Λ(A) that produces the data such that all actions chosen
are optimal at each posterior.

▶ CM 15 establish that this is equivalent to ruling out all holistic action
switches as improving according to the data itself using the no
improving action switch (NIAS) inequalities,

∑
ω∈Ω

u(a,ω)P(a,ω) ≥ ∑
ω∈Ω

u(b,ω)P(a,ω),

all a, b ∈ A.

▶ In all that follows such a utility function exists that rationalizes full
data {(Am,Pm)}Mm=1.
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NIAS

▶ NIAS constrains prize utilities. The fact that when a1 is chosen in A2

the state is ω1 for sure is consistent with expected utility
maximization only if utilities satisfy

uG ≥ max{uM , uB}.

▶ a3 chosen at revealed posterior (0.4, 0.6) in A2 reveals uM to be at
least as good as action a2 at that posterior, which would yield zG
with probability 0.6, else zB

uM ≥ 0.6uG + 0.4uB .

▶ a2 chosen at revealed posterior (0.2, 0.8) in both A1,A2 shows the
resulting lottery which yields zG with probability 0.8, else zB , to be at
least as good as zM

0.8uG + 0.2uB ≥ uM .
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NIAS

▶ Putting these together, the only non-vacuous representation requires
strict preference uG > uM > uB . Further, if we normalize to uG = 1
and uB = 0, there are upper and lower bounds on uM ,

0.6 ≤ uM ≤ 0.8.
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CIR

▶ CIR equivalent to costs K 1,K 2 such that maximized expected utility
net of learning costs in action set A1 is higher in data set P1 than in
alternative data set P2, and conversely that maximized expected
utility net of learning costs in action set A2 is higher in data set P2

than in alternative data set P1.
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CIR

▶ Given that uG = 1 and uB = 0 and uM ∈ [0.6, 0.8]:

0.8−K 1 ≥ 0.75−K 2;

0.45+ 0.5uM −K 2 ≥ 0.8−K 1;

▶ Top inequality: LHS odds of good prize 80% in P1. Shifting A1 to P2

would be 60% with probability 0.5 (revealed posterior (0.4,0.6)) and
80% and 100% each with probability 0.25 (revealed posteriors
(0.2,0.8) and (1,0)). Overall odds 0.75 as on RHS.

▶ Second inequality LHS: A2 in P2 yields zM probability 0.5, zG with
probability 0.25 with a1 and 0.2 with a2 is.

▶ Second inequality RHS: with uM ≤ 0.8, A2 in P1 yields zG with
probability 0.8.
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CIR

▶ In combination we have the following:

K 1 −K 2 ∈ [0.35− 0.5uM , 0.05].

▶ Note that this set is non-empty for all uM ∈ [0.6, 0.8].

▶ When uM = 0.6, the only rationalizing cost is K 1 −K 2 = 0.05.

▶ When uM = 0.7,

K 1 −K 2 ∈ [0, 0.05].

▶ When uM = 0.8,

K 1 −K 2 ∈ [−0.05, 0.05].
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CCR

▶ Not all utility functions that admit a CIR also admit a CCR.

▶ The easiest way to see this is to note that conditions for a CCR are
equivalent to existence of a CIR with equal costs.

▶ This holds only for uM ∈ [0.7, 0.8].
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FIR

▶ Logic for FIR very different and very restrictive

▶ Here is the simplest possible information structure that allows the
data to be rationalized. Defining this structure by the posterior
probability of state ω1 we have:

Q(1) = Q(0.6) = 0.25;Q(0.2) = 0.5.

▶ In this case the unique strategies that rationalize the data are:

q1(a1|1) = q1(a1|0.6) = q1(a2|0.2) = 1;

q2(a1|1) = q2(a3|0.6) = 1;

q2(a2|0.2) = q2(a3|0.2) = 0.5.
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FIR

▶ That the above strategies are optimizing is clear. All deterministic
strategies involve actions that are uniquely optimal at the
corresponding posterior, while the mixed strategy in data set A2 in
which both a2 and a3 are chosen when the probability of state ω1 is
0.2 reflects the fact that both yield equal utility of uM = 0.8 at this
posterior.

▶ To confirm that this produces the data consider by way of illustration
choice of action a1 in data set P1:

P(Q,q1)(a1,ω1) = Q(1)q1(a1|1) ∗ 1+Q(0.6)q1(a1|0.6) ∗ 0.6 = 0.4;

P(Q,q1)(a1,ω2) = Q(0.6)q1(a1|0.6) ∗ 0.4 = 0.1;

with precisely analogous logic for a2 in data set P1. One can confirm
same for data set P2. Figure illustrates
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FIR

1

.6

.2

a1

a2

0.4 = .25× 1× 1+ .25× .6× 1

0.1 = .5× .2× 1

.25

.25

.5

1

1

1

Q(γ) γ(ω1) q1(a|γ) A1 P1(a,ω1)
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FIR

1

.6

.2

a1

a2

a3

0.25 = .25× 1× 1

0.05 = .5× .2× .5

0.20 = .25× .6× 1+ .5× .2× .5

.25

.25

.5

1

1 .5

.5

Q(γ) γ(ω1) q2(a|γ) A2 P2(a,ω1)
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FIR

▶ Why only uM = 0.8 for an FIR?

▶ The key is the combination of unconditional action probabilities and
revealed posteriors of chosen actions.

▶ Recall data set P1 has two equiprobable revealed posteriors of state
ω1 which are recorded with their unconditional probabilities as:

γa1
P1 ≡ 0.8; and P1(a1) = 0.5

γa2
P1 ≡ 0.2; and P1(a2) = 0.5

▶ In contrast data set P2 has three revealed posteriors of state ω1

again recorded with their unconditional probabilities as:

γa1
P2 ≡ 1; and P2(a1) = 0.25

γa2
P2 ≡ 0.2; and P2(a2) = 0.25;

γa3
P2 ≡ 0.4; and P2(a2) = 0.5;
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FIR

▶ Key observation: choice of a2 in both choice sets A1 and A2 has a
common revealed posterior probability of state ω1 of 0.2 but a
probability of 0.5 rather than 0.25 in A1 rather than in A2.

▶ Hence there must be some posterior at which a2 is chosen in A1 at
which a3 was chosen in A2. By optimality, these have to be the higher
posteriors in the range, if any.

▶ If indeed there were any possible posteriors in the range (0.2, 0.5] at
which a3 was chosen in A2 while a2 was in A1, their removal would
strictly lower the revealed posterior of that action in decision problem
A2, which they do not.
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FIR

▶ Hence 0.2 must be the only possible posterior in the range [0, 0.5)
and it must have unconditional probability Q(0.2) = 0.5.

▶ To explain the data we then need the mixed strategy at this posterior
to assign equal probability to actions a2, a3.

▶ It is precisely the need for this to be consistent with an optimal
strategy that pins down uM = 0.8 as necessary for an FIR.
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FIR

▶ Continuing on with the common information structure, note that
Q(1) = 0.25.

▶ It must be at least that high to explain γa1
P2 ≡ 1; and P1(a1) = 0.25.

It cannot be higher since it is strictly optimal to choose a1 at this
posterior. In fact there is no possible posterior in the range (0.8, 1]
since if there were, optimality would imply a strictly higher probability
of choosing action a1 in data set P2.

▶ We are left only to find the final 0.25 uncommitted posterior
probabilities.

▶ In data set P1 we know that the average posterior when a1 is chosen
is 0.8, and that it is chosen with probability 0.5. Since we also know
that the posterior is precisely 1 with probability 0.25, it must average
precisely 0.6 otherwise.
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FIR

▶ To summarize the remaining 0.25 probability must all be assigned to
posteriors at which a1 is optimal in data set A1 and a3 is optimal in
action set A2. This sets the support as [0.5, 0.8]. Further we know
that in this range the average posterior must be 0.6.

▶ Finally the average posterior other than 0.2 at which a3 is chosen in
data set P2 must be 0.6 to rationalize the revealed posterior of 0.4.
But this is already implied above, so adds no new conditions. We
conclude that there are indeed no more restrictions.

▶ What this means is that we can generalize the particular example
provided in which Q(0.6) = Q(1) = 0.25 and Q(0.2) = 0.5 in only
one respect. We can replace Q(0.6) with any set of posteriors on the
support [0.5, 0.8] that average to 0.6 and then set the corresponding
strategy of deterministically choosing a1 at all such posteriors in A1

and a3 at all such posteriors in A2.
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4. Characterization of Fixed Information Representation
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Mean and Optimality Preserving Spread

▶ There is a simple organizing logic for FIR that is a variation of the
mean preserving spread characterization of more informative
information structures due to Blackwell.

▶ If we disregard the requirement of optimality, an information structure
can rationalize data if and only if it is at least as Blackwell informative
as the revealed information structure by the mean preserving spread
characterization of the Blackwell order based on a Markov matrix.

▶ To preserve optimality at all possible posteriors: one needs to start
with optimality and then perform an optimality check in each row of
the corresponding Markov matrix

▶ There are technical subtleties outlined in the appendix
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Mean and Optimality Preserving Spread

▶ The Markov matrix B that defines the MPS has row cardinality
corresponding to the number of distinct actions chosen in the data
with column cardinality corresponding to the support of posterior
distribution Q that defined an MPS. Optimality is defined at the level
of action choice.

▶ Further we need to specify a utility function and a particular decision
problem in order to define optimality.

▶ We also need to insist that the original data satisfy NIAS for that
utility function so that there is optimality prior to application of the B
matrix. If this did not hold optimality would fail at the outset, leaving
nothing to preserve.

▶ With this, maintenance of optimality states that all posteriors that are
possible according to the matrix in the row corresponding to chosen
action ai retain its optimality.
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Mean and Optimality Preserving Spread

▶ With all technicalities in place, we know how to define an information
structure Q as a mean and optimality preserving spread (MOPS)
of choice data P

▶ The characterization theorem is based on identifying a common mean
and optimality preserving spread of all observed data.

▶ The starting point is a utility function for which NIAS is satisfied in
all decision problems.

▶ In addition to identifying precisely when a FIR exists, the theorem
identifies mixed action strategies from the matrix.

▶ The procedure is to set these according to the relative probabilities in
column j when unconditional action probabilities in the data are run
through the transition matrix.
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Characterization

Theorem
Given {(Am,Pm)}Mm=1} any u satisfying NIAS admits a FIR if and only if
there exist an information structure Q and for all 1 ≤ m ≤ M Markov
matrices Bm that define Q as a MOPS of Pm. Labeling chosen actions in
Am by ami for 1 ≤ i ≤ Im the corresponding qm : supp Q −→ ∆(Am) are
pinned down as:

qm(ami |γj ) =
Pm(ami )Bm

(mi)j

Q(γj )
. (1)
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5. Characterization of Capacity Constrained Representation
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The NIAS Cone

▶ CM21 introduce an NIAS Cone characterization of utility functions
that permit a Bayesian expected utility representation

▶ This involves ensuring that no counterfactual holistic action switches
produce higher expected utility

▶ Intuitively applied in example: will see again at end.

▶ All the remaining characterizations extend that idea using richer
counterfactual switches
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Action and Attention Switches

▶ The characterization of utility functions that admit a CCR of
{(Am,Pm)}Mm=1 is based on ruling out a set of feasible changes in
action choices and information structures as improving.

1. Start with a given decision problem Am and select a target data set Pn

for 1 ≤ m, n ≤ M. It is allowed that m = n.
2. Map chosen actions in APn to any actions in set Am according to

f : APn −→ Am

3. Given any triple (m, n, f ) define the corresponding SDSC on a ∈ Am as:

P (m,n,f )(a,ω) ≡ ∑
{b∈An |f (b)=a}

Pn(b,ω)

4. Define the prize lottery associated with the actual observed data in
Am, L(Pm), and the prize lottery after all action switches, L(P (m,n,f )).
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Action and Attention Switches

▶ The defining feature of a CCR is that this alternative data could have
been generated and used with action set Am, so that none of these
switches can be improving.

▶ Index all distinct triples (m, n, f ) by 1 ≤ h ≤ H to simplify notation
in representing the implied restrictions on utility and define the
corresponding change in lottery as Dh,

Dh ≡ L(Pm(h)))− L(P (m(h),n(h),f (h)))
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Action and Attention Switches

▶ We call the convex cone defined by all such inequalities the no
improving action or attention switch (NIIAS) cone since this is the set
of operations that are ruled out as improving.

Definition
We call the convex cone DNIAAS formed by all Dh the NIAAS cone

DNIAAS = {D =
H

∑
h=1

αhDh ∈ RK |αh ∈ R+}.
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NIAAS Cone Characterization of CCR

▶ A clear necessary condition for u : Z −→ R to admit a CCR
representation is that no such change raise utility,

K

∑
k=1

ukD
h
k ≥ 0

Definition
We call the set of all utility functions u : Z −→ R such that

K

∑
k=1

ukDk ≥ 0

all D ∈ DNIAAS the NIAAS utility cone

Theorem
Utility function u : Z −→ R admits a CCR if and only if it lies in the
NIAAS utility cone.

▶ This is a corollary of the next result characterizing CIR 47 / 78



6. Characterization of Costly Information Representation
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Attention Cycles

▶ As for the CCR, the characterization of utility functions that admit a
CIR of {(Am,Pm)}Mm=1, is based on ruling out a set of feasible
changes in action choices and learning strategies as improving.

▶ CD15 identify that NIAS and NIAC are necessary and sufficient
conditions for a given utility function to provide a CIR.

▶ For the current context we need to adapt the reasoning to allow for
the utility function to be unknown. What we will show is that the
CM21 approach can be adapted based on rich lottery comparisons
that are implicit in the NIAC constraints.

49 / 78



Attention Cycles

▶ In formal terms:

Definition
A cycle of attention and action switches (J, m⃗, {f j}J−1

j=1 ) comprises:

1. Cycle length 2 ≤ J ≤ M + 1
2. A corresponding vector of indices m⃗ = (m(1), · · · ,m(J)) with

1 ≤ m(1) = m(J) ≤ M but 1 ≤ m(j) ̸= m(j ′) ≤ M otherwise.

3. A set of mappings f j : APm(j+1) −→ Am(j) for 1 ≤ j ≤ J − 1.

▶ Note that direct switches in data are included by setting J = 2.

50 / 78



Attention Cycles

▶ At each stage 1 ≤ j ≤ J − 1 in any such cycle, we follow the
definitions for a CIR in the last section to define the lottery in the
data, the lottery received under the specified action switches in the
ensuing data, and the difference between them.

▶ We then average up the corresponding lottery changes across the
cycle to arrive at the overall lottery change which we denote

D(J,m⃗,{f j}J−1
j=1 )

▶ The defining feature of a CIR is that any cycle of attention and action
switches is in principle feasible at no additional cost and so cannot be
improving.
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NIAC Cone Characterization of CIR

▶ To simplify the notation for expressing the implied constraint on
utility we index the finite number of distinct such triples by h′ for
1 ≤ h′ ≤ H ′.

▶ We call the convex cone formed by all Dh′ the NIAC cone: direct
cycles are included hence a subset of NIAS cone.

DNIAC = {D ′ =
H

∑
h′=1

αh′Dh′ ∈ RK |αh′ ∈ R+}.

▶ A clear necessary condition for u : Z −→ R to admit a CIR is that no
such change raise utility,

K

∑
k=1

ukD
h′
k ≥ 0
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NIAC Cone Characterization of CIR

Definition
We call the set of all utility functions u : Z −→ R such that

K

∑
k=1

ukDk ≥ 0

all D ∈ DNIAC the NIAC utility cone

Theorem
Utility function u : Z −→ R admits a CIR if and only if it lies in the NIAC
utility cone.

▶ This follows from CD15 logic.
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NIAC Cone Characterization of CIR

▶ CD15 show how to identify all cost functions that provide a CIR for a
given cost function

▶ CMM22 introduce a simple method of operationalizing

▶ Will present in ML session of Summer School
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7. Recovery In Example
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NIAS Cone in Example

▶ Revisit examples to think in terms of counterfactual prize lotteries
(pG , pM , pB).

▶ NIAS utility cone only counterfactual lotteries from any action
switches within each decision problem

▶ With A1 the possible action switches are choosing a2 in place of a1

and vice versa.

▶ In both cases the actual choice yields lottery (0.8, 0, 0.2) and the
counterfactual yields lottery (0.2, 0, 0.8).

▶ The difference from sticking with the action rather than switching is
(0.6, 0,−0.6), and this cannot be improving, so that the vector of
EUs (uG , uM , uB) must have a positive dot product with this vector,

0.6uG ≥ 0.6uB ,
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NIAS Cone in Example

▶ In choice set A2, consider first action switches of choosing either a2 or
a3 in place of a1.

▶ When chosen a1 produces the good prize for sure, (1, 0, 0).

▶ Switching to a3 cannot be improving since it yields uB ≤ uG .

▶ Switching to a2 would yield z3 for sure, so that the corresponding
NIAS inequality implies that uG ≥ uM .

▶ Switching from a2 to a1 cannot be improving since all it does is lower
the probability of receiving zG rather than zB .

▶ For it to be non-improving not to switch from a2 to a3 requires that
the resulting lottery (0.8, 0, 0.2) be at least as good as the reward of
zM for sure achievable by switching to a3,

0.8uG + 0.2uB ≥ uM .
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NIAS Cone in Example

▶ Finally, consider possible switching from a3 to a2 or a1. No
improvement requires that the actual reward of zM for sure be at
least as good as the best alternative, which would be to switch to a1

and get the lottery (0.6, 0, 0.4). Hence,

uM ≥ 0.6uG + 0.4uB .

▶ Overall the only non-vacuous solutions involve uG > uM > uB .

▶ With this we can normalize to uG = 1 and uB = 0 and conclude that
the only other restriction is uM ∈ [0.6, 0.8].
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NIAC Cone in Example

▶ The inequalities defining the NIAC cone are a superset of those
defining the NIAS cone, so all that remains is to rule out improving
attention cycles.

▶ To work out the resulting inequalities we separately analyze the
implications of switching A1 to P2 and A2 to P1.

▶ As a first step in this direction we compute the full prize lotteries
from the actual choices. In choice set A1 the realized lottery in P1 is
(0.8, 0, 0.2). In choice set A2 the realized lottery in P2 is
(0.45, 0.5, 0.05).

▶ The implications of switching A1 to P2 are straight forward. At each
posterior it is best to choose the action that is more likely to yield
prize uG rather than uB . The average such probability in P2 is 0.75
rather than 0.8. Hence sticking with the chosen attention yields a
lottery change of (0.05, 0,−0.05) relative to the best alternative.
axes corresponding to the second and third prizes, both measuring
probabilities and utilities.
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NIAC Cone in Example

▶ The implications of switching A2 to P1 are equally simple: in either
case the maximum utility derives from picking the action that yields
lottery (0.8, 0, 0.2) given that we have already established uM ≤ 0.8.
Hence the difference between sticking with the actual attention
strategy rather than switching is defined by lottery difference
(−0.35, 0.5,−0.15).

▶ To derive the NIAC inequality from the cycle in which A1 is switched
to P2 and A2 is switched to P1 we average the two changes. This
averaged lottery change is

(−0.35, 0.5,−0.15) + (0.05, 0,−0.05)

2
= (−0.15, 0.25,−0.1).

▶ The corresponding inequality on utilities that make this have positive
utility given what is already known is,

0.25uM − 0.25 ≥ 0 ⇐⇒ uM ≥ 0.6.

▶ Confirms NIAC cone the same as the NIAS cone
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NIAAS Cone in Example

▶ What of the NIAAS Cone?

▶ The key difference between the NIAC Cone and the NIAAS Cone lies
in the replacement of attention cycles with attention switches.

▶ So we need to rule out separately any advantage of switching A1 to
P2 or switching A2 to P1.

▶ As just computed, it is clear that there is a pure loss in switching A1

to P2 since it merely lowers the probability of winning prize zG rather
than prize zB .

▶ However ensuring that there is no utility gain from switching A2 to
P1 imposes an additional constraint. Specifically, it must be that the
lottery difference (−0.35, 0.5,−0.15) not be improving. It terms of
utilities, this imposes the additional constraint

0.5uM − 0.35 ≥ 0 ⇐⇒ uM ≥ 0.7.
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NIAAS Cone in Example

▶ Again this confirms the direct logic of section 3 that a CCR exists if
and only if uM ∈ [0.7, 0.8].

▶ Normalizing to uG = 1 and uB = 0 we can illustrate all utility cones
in a figure with axes corresponding to the second and third prizes,
both measuring probabilities and utilities.
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Utility Recovery: Example

uM

uG1

0.6

0.7

0.8

Utility Cones
d⃗ • u⃗ ≥ 0 for every vector d⃗ ∈ D

D Cones

NIAS(C)

NIAAS
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MOPS in Example

▶ Note that MOPS exists only for uM = 0.8 by argument in the given
example.

▶ To specify the transition matrices, recall rows are chosen actions and
columns possible posteriors: we label these γ1 = (1, 0),
γ2 = (0.6, 0.4) and γ3 = (0.2, 0.8)

▶ Recall the simplest information structure Q that defines an MOPS of
P1 and P2 is Q(γ1) = Q(γ2) = 0.25 and Q(γ3) = 0.5.
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MOPS in Example

▶ The 2× 3 transition matrix B1 is:

B1 =

γ1 γ2 γ3( )
0.5 0.5 0 a1
0 0 1.0 a2

▶ Indeed a Markov matrix.

▶ The action strategies that rationalize the data are:

q1(a1|γ1) = q1(a1|γ2) = q1(a2|γ3) = 1.
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MOPS in Example

▶ The MOPS theorem applied to this case says that for
i = 1, 2, j = 1, 2, 3

q1(ai |γj ) =
P1(ai )B1

ij

Q(γj )
. (2)

▶ In confirmation

P1(a1)B1
11

Q(γ1)
=

0.25

0.25
= 1 = q1(a1|γ1);

P1(a1)B1
12

Q(γ2)
=

0.25

0.25
= 1 = q1(a1|γ2);

P1(a2)B1
23

Q(γ3)
=

0.5

0.5
= 1 = q1(a2|γ3).
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MOPS in Example

▶ The 3× 3 transition matrix B2 is:

B2 =

γ1 γ2 γ3( )1 0 0 a1
0 0 1 a2
0 0.5 0.5 a2

▶ Confirmation of formula valuable exercise: in Appendix
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7. Conclusion
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What We Did

▶ We characterizes three leading Bayesian learning model classes within
a unified framework

▶ Our characterizations make testing these models possible

▶ We characterize what can be known about utility

▶ And what can be known about learning

▶ Definitive results in our framework
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Where We Are Going

▶ Several applications ongoing others on wish list

1. Psychometrics

2. Labor economics

3. Machine learning

4. Judicial, Medical

5. Teaching and Testing

6. ......

▶ Demonstrates ubiquity of Bayesian learning models and strong
potential for interdisciplinary collaboration
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Appendix
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Defining mean and optimality preserving spread

▶ Defining a MOPS requires indexing posteriors revealed in the data
and those in any rationalizing information structure.

▶ With regard to the former, we define IP as the cardinality of AP , the
set of actions chosen in SDSC P, and index these posteriors as γi

P

with corresponding action ai for 1 ≤ i ≤ I .

▶ Correspondingly, we index posteriors in the support of information
structure Q as γj for 1 ≤ j ≤ J.

▶ With this we define what it means for an information structure Q to
be a mean preserving spread of SDSC P.
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Defining mean and optimality preserving spread

Definition
Q is a mean preserving spread of P if there there exists an I × J
non-negative Markov matrix matrix B with ∑J

j=1 Bij = 1 such that:

1. For each 1 ≤ j ≤ J the unconditional probabilities in Q are generated
as P,B imply:

I

∑
i=1

P(ai )Bij = Q(γj ).

2. The posteriors γi
P are generated as Q,B imply:

γi
P =

J

∑
j=1

Bijγ
j
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Defining mean and optimality preserving spread

▶ In comparison with the standard definition in terms of comparing
information structures, note that the Markov matrix B that defines
the MPS has row cardinality corresponding to the number of distinct
actions chosen in the data, I , with column cardinality corresponding
to J, the cardinality of the support of posterior distribution Q.

▶ For a MOPS We want to ensure that optimality is maintained, in the
sense that all posteriors that are possible according to the matrix in
row i have the feature that action ai remains optimal. We need to
specify a utility function and a particular decision problem in order to
define optimality and impose NIAS so that there is optimality prior to
application of the B matrix.
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Defining mean and optimality preserving spread

Definition
Given u : Z −→ R and finite action set A, the corresponding optimal
posterior set is Γ̂(a|u,A) ⊂ ∆(Ω)

Γ̂(a|u,A) = {γ| ∑
ω∈Ω

u(z(a,ω))γ(ω) ≥ ∑
ω∈Ω

u(z(b,ω))γ(ω) all b ∈ A}.

Definition
Given (A,P) and u such that NIAS is satisfied, Q is a mean and
optimality preserving spread of P if there exists a matrix B that defines
it as a mean preserving spread in which optimality is preserved;

Bij > 0 =⇒ γj ∈ Γ̂(ai |u,A).
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MOPS in Example

▶ The 3× 3 transition matrix B2 is:

B2 =

γ1 γ2 γ3( )1 0 0 a1
0 0 1 a2
0 0.5 0.5 a2

▶ Indeed a Markov matrix.

▶ In this case the action strategies that rationalize the data are:

q2(a1|γ1) = q2(a3|γ2) = 1;

q2(a2|γ3) = q2(a3|γ3) = 0.5.
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MOPS in Example

▶ The MOPS theorem applied to this case says that for i , j = 1, 2, 3:

q2(ai |γj ) =
P2(ai )B2

ij

Q(γj )
. (3)

▶ Recall that P2(a1) = P2(a2) = 0.25 and P2(a3) = 0.5.

▶ Recall also that Q(γ1) = Q(γ2) = 0.25 and Q(γ3) = 0.5
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MOPS in Example

▶ In confirmation of the general formula:

P2(a1)B2
11

Q(γ1)
=

0.25

0.25
= 1 = q2(a1|γ1);

P2(a2)B2
23

Q(γ3)
=

0.25

0.5
= 0.5 = q1(a2|γ3);

P2(a3)B2
32

Q(γ2)
=

0.5 ∗ 0.5
0.25

= 1 = q2(a2|γ3);

P2(a3)B2
33

Q(γ3)
=

0.5 ∗ 0.5
0.5

= 0.5 = q2(a3|γ3);
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