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Some Evidence of Seemingly Non-Normative
Behavior in Economic Contexts

At the individual level:

• There seems to be incomplete use of information

◦ even when it is both useful & easily available

e.g., Coibion & Gorodnichenko (2012) inflation surveys

• Choices exhibit heterogeneity, stochasticity & discreteness

◦ even in fairly homogeneous environments
◦ and for problems with well-defined, unique optima
◦ over continuous variables

e.g., Khaw, Stevens & Woodford (2017) in the lab

• Many decision variables are adjusted infrequently

◦ even though conditions change constantly

(prices, wages, hiring, physical capital, retirement portfolios)



Khaw, Stevens & Woodford (2017)
Stochastic Choices
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Khaw, Stevens & Woodford (2017)
Discrete Adjustment
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Khaw, Stevens & Woodford (2017)
Discrete Adjustment
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Khaw, Stevens & Woodford (2017)
Discrete Action Space
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Some Economics Explanations of Seemingly
Non-Normative Behavior

One could rationalize many of these patterns of behavior within
classical, fully optimizing frameworks, for example:

• Stochasticity in response to idiosyncratic shocks to prefs or
technology, or due to deliberate (exploratory) randomization

• Inaction due to adjustment costs — though estimated to be
small relative to the degree of inaction for many decision
variables e.g., Morales-Jimenez & Stevens (2022) for prices

Alternative hypothesis: These patterns reflect inattentive
decision-making that is shaped by cognitive limitations

• Stochasticity, discreteness, inaction ∵ e.g., rational inattention



Rational Inattention: General Principles

Abstract model of constrained-optimal decision-making:

1. Information is abundant but hard to gather and incorporate

2. Its acquisition is a choice that responds to incentives

3. Hence we can apply cost-benefit analysis

→ Decision-makers do not have complete knowledge of their
environment (they are inattentive to it), but they choose
what to focus on, given their objectives and the costs of
having a more precise awareness of their environment

How to formalize and operationalize these principles?



RI: Applying Information Theory to Economic Decision-Making

Sims (1998, 2003) : Think of DMs as having limited capacity
to process information and apply Shannon’s (1948; 1959)
information theory to endogenize their information choices

“Information theory, which formally models physical limits to the rate
of transfer of information may provide a way for us to capture the
intuitive appeal of the signal-extraction story while neither intro-
ducing implausible constraints on the observability of data nor
abandoning entirely the strategy of modeling behavior as reflect-
ing optimization.” (Sims, 1998)



RI: Applying Information Theory to Economic Decision-Making

Shannon (1948):

“The fundamental problem of communication is that of reproducing
at one point either exactly or approximately a message selected at
another point. Frequently the messages have meaning; (...). The
significant aspect is that the actual message is one selected from a
set of possible messages.”



Rational Inattention: Specific Features

Model of constrained-optimal decision-making and info acquisition:

1. All uncertainty can be formalized with stochastic processes
characterized by objectively true probability distributions

2. Information is the reduction of Shannon (1948) uncertainty

3. Decisions are constrained by the capacity DMs devote to
reducing uncertainty relevant to particular decision problems

4. DMs can design arbitrary representations dedicated to any
source of uncertainty or combination thereof and can choose
any (feasible) degree of precision for these representations

5. In fact, DMs design representations that are optimally
adapted to each decision problem at hand



Outline

A Static RI Decision Problem

◦ stochastic, coarse choices

B Dynamic RI Decision Problems

◦ dampened, delayed, infrequent adjustments



RI: Static Decision Problem

• Suppose DM faces decision that leads to an uncertain payoff:

actions ............... a ∈ A
payoffs ............... u(a, x)

states ................. x ∈ X , x ∼ p(x)

prior ................... p(x)

• Action under prior ...... a = argmaxa ∑x p(x)u(a, x) for all x

• Should DM try to differentiate states more ?



Measuring Uncertainty (And Its Reduction)
(Shannon (1948))

• Entropy ≡ uncertainty about the state x ∼ p(x)

H(x) ≡ Ex log
1

p(x)
← prior uncertainty

• Conditional entropy ≡ uncertainty after some random var s

H(x |s) ≡ Ex ,s log
1

p̃(x |s) ← residual uncertainty

• Information = reduction in uncertainty

I(x , s) = H(x)−H(x |s) = Ex ,s log
p̃(x |s)
p(x)

Compression if I(x , s) < H(x) → decomposition of the
state into simpler (lower entropy) representation + data loss



Reducing Uncertainty
(Application of Shannon, 1959)

• Suppose DM can reduce uncertainty about x , at a cost,
by designing a representation that consists of

◦ a set of signals s ∈ S

◦ a conditional probability q(s |x) for each x and s

and an action rule a∗(s) that maps signals into actions

(note: we can allow for stochastic action rules)

to max expected payoff net of cost of uncertainty reduction



Reducing Uncertainty
(Application of Shannon, 1959)

• Suppose that the cost to the DM of such a representation is
linear in the entropy reduction it achieves

C(x , s) = θI(x , s)

= θ [H(x)−H(x |s)]

= θ

[
Ex ,s log

p̃(x |s)
p(x)

]

(and there is no cost of implementing the desired action rule)



Reducing Uncertainty
(Application of Shannon, 1959)

• Suppose that the cost to the DM of such a representation is
linear in the entropy reduction it achieves

C(x , s) = θI(x , s) = θI(s, x)

= θ [H(x)−H(x |s)] = θ [H(s)−H(s |x)]

= θ

[
Ex ,s log

p̃(x |s)
p(x)

]
= θ

[
Ex ,s log

q(s |x)
q̄(s)

]

(and there is no cost of implementing the desired action rule)



A Two-Step Problem

max
q,S,a∗

Ex ,s [u(a(s), x)]− θI(x , s)

s.t. ∑
s∈S

q(s |x) = 1 for all x and q(s |x) ≥ 0 for all x , s

where expectations are over the joint distribution p(x)q(s |x)

(2) Taking as given posterior beliefs p̃(x |s), find the action rule

a∗(s) = argmax
a

Ex |s [u(a, x)] for each s ∈ S

(1) Given the optimal action rule, find the representation to solve

max
q,S

Ex ,s [u (a
∗(s), x)]− θI(x , s)



A Simplification

• Solution generates distribution of actions with the same
mutual information: I(x , a) = I(x , s)

• The joint distribution of a and x generated by the solution to
our 2-step problem is the same as the solution to the alt.
problem maxqa,A Ex ,a [u(a, x)]− θI(x , a)

◦ wasteful to differentiate among s that result in same a

◦ or to randomize a upon receipt of any s

◦ or to design separate representations for different sources
of uncertainty (vector x) relevant to a singleton action

◦ (it also means that DMs with different objectives can end
up with different posteriors on x)

Woodford (2009); Matějka & McKay (2015); Steiner, Stewart &
Matějka (2017)



The Simplified Formulation

• So we can rewrite the problem in terms of a representation
that directly indicates the action to be taken

• With some abuse of notation, the problem becomes

max
q,A

Ex ,a [u(a, x)]− θI(x , a)

∑
a∈A

q(a|x) = 1 for all x ∈ X

q(a|x) ≥ 0 for all x ∈ X , a ∈ A

where expectations are over the joint distribution p(x)q(a|x)
and θ is the unit cost of uncertainty reduction

• We can use Karush-Kuhn-Tucker to find the solution



The Optimal Representation

q(a|x)
q̄(a)

=
exp

{
u(a,x)

θ

}
∑
ã∈A

q̄(ã) exp
{

u(ã,x)
θ

} for all x ∈ X , a ∈ A(1)

q̄(a) = ∑
x∈X

p(x)q(a|x) > 0 for all a ∈ A(2)

Z (a; q̄)


= 1 for all a ∈ A

≤ 1 for all a ∈ A, where

(3)

Z (a; q̄) = ∑
x∈X

p(x)
exp

{
u(a,x)

θ

}
∑
ã∈A

q̄(ã) exp
{

u(ã,x)
θ

}



Illustration

Consider a simple tracking problem

Suppose u(a, x) = −(a− x)2, x ∼ U [76, 124]

Starting with the no-info solution, the optimal representation can
be traced for lower and lower values of θ

An efficient algorithm combines

• the Blahut-Arimoto algorithm that iterates (1),(2) to
convergence for a guess of the support (Arimoto, 1972;
Blahut, 1972; Csiszár, 1974)

• the complementary slackness check on Z and the necessary
conditions for the optimal points of support (Rose, 1994)



Rose (1994)

• A sufficient condition for information acquisition is

(4) θ ≤ θ, θ ≡
∑x p(x)

(
∂

∂au(a, x)
∣∣
a=ā

)2
∑x p(x)

(
∂2

∂a2
u(a, x)

∣∣
a=ā

)

• A necessary condition for the points of support is

(5) ∑
x∈X

p̃(x |a)∂u(a, x)

∂a

∣∣
a∈A = 0

(each action a must maximize the expected payoff under the
posterior distribution of x implied by that action)



Growth of Mass Points as Unit Cost Falls

Remember the slack function

Z (a; q̄) = ∑
x∈X

p(x)
exp

{
u(a,x)

θ

}
∑
ã∈A

q̄(ã) exp
{

u(ã,x)
θ

} ?
≤ 1



Growth of Mass Points as Unit Cost Falls

Z(a;q) :  > max
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Growth of Mass Points as Unit Cost Falls

u(a, x) = −(a− x)2, x ∼ U [76, 124]



Growth of Mass Points as Unit Cost Falls

Z(a;q) :  = 0.34 max

88 112

1

u(a, x) = −(a− x)2, x ∼ U [76, 124]



Growth of Mass Points as Unit Cost Falls

u(a, x) = −(a− x)2, x ∼ U [76, 124]



Illustration of Optimal Representation
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Illustration of Optimal Representation
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Brief Extension to Multiple Representations

• The efficiency of info acquisition in RI implies a single
representation per decision, even if the state consists of a
vector of random variables

• In practice, DMs might be constrained in how they can
acquire information on different sources of uncertainty

• DMs also often make multiple decisions, subject to different
sources of uncertainty, simultaneously

• Then allocation of attention across sources based on similar
principles to allocation of attention across states for a given
source, so, similarly, sparsity can arise

Cover & Thomas (2006); Maćkowiak & Wiederholt (2009) on
firms ignoring macro conditions; Van Nieuwerburgh &
Veldkamp (2010) on under-diversification of investor portfolios



A Quadratic-Normal Setup

• Suppose xi ∼ N (0, σ2
i ), i = 1, ..., n independent

max
{qai}

n

∑
i=1

E
[
−(ai − xi )

2
]
− θI(xn, an)

• Solution: Choose orthogonal ai ∼ N (0, σ2
ai ) with

xi = ai + ε i

σ2
i = σ2

ai + σ2
εi

σ2
εi =

{
λθ if λθ < σ2

i

σ2
i otherwise



Reverse Water Filling Illustration
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Static RI Summary

For solutions with positive information flow

1. The representation is informative: an action is more likely in a
particular state if it leads to a higher payoff in that state

2. An endogenous prior about which action might be best
anchors the representation, but loses its pull as θ declines

3. To economize on information costs, the representation is
stochastic: q (a|x) ∈ (0, 1) for all a ∈ A and all x ∈ X

Matějka & McKay (2015); Caplin & Dean (2013)



Static RI Summary

5. The optimal representation is often coarse, even when
compressing a continuous state

4. The action set is endogenously chosen s.t. ex-ante payoffs
cannot be increased by reallocating attention to any a /∈ set A

6. Variable attention costs can generate variable action sets

7. Joint representations of multiple states may be sparse

Fix (1978); Rose (1994); Berger (2003) in info theory;
Matějka (2016); Stevens (2020); Jung, Kim, Matějka & Sims
(2019); Caplin, Dean & Leahy (2019) in econ



In short, RI choices are based on compressed,
noisy representation of their environment

What about delayed and infrequent adjustment?



RI in Dynamic Decision Problems

• Chris Sims’ motivation for bringing info theory to economics
was in fact about aggregate dynamics (Sims, 1998)

• Central issue in macro: delayed responses to shocks

• Sims hypothesized info choice subject to cap on Shannon
entropy reduction can replace the myriad of adjustment costs
& wedges modern macro models use to fit sluggish aggregate
adjustment dynamics (for both prices & quantities)

• Hence, he proposed a plausible friction and an elegant way to
operationalize it, and also promised a big payoff



RI: Dynamic Setup

• Recall our static problem:

max
q,A

Ex ,a

[
u(a, x)− θ log

q(a|x)
q̄(a)

]
∑
a∈A

q(a|x) = 1 for all x ∈ X

q(a|x) ≥ 0 for all x ∈ X , a ∈ A

q̄(a) = ∑
x∈X

p(x)q(a|x) > 0 for all a ∈ A

where expectations are over the joint distribution p(x)q(a|x)

• Extend to a setting where the choice of the optimal
representation becomes forward-looking



RI: Dynamic Setup

• Q: Can DM condition on past signals or time period freely?

• Suppose yes: the cap on/cost of uncertainty reduction applies
to new information each period, and DM has perfect recall
of the full history of past signals and actions

• Get dampened, delayed, hump-shaped responses to
changes in the exogenous fundamental, as seen in the macro
data Maćkowiak & Wiederholt (2009); Luo (2008); Acharya &
Wee (2020); Steiner et al. (2017); Maćkowiak, Matějka &
Wiederholt (2018)

• Suppose no and assume equal cost per unit of both new
information and any information retrieved from memory

• Then can also obtain infrequent adjustment, as in micro
Woodford (2009); Stevens (2020); Khaw et al. (2017);
Morales-Jimenez & Stevens (2022)



RI Dynamic Setup - Version 1

• Consider a dynamic RI problem with costless recall:

max
{qt}t≥0 (((((((((((((((((hhhhhhhhhhhhhhhhh

(
u(at , xt)− θ log

qt
(
at |x t ; at−1

)
q̄t (at |at−1)

)

• The history of actions forms a prior, which, combined with
new info yields a posterior based on which DM makes decision
→ problem becomes dynamic



RI Dynamic Setup - Version 1

• Consider a dynamic RI problem with costless recall:

max
{qt}t≥0

E(x t ,at )

[
∞

∑
t=0

βt

(
u(at , xt)− θ log

qt
(
at |x t ; at−1

)
q̄t (at |at−1)

)]

∑
at∈At

qt
(
at |x t ; at−1

)
= 1 for all reachable x t , at−1

qt
(
at |x t ; at−1

)
≥ 0 for –//– and all at ∈ At

where at = (a0, ..., at), β ∈ (0, 1) discounts future payoffs,

and expectations are over the joint distribution of x t , at



RI Dynamic Setup - Version 1

• Consider a dynamic RI problem with costless recall:

max
{qt}t≥0

E(x t ,at )

[
∞

∑
t=0

βt

(
u(at , xt)− θ log

qt
(
at |x t ; at−1

)
q̄t (at |at−1)

)]

∑
at∈At

qt
(
at |x t ; at−1

)
= 1 for all reachable x t , at−1

qt
(
at |x t ; at−1

)
≥ 0 for –//– and all at ∈ At



Dynamic Setup with Free Recall

• The simplification that collapses signals to actions continues
to apply in (most) dynamic settings (need cost linear in I)

• Solution via two-step optimization

(1) Fixing the marginal distribution Qt , solve for the optimal
conditional qt to max net expected payoff

(2) Given the solution for the conditional, solve for the
optimal marginal q̄t = argminQ I(qt ,Q)

• Problem becomes analogous to a dynamic control problem
with an optimal default distribution, adapted to this
problem, and optimal from the info-theoretic point of view



Dynamic Representation with Free Recall

qt(at |x t ; at−1)
q̄t(at |at−1)

=
exp

{
Ut (at ,x t ,at−1)

θ

}
∑
ãt

q̄t(ãt |at−1) exp
{

Ut (ãt ,x t ,at−1)
θ

}(6)

q̄t(at |at−1) = ∑
x t

Pr(x t |at−1)qt(at |x t ; at−1) > 0(7)

Ut(at , x
t , at−1) = u(at , xt) + βE

[
Vt+1(x

t+1, at)|at , x t , at−1
]

Vt(x
t , at−1) = max

qt
E

[
ut − θ log

qt
q̄t

+ βVt+1(x
t+1, at)|x t , at−1

]



Dynamic Representation with Free Recall

Z (at ; q̄t)


= 1 for all at ∈ At

≤ 1 for all at ∈ A, where

(8)

Z (at ; q̄t) = ∑
x t

Pr(x t |at−1)
exp

{
U(at ,x t ,at−1)

θ

}
∑

ãt∈At

q̄t(ãt |at−1) exp
{

U(ãt ,x t ,at−1)
θ

}



Example with AR(1) Fundamental

Maćkowiak et al. (2018)

dampened, hump-shaped response to xt innovation



In short, RI choices are based on compressed,
noisy representation of their environment and

generate hump-shaped adjustment in dynamic settings

What about lumpy, infrequent adjustment?



RI: Dynamic Setup - Version 2

• Given discrete adjustment evidence, let us break the analysis
of adjustment dynamics into two separate questions:

◦ what determines when adjustments occur?

◦ what determines what action is taken when
adjustments occur?

• To generate sticky choices over time, let us also suppose that
DM cannot condition on past signals, actions, time for free

◦ instead faces equal cost when absorbing info regardless
of source or type



Khaw et al. (2017) Model

• Choose

(1) sequence of functions Λt(x t) specifying proba of
adjustment in period t for each possible history

(2) sequence of functions µt(x t), specifying proba measure
over possible new choices for each possible prior history,
conditional on adjustment

• to maximize

E

{
T

∑
t=1

[r(xt ; at) − ψ1I1 − ψ2ΛtI2]
}

• given costs ψ1,ψ2 > 0 of reducing uncertainty for the two
decisions



Optimal adjustment hazard

log
Λt

1−Λt
= log

Λ̄
1− Λ̄

+
∆t

ψ1

where the “RI value gap” ∆t ≡
∫
Vt(a)dµt(a)− Vt(at−1)

Vt(a) is the continuation value function

Λ̄ is the expected frequency of adjustment over future states

Λ̄ =
1

T
E

{
T

∑
t=1

Λt(x
t)

}



Adjustment Hazard for RI Value Gap (ψ1 = 3.34)
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Optimal Adjustment Decision

µt(a) =
µ̄(a) exp{Vt(a)/ψ2}∫
d µ̄(ã) exp{Vt(ã)/ψ2}

Vt(p) is the continuation value function

µ̄(a) is expected frequency of different actions, given the hazard
function

µ̄(a) =
E
{

∑T
t=1 Λt(x t)µt(x t)

}
E
{

∑T
t=1 Λt(x t)

}



Predicted Choices (ψ2 = 1.44)
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Related Models of Stochastic Choice

• RI vs. soft max / control cost model for slider position choice

µt(p) =
µ̄(p) exp{Vt(p)/ψ2}∫
d µ̄(p̃) exp{Vt(p̃)/ψ2}

vs. µt(p) =
exp{Vt(p)/κ}∫
exp{Vt(p̃)/κ}

→ RI = soft max/control cost with a prior optimized to the
context, rather than uniform



Related Models of Stochastic Choice

• Estimate best fitting reference distribution µ̃ and proba λ̃

µt(p) =
µ̃(p) exp{Vt(p)/ψ2}∫
d µ̃(p̃) exp{Vt(p̃)/ψ2}

with µ̃(p) = Aµ̄(p)γ

γ = 1⇒ pure RI

γ = 0⇒ pure soft max

λ̃ > λ̄⇒ preference for adjustment relative to pure RI

λ̃ < λ̄⇒ preference to adjust less frequently than pure RI

• Interpret γ ∈ (0, 1), λ̃ ̸= λ̄ as generalized RI model with
intrinsic preference for certain actions

• Estimate
γ = 0.45,ψ1 = 0.64,ψ2 = 1.23, λ̃ = 11.4% > λ̄ = 8.9%



Rationally Inattentive Behavior

• RI belongs to the “early noise” class of models of
Bayes-optimal choices that condition on a noisy internal
representation of the environment

• In RI models the nature of the noise is optimally adapted to a
prior over possible situations

• RI decision-making

◦ justifies discrete, stochastic choices as optimal way to
save on information processing costs

◦ justifies incomplete, delayed adjustment as optimal
outcome when actions are based on imperfect
information
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