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Gamma oscillations in visual cortex: the stimulus
matters
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Letter
A quarter century ago, neuroscientists discovered that a
slowly drifting bar within a receptive field causes field
potentials in visual cortex to oscillate at a frequency be-
tween 30 and 80 Hz (reviewed in [1]). One circuit-level
explanation is that recurrent connections between excit-
atory and inhibitory cell populations produce a resonance;
the resonant frequency depends on the decay time con-
stants in the neural populations [2]. Cognitive hypotheses
about these oscillations posit that they mediate perceptual
binding, attention, or feedforward signaling [1]. The stron-
gest version is that gamma oscillations are necessary for
signal propagation and hence for seeing.

It is this strong view that we and others challenge
[3,4,9]. Using human electrocorticography (ECoG), we ob-
served that some stimuli (gratings and some natural
images) elicit robust gamma oscillations (30–80 Hz) in visu-
al cortex, manifested as a tenfold elevation in power. In the
same subjects and with the same recording apparatus, we
observed that gamma oscillations evoked by other stimuli
(noise patterns and some natural images) were indistin-
guishable from the baseline. All stimuli were plainly visible,
dissociating seeing and the oscillations.

Measuring gamma oscillations
In a recent Spotlight, Brunet and colleagues [5] question
this interpretation and assert that suitable statistical
analysis can detect oscillations above 30 Hz for nearly
any stimulus, including uniform fields. They suggest that
we masked spectral peaks by plotting power spectra
(Figure 2 of [3]) rather than power change from baseline.
For three principal reasons, these criticisms are without
merit. First, Figure 1 of [3] did show power change from
baseline (Figure 1A): gratings elicited sustained narrow-
band gamma increases around 50 Hz, whereas noise
patterns did not. Second, our quantification of the re-
sponse incorporated their metric of power change from
baseline (Figures 3–5 in [3]). Third, we performed addi-
tional analyses and confirmed a spectral peak ten times
above baseline in the 30- to 80-Hz band from gratings, but
no such peak from noise stimuli. We provided these new
analyses, along with the relevant data and code, in a
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Brunet et al. [5] further propose that our noise stimuli
elicited oscillations centered at 130 Hz, which we failed to
detect because our analysis searched for oscillations in the
gamma band (30–80 Hz). For 25 years, gamma oscillations
have been reported as a sharp spectral peak between 30 and
80 Hz (40–80 Hz in [1]). Recently, numerous groups have
reported visual-stimulus-related power changes in higher
frequencies (around 80–200 Hz). Most have interpreted this
signal as spectrally broadband (non-oscillatory), arising
from a distinct physiological mechanism [3,6,7]. Because
our data were hardware filtered between 0.5 and 300 Hz,
and high frequency signals are lost in a noise-floor [6], it is
unwise to directly interpret signal attenuation between
200 and 300 Hz as evidence of bounded 100- to 150-Hz
oscillations (Figure 1D of [5]).

In their article, Brunet and colleagues [5] re-plot power
change for one condition and one electrode in a manner
that visually accentuates a 130-Hz response. This 130-Hz
oscillation is not reproduced across conditions and sub-
jects (Figure 1B) and is unlike classical gamma oscilla-
tions (30–80 Hz), which begin at the onset of neural firing,
remain steady during the response, and are restricted to a
narrow frequency band spanning approximately 10 to
30 Hz [8].

Neither time-frequency analysis nor between-area coher-
ence show sustained synchrony at 130 Hz (Figures 1 and S4
in [3]). Stimulus-driven oscillations above 100 Hz in visual
cortex would be a novel phenomenon requiring careful
description [6,7]. Our analysis suggests this single observa-
tion is likely to arise from the onset transient and instru-
mental properties rather than cortical oscillations.

Stimulus dependence
Our central claim in [3] is that the spatial structure of the
stimulus powerfully influences the amplitude of oscillations
(30–80 Hz), and for some stimuli there are no oscillations
larger than the experimental noise. This stimulus depen-
dence has also been demonstrated using multiple instru-
ments across species [3,7,9]. Brunet et al. [5], argue that
gamma activity is abundant during the awake state, both in
monkey [10] and human ECoG [3], for nearly all stimuli. No
one can rule out the possibility that gamma oscillations are
present below instrumental sensitivity for many stimulus
classes. However, in both data sets, narrow-band gamma
amplitudes evoked by various stimuli differ by more than an
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(A) Human V1/V2 ECoG recording
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Figure 1. Stimulus effects on gamma oscillations. (A) Power changes from baseline from ECoG recordings in human V1/V2, plotted as a function of time and frequency.

Grating stimuli elicit large, sustained gamma oscillations around 50 Hz. In higher frequencies (above 80 Hz), a transient response is present. Noise stimuli elicit a different

pattern of responses. Narrowband gamma oscillations from 30 to 80 Hz are not evident. In higher frequencies (above 80 Hz), both a large transient and a smaller sustained

response are present. Adapted from Figure 1 of [3] and reproduced with permission from Oxford University Press. (B) Plots of spectral power change from baseline for

several stimuli. The Brunet et al. article [5] argues that the power changes from baseline show a convincing spectral peak around 130 Hz for noise patterns. This area is

highlighted in yellow. Data at 60 Hz, 120 Hz, and 180 Hz are masked due to contamination from electrical line noise. Adapted from Figure 2 of [3] and reproduced with

permission from Oxford University Press.
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order of magnitude. Theories claiming that gamma oscilla-
tions reflect cognitive and perceptual processes irrespective
of the stimulus omit the largest factor affecting this signal:
the image itself.

Brunet et al. [5] argue that rhythms not visible in the
power spectrum may be evident in spike-field coupling or
between-site coherence spectra. We cannot address all
results cited in [5]. However, we tested for between-site
coherence and found strong gamma coherence for grating
stimuli but not noise patterns (Figure S4 in [3]), further
supporting the claim that the presence of narrow-band
gamma oscillations is stimulus-dependent. We made
much of our data and code available [3]. We encourage
others to do the same so that competing computational
theories can be rigorously tested and improved through
cooperative work.
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