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Glossary
ECoG Electrocorticography (electrical recordings from

intracranial electrodes).

Extrastriate cortex Visual cortex outside of V1, including

V2, V3, and so forth.

fMRI Functional magnetic resonance imaging.

Stimulus-referred Experimental designs that characterize

the neural response with respect to the stimulus properties.

Striate cortex V1

Visual field map (retinotopic map) Spatial representation

of the visual field within visual cortex.

Visual receptive field The region of space in which the

presence of a stimulus elicits a response.
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Introduction

Many fields of investigation, spanning medicine, science, and

humanities, have an interest in the spatially localized measure-

ments of human brain activity provided by functional mag-

netic resonance imaging (fMRI). These fields use a diverse array

of experimental, statistical and computational methods to ana-

lyze and interpret fMRI responses, and this diversity reflects the

questions of interest to each field.

The approach in vision science differs substantially from

that taken in most other fields. Most disciplines use neuroim-

aging designs based on between-group or between-condition

comparisons; the primary aim of these experiments is to find

statistically significant group differences that localize function

by combining weak signals. But the fMRI signals in visual

cortex are relatively strong, so that experiments can be per-

formed in individual subjects using a wide range of stimuli.

Further, the spatial organization and high degree of connectiv-

ity across visual cortex is clear, so that localization is not a

driving factor. Instead, the principal goals of neuroimaging in

vision science are (a) to develop computational models that

predict fMRI responses for a wide range of stimuli, and (b) to

integrate neuroimaging measurements with data from other

techniques (psychophysics, intracranial recordings, single-

unit physiology, and so forth). To support these goals, neuro-

imaging designs for vision science use parametric variations of

the stimulus and computational models that compute the

mapping from stimuli to fMRI time series. In vision science,

computational modeling is central and statistical analyses are

secondary.

We illustrate and explain the approach in the following

sections. First, we introduce visual field maps (also called

retinotopic maps). This background section provides the

reader with a sense of the cortical locations where we measure

fMRI responses and the quality of the fMRI time series in visual

cortex. Second, we describe the importance of stimulus-

referred measurement in vision science. This approach is criti-

cal for integrating different types of measurements. Third, we

describe the current generation of computational models of

the fMRI time series. These models extend conventional visual

field mapping and analyze the time series more fully. Finally,
we illustrate how these models and stimulus-referred methods

have clarified the relationship between fMRI and intracranial

data obtained from human visual cortex.
Visual Field Maps

In the mid-1800s, biologists began examining the responses in

animal brains to localize various stimulus-driven responses.

Visual cortex was localized rather early, though not without

some serious disputes (Phillips, Zeki, & Barlow, 1984; Munk,

1881; Zeki, 1993). The biologists were joined in the late

nineteenth and early twentieth centuries by neurologists and

ophthalmologists (Inouye, 1909; Henschen, 1893; Holmes,

1918; Holmes & Lister, 1916). The clinicians treated soldiers

who had occipital head wounds that caused blindness in

restricted regions of the visual field. By mapping correspon-

dences between the wound location and the visual field loss,

Inouye, Holmes and others showed that the position of the

wound corresponded to the location of the visual field loss.

They correctly concluded that there is at least one topographic

map of the contralateral visual hemifield in each hemisphere.

In the 1940s, electrophysiology in animal brains revealed

that there are multiple sensory maps. It is challenging to mea-

sure visual field maps using single-unit electrophysiology. The

experiment requires a series of electrode penetrations through

the folded cortical sheet, followed by a histological reconstruc-

tion so that the electrode positions might be integrated with

the responses. Hubel and Wiesel characterized the work as ‘a

dismaying exercise in tedium, like trying to cut the back lawn

with a pair of nail scissors (Hubel & Wiesel, 1977; p. 28).’ Even

so, good progress was made, and by the early 1990s electro-

physiologists and anatomists identified dozens of maps in

various species (Felleman & Essen, 1991; Zeki, 1993).

The first human fMRI experiments measured cortical

responses to visual stimuli that covered a large part of the

visual field (Ogawa et al., 1992; Kwong et al., 1992). These

stimuli elicited responses in a broad swath of occipital cortex.

Shortly thereafter, fMRI measurements clarified the relation-

ship between stimulus visual field position and cortical

responses (DeYoe, Bandettini, Neitz, Miller, & Winans, 1994;
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Engel, Glover, & Wandell, 1997; Engel et al., 1994; Sereno

et al., 1995). In one widely adopted method, the experimenter

presents a contrast pattern within a series of concentric rings of,

say, increasing inner and outer diameters (Warnking et al.,

2002). Such an expanding ring stimulus generates a traveling

wave of activity that begins at the occipital pole when the ring

diameter is small and travels to the peripheral representation as

the ring diameter increases; these responses define the eccen-

tricity dimension. In a separate experiment, the experimenter

presents a contrast pattern within a wedge that rotates around

fixation. This stimulus elicits responses that are specific to

certain angles and these responses define the angle dimension.

Together, the ring and wedge measurements determine the

most effective visual field position for each voxel.

The images in Figure 1 show fMRI eccentricity and angle

maps in the most posterior portion of occipital cortex. The

color overlay specifies angle on the left mesh and eccentricity

on the right mesh. There is a single, integrated eccentricity map

near the occipital pole. A great deal of the cortical surface area

at the pole represents the fovea, and there is a systematic shift

toward more peripheral representations in the posterior-to-

anterior direction. The integrated eccentricity representation

includes V1, V2, V3, and hV4, although the hV4 part of the

map is a bit compressed. Based on the eccentricity data alone,

one would have no basis for segregating the activated cortex

into different regions.
Figure 1 Visual field maps in occipital cortex. The small inset at the upper
matter and white matter in a right hemisphere, and the dotted rectangle is sh
gray shading indicates sulci and gyri, respectively. The two main images sho
underlying anatomy is the same for the two meshes, differing only in the colo
the most effective eccentricity (right). Colors are shown only for voxels wher
below. The solid black lines and labels indicate the positions of ten visual fiel
view spanning most of the occipital lobe. Additional maps have been identifie
surface (Arcaro, McMains, Singer, & Kastner, 2009; Dechent & Frahm, 2003
Pitzalis, & Martinez, 2001). The uncolored region on the ventral surface is clo
(Winawer, Horiguchi, Sayres, Amano, & Wandell, 2010).
The segregation into multiple maps becomes clear from

examining the angle representations. The V1 map has a con-

tinuous angle representation of the contralateral visual field,

spanning the lower vertical meridian (green in the pseudocolor

map) to the upper vertical meridian (red). The angle represen-

tation reverses at the vertical meridians, and this marks

the boundary with V2. The V1 map is surrounded by a dorsal

and ventral section of V2, which represent the lower

(green–cyan) and upper (red–blue) visual field. The V2 map

is, in turn, surrounded by dorsal and ventral sections of V3.

This nested organization for V1–V3 is typical of nonhuman

primates. But the confirmation that this organization is present

in human was only made in the early 1990s by a combination

of neurology and fMRI (DeYoe et al., 1996; Engel et al., 1997;

Horton & Hoyt, 1991a, 1991b; Sereno et al., 1995).

Visual stimuli elicit activity in about 20% of the human

brain, covering the entire occipital lobe and extending into

portions of temporal and parietal cortex (Wandell, Dumoulin,

& Brewer, 2009). It is likely that occipital cortex is completely

covered by maps, though some regions have proven difficult to

measure (Winawer, Horiguchi, Sayres, Amano, & Wandell,

2010). Identifying the organization within human visual cor-

tex is essential for interpreting fMRI data from visual cortex and

for building meaningful computational theories of vision. This

project has had excellent progress. Measurements like those in

Figure 1 show that the general spatial layout of early human
right is a smoothed rendering of the surface boundary between gray
own in the magnified and further smoothed images. The dark and light
w visual cortex rendered from a point behind the occipital pole. The
r overlays. The color overlays show the most effective angle (left) or
e the data are well fit by a population receptive field model, as explained
d maps. The view and data were selected to provide a large field of
d, including some on the intraparietal sulcus (IPS) and anterior ventral
; Kolster, Peeters, & Orban, 2010; Konen & Kastner, 2008; Sereno,
se to a large sinus that limits the ability to measure the BOLD signal
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visual maps – V1, V2, and V3 – is similar to nonhuman

primate. However, research has revealed substantial differences

in the size, spatial layout, and responsiveness between human

and nonhuman primate extrastriate maps (e.g., V3, hV4, V3A/

B, and VO-1). These findings have been reviewed recently, and

we refer the reader to these reviews to learn more about this

work (Silver & Kastner, 2009; Wandell, Dumoulin, & Brewer,

2007; Wandell & Winawer, 2011).
Stimulus-Referred Measurements

It is worthwhile to step back and consider what exactly is mea-

suredwhen a visual fieldmap is defined: themap specifies which

stimulus position most effectively drives the response at each

cortical location. Thus, the map characterizes cortex in terms of

the stimulus. Such stimulus-referred (also called input-referred)

descriptions of neural responses play a key role in vision science.

The great majority of visual neuroscience measurements use a

stimulus-referred approach to characterize neural responses.

Receptive field (RF) measurement is a classic and particu-

larly clear example (Hartline, 1938). Suppose one measures

the response of a V1 neuron to a small spot presented at

different locations in the visual field. The cell will respond

when the spot is within a small region of the visual field, and

this region is called the RF. Note that the RF is a description of

the stimulus properties (locations) that evoke a response.

There is no description of the proximal inputs to the cell –

lateral geniculate neurons, other V1 neurons, feedback signals

from extrastriate cortex, and inputs received from the pulvinar.

Stimulus-referred descriptions are a theoretical construct; a V1

neuron lives and dies in the dark, never being directly stimu-

lated by photons. In describing the RF of a cell, the optical

components of the eye and the extensive neural and glial

network that give rise to the RF are not explicitly characterized.

Stimulus-referred descriptions can be applied to many

properties in addition to visual field position, such as orienta-

tion, direction, and wavelength (Wandell, 1995). Stimulus-

referred measurements summarize neural circuit responses

without requiring the construction of a circuit model. This

capability is important because such circuit models are pres-

ently beyond the reach of neuroscience methods.

Perhaps the most valuable aspect of stimulus-referred mea-

surement is that it supports the coordination of insights from

many parts of vision science – including optics, retinal proces-

sing, cortical circuitry, local field potentials, scalp recordings,

and perception. Integration across these measures is challeng-

ing because each samples the nervous system in its own way

and produces outputs with different units. For example, micro-

electrodes measure voltages or spike rates, calcium imaging

measures photons, fMRI measures modulation in blood oxy-

genation, and perception measures subject reports. The stimu-

lus is a unifying framework for vision science; the stimulus

representation serves as a common ground where results

from very different measures are compared.

The use of stimulus-referred measurements is very common

in vision science, just as input-referred measurements are very

common in engineering (Wandell, 1995). They are so ubiquitous

that the beauty and value of the approach is rarely taught. One

objective of this article is to make the idea and its value explicit.
Population RF Models

The success in the parcellation of visual cortex into maps pro-

vides a foundation for a new phase of investigation: building

computational models of fMRI responses to visual stimuli. The

goal of this work is to precisely express and test neural proces-

sing principles. Stimulus-referred computational models offer

the best hope for coordinating different types of visual mea-

sures into a unified theory. This new phase of modeling could

not take place without the first phase. Response properties

differ across maps; interpreting a set of measurements is diffi-

cult unless one knows which map is the source of the

measurements.

In an early step toward theory, Tootell et al. (1997) observed

that reducing thewidth of a contrast pattern, such as an expand-

ing ring contrast pattern, substantially reduced the duration of

the V1 on-response but had little effect on the V3A on-response.

They explained the difference by the hypothesis that V3A recep-

tive fields cover more of the visual field than V1 receptive fields.

Qualitatively, the on-response in V1 was governed by the stim-

ulus width but in V3A the on-response was governed by the RF

width. Smith, Singh, Williams, and Greenlee (2001) systemat-

ically investigated this idea, quantifying the proportion of the

time that the fMRI response is elevated compared to baseline

(the duty cycle) as thin rings orwedges traversed the visual field.

The duty cycle differed substantially between cortical locations,

and they explained these differences in terms of the size of the

RF of neurons in each cortical location.

Construction of a Linear Population RF Model

Dumoulin and Wandell (2008) built upon the prior work in

several ways. First, they defined an explicit computational

model to predict the fMRI response at each voxel. The key

element of the model was the concept of the population RF

(pRF), named by Victor, Purpura, Katz, and Mao (1994) who

used the approach in local field potential measurements in

macaque. The pRF summarizes the collective RFs of all the

cells giving rise to the response within a voxel.

The initial models approximated the pRF by a two-

dimensional Gaussian, characterized by a center position,

(x,y), and spread (s). These parameters are specified in the

visual field relative to the gaze location (fixation). By using a

stimulus-referred description, Smith et al. (2001) and

Dumoulin and Wandell (2008) were able to compare fMRI

measurements with data obtained using other brain measure-

ment methods. For example, the pRF spread measured using

fMRI could be plotted against the single-unit RF size measured

using macaque electrophysiology.

Second, Dumoulin and Wandell implemented a compu-

tational model of the fMRI time series. A model of the fMRI

time series is possible in visual cortex because the response

amplitude in individual subjects is large and there is no

need to average across subjects. Implementing a full model

provides the investigator with an opportunity to predict

fMRI time series to different types of stimuli. Dumoulin and

Wandell took advantage of the model implementation to

measure maps using a new type of stimulus. The model also

made possible the quantification of a new stimulus feature

(pRF size) within maps.
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Figure 2 A tool to analyze the population receptive field (pRF). The fMRI time series were measured with a 7 Tesla scanner at a resolution of 1 mm3

voxels. The stimulus was a contrast pattern within a slowly translating bar aperture. The aperture swept through the visual field at different angles;
occasionally the contrast pattern was turned off. The three plots show the fMRI signal measured at voxels located in three different locations
(white circles in V1, V2, and V3A; upper right image). The dashed black lines are measurements and the solid blue lines are pRF model fits. The estimated
pRF for each voxel is shown in the image panels. The three time series responses to the same pattern differ in timing and width. This time series
difference is modeled by the center position and size of the pRF. The tool is part of the open source vistasoft package (http://github.com/vistalab). Data
obtained in collaboration with E. Yacoub and K. Ugurbil.
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Figure 2 shows a pRF analysis tool, implemented by Rory

Sayres, that several groups have used to examine and interpret

fMRI time series. The three panels show responses and analyses

for voxels in V1, V2, and V3A. The stimulus was a set of

oriented bars that moved slowly across the visual field along

eight different trajectories. Occasionally, the bars were

removed so that the observer simply viewed a zero contrast

field (Dumoulin &Wandell, 2008). The estimated pRF and the

predicted and measured time series responses are shown for

each voxel. Plainly, the predicted time series are in good agree-

ment with the measurements. The estimated pRF sizes differ

substantially across maps, confirming the prior work.
What Does a pRF Measure?

Human cortex contains 50000 neurons per mm3 so that a

typical 2 mm isotropic voxel contains about 400000 neurons

(Braitenberg & Schüz, 1998); the 1 mm isotropic voxels
depicted in Figure 2 contain about 50000 neurons each. A

subset of these neurons, as well as the local glial cells, respond

to any given stimulus, and it is this population response that

determines the voxel’s RF. Furthermore, pRF parameters will

depend on the specific population of neurons stimulated by

the pattern that defines the texture within the moving bar.

Features such as the temporal frequency, wavelength composi-

tion, and so on may excite different populations and influence

the pRF parameters.

The RF measured using single-unit physiology has a related

theoretical status. Each neuron in V1 is contacted by about

10000 other neurons, and cells in their neighborhood in

turn contact these neurons. When a small point is presented

in the visual field, voltage sensitive dye measurements show

that activity in the superficial layers of cortex spreads over a

distance of several millimeters, commensurate with the size

of an fMRI voxel (Grinvald, Lieke, Frostig, & Hildesheim,

1994). Hence, the RF measured in a single V1 cell in layers 2/

http://github.com/vistalab
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3 reflects the pooled activity of its inputs and its role in the

neural circuit.

The principal difference between the single-unit RF and the

pRF is that RF measurements tap into circuit activity at a single

point within the neural plexus, while the pRF is a mean-field

measurement of the circuit activity. The key limitation of

mean-field fMRI measurements is obvious – spatial resolution.

However, an advantage is that fMRI measurements provide a

much larger field of view and can reveal coordinated activity in

remote sites. The fMRI measurement is also sensitive to signals

that are missed by single unit RF measurements. In some cases

where BOLD and single unit measurements diverge, the BOLD

signal correlates best with perceptual judgments (Maier et al.,

2008). The BOLD signal is also sensitive to glial responses

(Schulz et al., 2012), a cell class often neglected in electrophys-

iological measurements in animals. Finally, fMRI provides

direct information about human, while single-unit physiology

is carried out in animal models whose circuits may differ.

The pRF framework has been applied usefully in a number

of studies. For example, the framework has been used to clarify

certain visual field maps (Amano, Wandell, & Dumoulin,

2009; Arcaro et al., 2009; Winawer et al., 2010) and to com-

pare pRF sizes between controls and subjects with neurological

conditions (Hoffmann et al., 2012; Levin, Dumoulin, Winawer,

Dougherty, & Wandell, 2010). The method has been applied

tomeasure plasticity (Brewer, Barton, & Lin, 2012) and the effect

of task-demands (de Haas, Schwarzkopf, Anderson, & Rees,

2013). It has been used in fMRI studies of visual cortex in animal

models (Shao et al., 2013; Smirnakis, Keliris, Shao, Papaniko-

laou, & Logothetis, 2012) and to elucidate the relationship with
Figure 3 Spatial summation of contrast fails to predict the fMRI signal in h
to a lower field stimulus, an upper field stimulus, and the combination of the
response to the full aperture is less than the sum of the responses to the two
the black lines). The failure of linearity is more severe for V3 than for V1. The
(dark line V1; light line V3). Reproduced from Kay, K., Winawer, J., Mezer, A.,
cortex. Journal of Neurophysiology, 110, 481–494.
anatomy (Benson, Butt, Jain, Brainard, & Aguirre, 2013). Finally,

the pRF framework has been used as a means for decoding the

contents of visual cortical activity (Kay, Naselaris, Prenger, &

Gallant, 2008; Nishimoto, Vu, Naselaris, Benjamini, Yu, &

Gallant, 2011).
Improving the Linear pRF Model

It is a truism that all models are wrong, but some are useful

(Box & Draper, 1987). The first pRF models are useful, but

they are inaccurate in several ways. Our group and others

continue to work to identify and reduce the model deficiencies

(Alvarez, De Haas, Clark, Rees, & Schwarzkopf, 2013; Binda,

Thomas, Boynton, & Fine, 2013; Zuiderbaan, Harvey, &

Dumoulin, 2012).

The failures become apparent when we use the pRF model

to predict the fMRI time series response to a larger range of

visual stimuli. Returning to the original measurements by

Tootell et al. (1997), Winawer set out to use the pRF model

to predict responses to both thin and thick bars. It became

apparent that the Dumoulin and Wandell pRF model could

not account for even such a modest increase in the range of

stimuli.

Kay, Winawer, Mezer, and Wandell (2013a) show that the

failure arises from a basic assumption: linear summation of

contrast across the spatial RF. The failure of spatial linearity can

be measured in a simple experiment (Figure 3). Consider a

voxel that responds to contrast near the horizontal midline. We

can present a stimulus that fills either the upper half of the pRF

or the lower half. If spatial linearity holds, the response to a
uman visual cortex. The upper bar plots show the measured responses
two. For the voxel in V1 (upper left) and V3 (upper right), the
partial apertures, and hence less than the linear prediction (indicated by
lower images show the 2-s circle for the pRF for the two voxels

& Wandell, B. A. (2013). Compressive spatial summation in human visual
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stimulus that fills both the upper and lower portions of the pRF

should equal the sum of the responses to upper and lower

separately. This spatial summation prediction is somewhat

inaccurate in the posterior maps, V1 and V2, and it misses

substantially in anterior extrastriate maps (Kay et al., 2013a).

Kay et al. showed that incorporating a static nonlinearity into

the standard pRF model remedies the failure of spatial linear-

ity. Furthermore, Kay et al. showed that the specific form of the

nonlinearity fit to the BOLD signal is compatible with existing

models of single neuron spike rates, such as divisive normali-

zation (Carandini & Heeger, 2012).

Connecting these two very different kinds of measure-

ments, fMRI and single unit spiking, is possible because

stimulus-referred models are fit in both domains. It is tempting

to think of divisive normalization as a circuit model rather

than a stimulus-referred model because there has been sub-

stantial work trying to explain normalization in terms of circuit

properties such as shunting inhibition, resistance, and capaci-

tance (Ferster, 2010). But in fact divisive normalization model

parameters are specified in the stimulus domain, including

contrast and orientation, and the circuits giving rise to normal-

ization are largely unknown (Carandini & Heeger, 2012). Nor-

malization, like linear filtering, is an application of the

stimulus-referred approach.

In a separate study, Kay, Winawer, Rokem, Mezer, &

Wandell (2013b) further extended the modeling effort by

developing a new pRF model that accounts for measurements

of responses to an even wider range of stimuli. The new model

is also distributed as a full computation (http://kendrickkay.

net/socmodel/). This model is much more complex than the

Dumoulin and Wandell formulation, allowing it to predict the

responses to a much wider range of stimuli.
Integration of fMRI and ECoG Data

There has been remarkable progress in inventing new ways to

measure neural signals. Modern methods range from well-

isolated single units to local field potentials, calcium imaging,

voltage sensitive dyes, and intrinsic functional measures such

as fMRI. These methods provide different types of information

about neural circuitry, and there is much to be gained by

understanding how to combine insights from different

methods (Goense & Logothetis, 2008; Mukamel et al., 2005;

Niessing et al., 2005).

The stimulus-referred measurement approach integrates the

diverse measures made by visual neuroscientists. In a recent

study we measured pRFs using both ECoG and fMRI, and we

asked whether the two data sets might be explained by the

same pRF model (Winawer et al., 2013). The ECoG data are a

voltage time series captured at millisecond resolution, while

the fMRI signal is a modulation in the local oxygenation sam-

pled every second or two. By using stimulus-referred measure-

ments, we can compare the measurements in a common

reference frame, bypassing the problem of incommensurate

units.

There were several straightforward findings (Figure 4). First,

the ECoG signal contains responses from at least two neural

sources, broadband and stimulus-locked, and we created accu-

rate pRF models of each response component. Second, the RF
position and size derived from the ECoG and the fMRI

responses agreed. Third, the spatial summation properties of

broadband, but not stimulus-locked, ECoG signals match the

spatial summation measured in the fMRI signal. From this

stimulus-referred analysis we concluded that the fMRI signal

arises principally from the broadband ECoG component.
Discussion

As computational models of vision increase in accuracy and

power (i.e., account for a larger range of stimuli), they become

more complex. The original Tootell et al. and Smith et al.

papers could reason correctly and informally about RF sizes.

But they accounted for very few stimuli and relied on summary

measures of the response time series. Modern computational

models that account for a much larger range of stimuli and

predict the full time series are significantly more complex

(Figure 5). These models are not captured in a small set of

formulae, and it is necessary to use software implementations

to generate predictions.

Computational modeling is a cumulative process that

expands the domain of application by accounting for an

increasing range of experimental conditions. This differs from

experimental work focused on hypothesis testing. Computa-

tional models are built by testing new features while always

checking for the impact of the new features on previous pre-

dictions; new data are not viewed as a hypothesis test that

results in accepting or rejecting the model by a statistical test.

Rather, computational model development is a process that

yields increasingly refined predictions from a sustained effort;

we believe this is one of its great benefits.

Finally, we note that even if a computational model is

imperfect, it can still be useful. For example, it is reasonable

to use linear pRF models to estimate RF center positions when

using a single bar width, even though the model does not

generalize to multiple bar widths. The use of a model that is

adequate for a given objective is common in other branches of

science and engineering. After all, we do not calculate local

travel time using relativity and the Earth’s curvature.
Which Brain Measurements Are Best?

We have emphasized the value of stimulus-referred models for

integrating data from different types of measurements. We are

aware that an alternative scientific approach is to deny the

validity of all but one measure:

Any analysis of plastic reorganization at a neuronal locus needs a

veridical measure of changes in the functional output – that is,

spiking responses of the neurons in question.

Calford, M. B., et al. (2005). Neuroscience: rewiring the adult

brain. Nature, 438(7065): E3; discussion E3-4.

We think it is best to be open to the value of many mea-

surement methods. In fact, we don’t think there is a strong

alternative to this approach because it is illusory to think that

even within a measurement domain the signals form a single,

unitary class. For example, in the retina, the same stimulus

produces different responses in different cell types, such as

http://kendrickkay.net/socmodel/
http://kendrickkay.net/socmodel/


Figure 5 A modern computational model of fMRI signals in visual cortex. The model developed by Kay et al. integrates an array of widely used
visual neuroscience computations (energy, divisive normalization, spatial summation, second-order contrast, and compressive nonlinearity). These
operations are organized into two stages of sequential linear, nonlinear, nonlinear (LNN) operations. To develop models of this complexity – which are
surely much simpler than what will ultimately be required – requires software implementations and the ability to test different forms of the model
on multiple classes of stimuli. Reproduced from Kay, K. N., Winawer, J., Rokem, A., Mezer, A., & Wandell, B.A. (2013). A two-stage cascade model of
BOLD responses in human visual cortex. PLoS Computational Biology, 9(5), e1003079.

Figure 4 Stimulus-referred models integrate different measurement modalities. (a) A stimulus-referred pRF model (Kay, Winawer, Mezer, & Wandell,
2013) was applied to V1, V2, and V3 responses from retinotopic stimuli. Measurements were obtained using both ECoG and fMRI, and we further
separated the ECoG signal into two components – an asynchronous broadband signal that measured a stimulus-driven increase in response variance,
and a stimulus-locked response that modulated in synchrony with each contrast reversal. The CSS model fit the measured time series of all three
signals. (b) The estimated pRF centers to the two types of ECoG are similar (filled and open symbols; lines connect estimates from a single electrode).
These pRF centers also match the fMRI estimates (not shown). (c) The estimated spatial summation exponent, n, from the pRF model is highly
compressive (n<1) for fMRI and for ECoG broadband responses. The exponent is close to linear (n�1) for the stimulus-locked response. Hence, fMRI
spatial summation matches broadband ECoG, but not stimulus-locked ECoG. Reproduced from Winawer J., et al. (2013). Asynchronous broadband
signals are the principal source of the BOLD response in human visual cortex. Current Biology, 23, 1145–1153. See also Harvey et al. (2013) for a
stimulus-referred approach to understanding the relationship between ECoG and fMRI pRF measurements.
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Neural measures

Perceptual measures
Sensitivity, discrimination, response time,

similarity, appearance

Single unit action potentials,
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BOLD, Optical imaging
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Calcium imaging
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Figure 6 An integrative view of modeling visual brain function. Computational models of visual neuroscience must take a broad view that spans
the stimulus, brain systems, and perceptual measures. Because visual responses arise from a well-characterized physical stimulus, we can use
stimulus-referred theories to integrate information from many measurement modalities and better understand many aspects of brain circuits.
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retinal ganglion cells of the parasol and midget classes. The

voltage response in the ECoG signal arises from multiple

sources with distinct properties. In cortex some spikes are

relevant for only local calculations, while others are commu-

nicated by long-range projections to other cortical regions.

Thus, it is incorrect to expect that the fMRI response or a

perceptual judgment will match ‘spiking responses’ when

there are so many different types of neurons and so many

different types of spikes.

Further, the modern neuroscientist should consider the

likelihood that cortical function depends importantly on sev-

eral types of cells. There are many reasons to believe that

responses in other brain cells, such as the many types of glia

present in the human brain, are important for brain function

(Bullock et al., 2005). If the fMRI signal informs us about these

responses as well as neuronal responses, should we complain?

Or should we be grateful to have this additional information?

We advocate for an integrative view of the visual system

(Figure 6). We suggest that a goal of visual neuroscience would

be to develop models that begin with a careful description of

the stimulus, integrate experimental observations derived from

multiple measures of brain activity and circuitry, model these

multiple types of responses, and characterize the relationship

between certain brain responses and perception.

See also: INTRODUCTION TO ACQUISITION METHODS: fMRI at
High Magnetic Field: Spatial Resolution Limits and Applications;
INTRODUCTION TO ANATOMY AND PHYSIOLOGY: Functional
Organization of the Primary Visual Cortex; Topographic Layout of
Monkey Extrastriate Visual Cortex; INTRODUCTION TO SOCIAL
COGNITIVE NEUROSCIENCE: Action Perception and the Decoding
of Complex Behavior; INTRODUCTION TO SYSTEMS: Face
Perception; Visuomotor Integration.
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