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Abstract

Visual neuroscientists have discovered fundamental properties of neural representation through careful analysis of
responses to controlled stimuli. Typically, different properties are studied and modeled separately. To integrate our
knowledge, it is necessary to build general models that begin with an input image and predict responses to a wide range of
stimuli. In this study, we develop a model that accepts an arbitrary band-pass grayscale image as input and predicts blood
oxygenation level dependent (BOLD) responses in early visual cortex as output. The model has a cascade architecture,
consisting of two stages of linear and nonlinear operations. The first stage involves well-established computations—local
oriented filters and divisive normalization—whereas the second stage involves novel computations—compressive spatial
summation (a form of normalization) and a variance-like nonlinearity that generates selectivity for second-order contrast.
The parameters of the model, which are estimated from BOLD data, vary systematically across visual field maps: compared
to primary visual cortex, extrastriate maps generally have larger receptive field size, stronger levels of normalization, and
increased selectivity for second-order contrast. Our results provide insight into how stimuli are encoded and transformed in
successive stages of visual processing.
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Introduction

Studies of visual cortex typically measure responses to a narrow
set of stimuli designed to investigate a particular phenomenon. For
example, a study might use sinusoidal gratings varying in contrast
to study contrast response functions [1,2], another study might use
silhouettes to study shape tuning [3,4], and yet another study
might use arrays of line segments to study texture representation
[5,6]. This approach provides valuable insights, but different
effects are studied in isolation and different models (e.g., linear
filtering, static nonlinearities, divisive normalization, MAX) are
proposed for different effects. To advance our understanding, we
seek to develop an integrated model that explains responses to a
wide range of stimuli (Figure 1).

In this study, we measure functional magnetic resonance
imaging (fMRI) responses in early visual cortex to a wide range
of band-pass grayscale images, and we develop a model that starts
with images and predicts these responses. The model has a cascade
architecture and comprises four main components. The first
component is a set of V1-like Gabor filters that are applied to the
image. These filters are adapted from our previous work on
modeling fMRI responses [7]. The second component is a divisive
normalization operation that is applied to filter outputs. Divisive
normalization is a well-established computation that accounts for
several nonlinear response properties of V1 neurons [8–10]. The
third component is a compressive static nonlinearity that is applied
after summation of contrast-energy across the visual field. We
recently found that this nonlinearity is important for accurately
predicting responses to stimuli varying in position and size [11].

The fourth component is a variance-like nonlinearity that is used
in the summation of contrast-energy. This nonlinearity generates
selectivity for second-order contrast and shares some similarities
with filter-rectify-filter models that have been proposed for texture
perception [12,13].

We provide software code that implements the complete model
along with example datasets at http://kendrickkay.net/socmodel/.
This is useful for the goal of reproducible research [14] and provides
the opportunity for others to improve upon our work. We welcome
efforts to consider potential alternative models—including models
developed in psychophysics, computer vision, and the theoretical
literature, as well as models that posit specific circuit-level
mechanisms—and to determine whether these models better account
for the experimental measurements we have made. We hope the
open exchange of data and code will spur further modeling efforts.

This paper is structured as follows: We start by motivating each
component of our model through targeted examples of stimuli and
responses. We then use cross-validation to show that the full model
does not overfit the data but in fact improves prediction accuracy.
Finally, we examine the parameters of the model and inspect the effect
of the parameters on the behavior of the model. This examination
reveals that compared to primary visual cortex, extrastriate maps
generally have larger receptive field size, stronger levels of normaliza-
tion, and increased selectivity for second-order contrast.

Results

We measured blood oxygenation level dependent (BOLD)
responses in visual field maps V1, V2, V3, and hV4 while subjects
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viewed a large number of stimuli. In the main experiment, a total
of 156 distinct stimuli were presented in random order 3–6 times
each. The BOLD response amplitude of each voxel to each
stimulus was estimated from the time-series data using a GLM (see
Methods).

Model motivation
The model we developed for predicting the BOLD response

consists of a sequence of operations (Figure 2A). The BOLD
response is predicted by applying V1-like Gabor filters to the
luminance image (V1 energy), normalizing the filter outputs by local
population activity (Divisive normalization), summing contrast-energy
across a specific region of the visual field (Spatial summation) using a
variance-like nonlinearity (Second-order contrast), and applying a
compressive static nonlinearity (Compressive nonlinearity). The key
novel component of the model is the computation of second-order

contrast (Figure 2B), hence the name of the model. The model has
eight free parameters (Figure 2A, bracketed variables) and is fit to
the response amplitudes of each voxel.

To motivate and explain the second-order contrast (SOC) model,
we start with simpler versions of the model and incrementally build
up to the full model (Figure 2C). At each step of the process, we
assess how well a simple model explains responses to a range of
stimuli and improve performance by adding a new component to
the model. A caveat to this approach is that increasingly complex
models may provide better fits, but these improvements may simply
reflect overfitting to the noise in the data. In a later section, we use
cross-validation to obtain unbiased estimates of model accuracy and
verify that the more complex models are indeed more accurate than
the simpler models.

The simplest model is the complex-cell energy (CC) model,
which involves computing V1 energy and summing across the
visual field. Previous studies indicate that the CC model is a
reasonable starting point: the CC model accounts for substantial
variance in BOLD responses in early visual areas to grayscale
natural images [7] and a closely related model accurately
characterizes BOLD responses to a checkerboard pattern
positioned at different visual field locations [15]. For the purposes
of this project, the summation weights in the CC model were
constrained to be Gaussian across space and equal for different
orientations; this is a reasonable approximation for voxel responses
[7]. We assessed how well the CC model accounts for responses to
a set of stimuli that included oriented gratings and mixtures of
oriented gratings presented at different contrast levels (henceforth
referred to as grating stimuli). Results for an example voxel in V1 are
shown (Figure 3).

Responses increase with contrast and with number of orienta-
tions, consistent with recent fMRI measurements [16,17]. This
pattern of results is qualitatively reproduced by the CC model
(Figure 3, red curve). However, the CC model fails quantitatively:
it does not account for the fact that responses tend to saturate at
low contrasts. To improve performance, we augmented the CC
model with divisive normalization, a computational mechanism
that explains a variety of nonlinear behaviors of V1 neurons
including contrast saturation [8–10]. The divisive normalization
(DN) model fits the data accurately (Figure 3, orange curve).

To test the DN model on a wider range of stimuli, we measured
responses to noise patterns covering different portions of the visual
field (henceforth referred to as spatial stimuli). Results for an
example voxel in V2 are shown (Figure 4). The DN model does a
reasonable job capturing the pattern of responses to the stimuli
(Figure 4, orange curve). However, the model underestimates
responses to stimuli covering a small portion of the receptive field
and overestimates responses to stimuli covering a large portion of
the receptive field. This can be seen most clearly by inspecting
responses to the stimuli labeled ‘Bottom to top’.

We observed this pattern of underestimation and overestimation
of spatial responses in a previous study [11] and resolved the issue
by applying a compressive static nonlinearity after spatial
summation. Intuitively, the compressive nonlinearity boosts
responses to stimuli that only partially overlap the receptive field,
and can be interpreted as providing tolerance for changes in
stimulus position and size [11]. We attempted to improve the
performance of the DN model by incorporating, in an analogous
fashion, a compressive nonlinearity after spatial summation. We
find that the compressive spatial summation (CSS) model better
fits the data (Figure 4, blue curve).

The CSS model accurately fits responses to the spatial stimuli;
and since the CSS model is a more general case of the DN model,
the CSS model accurately fits responses to the grating stimuli.

Figure 1. Building general, predictive models of the visual
system. We seek to develop computational models that characterize
how stimuli are encoded in responses measured in the visual system.
These models consist of specific computations and may have
parameters that are adjusted to fit the data. Importantly, the models
should operate on a wide range of stimuli and predict responses
beyond those to which the models are fit.
doi:10.1371/journal.pcbi.1003079.g001

Author Summary

Much has been learned about how stimuli are represented
in the visual system from measuring responses to carefully
designed stimuli. Typically, different studies focus on
different types of stimuli. Making sense of the large array
of findings requires integrated models that explain
responses to a wide range of stimuli. In this study, we
measure functional magnetic resonance imaging (fMRI)
responses in early visual cortex to a wide range of band-
pass filtered images, and construct a computational model
that takes the stimuli as input and predicts the fMRI
responses as output. The model has a cascade architec-
ture, consisting of two stages of linear and nonlinear
operations. A novel component of the model is a nonlinear
operation that generates selectivity for second-order
contrast, that is, variations in contrast-energy across the
visual field. We find that this nonlinearity is stronger in
extrastriate areas V2 and V3 than in primary visual cortex
V1. Our results provide insight into how stimuli are
encoded and transformed in the visual system.

Two-Stage Cascade Model of Human Visual Cortex
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However, the CSS model fails to fit responses to the two sets of
stimuli simultaneously. For example, if the CSS model is fit to the
spatial stimuli, the predicted responses to the grating stimuli

substantially overestimate the actual responses (Figure 5A, blue
curve). This failure suggests that the CSS model is incomplete and
must be modified to account for the full range of responses.

Figure 2. Second-order contrast (SOC) model. (A) Schematic of model. First, the stimulus is filtered with a set of Gabor filters at different
positions, orientations, and phases; the outputs of quadrature-phase pairs are squared, summed, and square-rooted (V1 energy). Second, filter
outputs are divided by local population activity (Divisive normalization). Third, filter outputs are summed across orientation, producing a map of local
contrast-energy. Contrast-energy is then weighted and summed across space using a 2D Gaussian (Spatial summation). The summation is not linear;
rather, the summation is performed using a variance-like nonlinearity in which average contrast-energy is subtracted before squaring and summing
across space (Second-order contrast). Finally, the output of the summation is subjected to a compressive power-law function (Compressive
nonlinearity), yielding the predicted response. (B) Computation of second-order contrast. Second-order contrast is computed as the variance of the
contrast-energy distribution within the 2D Gaussian. In this example, there is high variation in contrast-energy and thus a high amount of second-
order contrast. (C) Simplified versions of the model. To motivate the SOC model, we consider several simplified versions of the model. Each version
incorporates a model component not present in the previous version.
doi:10.1371/journal.pcbi.1003079.g002

Figure 3. Divisive normalization accounts for contrast saturation. We measured responses to several types of grating stimuli varying in
contrast. Responses of an example voxel are shown (subject 2, area V1, voxel 31150). The complex-cell energy (CC) model consists of V1 energy and
spatial summation, and predicts that responses rise linearly with contrast. However, the actual responses exhibit saturation at low contrasts. To
account for contrast saturation, we incorporated divisive normalization [10] into the model. The divisive normalization (DN) model fits the data
accurately.
doi:10.1371/journal.pcbi.1003079.g003

Two-Stage Cascade Model of Human Visual Cortex
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Under the CSS model, the predicted response co-varies with the
total amount of contrast-energy within a certain region of the
visual field (subject to a compressive nonlinearity). This explains
why the model predicts large responses to the grating stimuli, as
these stimuli contain contrast-energy throughout the spatial extent
of the stimulus. Suppose, however, that BOLD responses are not
driven by contrast-energy per se, but by variations in contrast-
energy. This might explain why the grating stimuli elicit relatively
weak BOLD responses.

To improve the performance of the CSS model, we incorpo-
rated a variance-like nonlinearity into the spatial summation stage
of the model. This nonlinearity suppresses responses to stimuli
with spatially homogeneous distributions of contrast-energy and
enhances responses to stimuli with spatially heterogeneous
contrast-energy distributions. We find that the new model, which
is the full second-order contrast (SOC) model, simultaneously fits
both the spatial stimuli and the grating stimuli (Figure 5A, green
curve).

Figure 4. Compressive nonlinearity accounts for spatial tolerance. We measured responses to noise patterns covering different portions of
the visual field. Responses of an example voxel are shown (subject 2, area V2, voxel 38512). The DN model underestimates responses to stimuli
covering a small portion of the receptive field and overestimates responses to stimuli covering a large portion of the receptive field. To improve
performance, we incorporated a compressive static nonlinearity into the model. The compressive nonlinearity is applied after spatial summation and
provides increased tolerance for changes in the position and size of a stimulus [11]. The compressive spatial summation (CSS) model fits the data
accurately.
doi:10.1371/journal.pcbi.1003079.g004

Figure 5. Second-order contrast accounts for weak responses to grating stimuli. (A) Second-order contrast improves model fits. We fit the
CSS model to the spatial stimuli (shown in Figure 4) and evaluated how well the model predicts responses to the grating stimuli (shown in Figure 3).
Results for an example voxel are shown (subject 2, area V2, voxel 42608). The CSS model substantially overestimates the grating responses. To
improve performance, we incorporated computation of second-order contrast into the model. The second-order contrast (SOC) model fits the data
accurately. (B) Additional demonstration of second-order effect. We measured responses to noise patterns varying in the amount of separation
between the contours composing the patterns. At low separation levels, the stimuli contain little variation in contrast-energy across space and evoke
weak responses, as expected (same voxel in panel A).
doi:10.1371/journal.pcbi.1003079.g005

Two-Stage Cascade Model of Human Visual Cortex
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The noise patterns used for the spatial stimuli consist of contours
that are spatially separated from one another; this spatial
separation gives rise to variation in contrast-energy and generates
large responses from the SOC model. We hypothesized that
reducing the spatial separation of the contours would reduce
variation in contrast-energy and lead to reduced BOLD responses.
To test this hypothesis we measured responses to noise patterns
with different levels of contour separation (Figure 5B). As
expected, we find that the response is lowest at the smallest
separation and increases at larger separations. This pattern of
results is accurately predicted by the SOC model (Figure 5B, green
curve) but not the CSS model (Figure 5B, blue curve).

Model evaluation
To systematically evaluate the merit of the SOC model, we fit

that model and each of the simpler models (CC, DN, CSS)
independently to the data using five-fold cross-validation. Cross-
validation produces a prediction of each data point based on a model
that is not fit to that data point. Models are evaluated by how well
model predictions match the data.

Because the SOC model subsumes the simpler models, it is
guaranteed to produce the best fits for a given set of data.
However, there is no guarantee that the SOC model will cross-
validate well, i.e. generalize to unseen data. The SOC model will
cross-validate well only if the effects described by the model are
sufficiently large and there are sufficient data to estimate model
parameters accurately. Cross-validation controls for model com-
plexity since overly complex models will tend to fit noise in the
data and, as a result, generalize poorly. Alternative methods for
model selection include AIC and BIC, and these methods produce
similar results (see Supporting Figure S1).

In all visual field maps, we find that the SOC model has the
highest cross-validation accuracy (Figure 6). The accuracy of the
SOC model is slightly lower than the noise ceiling, i.e., the
maximum performance that can be expected given the noise in the
data. Using the metric of explainable variance which takes into
account the noise ceiling (see Methods), we find that on average,
the SOC model accounts for 88%, 92%, 89%, and 84% of the
explainable variance in V1, V2, V3, and hV4, respectively
(median across voxels in each map). These values indicate the high
predictive power of the SOC model.

Metrics like variance explained are convenient for summarizing
model accuracy, but it is important to examine the specific aspects
of the data that drive these metrics. To visualize results from a
large number of voxels on a single plot, we adopt the strategy of
averaging data across voxels and averaging the predictions of each
model across voxels. Note that this averaging is only for sake of
visualization; cross-validation accuracy is computed on a voxel-by-
voxel basis and does not involve averaging data.

Examining the data and model predictions for a representative
visual field map, we see that the SOC model clearly outperforms
the other models (Figure 7). In interpreting this plot, keep in mind
that the predictions of a model may depend on the specific stimuli
to which the model is fit. For example, when fit to a wide range of
stimuli, the DN model fails to predict responses to the grating
stimuli (Figure 7, orange curve), despite the fact that the DN model
succeeds when the model is fit only to the grating stimuli (see
Figure 3). As another example, the CC model performs quite
poorly for the stimuli tested in this study (Figure 7, red curve),
which may seem surprising given previous reports that the CC
model (or variants thereof) can characterize responses to grayscale
natural images [7] and retinotopic mapping stimuli [15].
However, the results are not inconsistent. The key realization is
that the CC model may perform well if fit and tested on stimuli

that probe a limited range of stimulus dimensions (e.g. a limited
range of contrasts). With a wide range of stimuli, failures of the CC
model become evident, and more complex models are necessary to
explain the data.

We developed the SOC model using carefully controlled stimuli
and have demonstrated that the model accurately characterizes
responses to these stimuli. A major advantage of controlled stimuli
is ease of interpretation: with controlled stimuli, it is relatively easy
to identify the stimulus properties that drive effects in the data
[18]. However, a stimulus set composed of controlled stimuli is
inherently biased towards certain stimulus types at the exclusion of
others, leaving open the question of how well the model
characterizes responses to stimuli in general.

To estimate general accuracy, in a separate experiment we
measured responses to 35 objects and quantified how well the
SOC model—with parameters derived from the controlled
stimuli—predicts the responses. On average, the SOC model
accounts for 65%, 72%, 69%, and 59% of the explainable
variance in V1, V2, V3, and hV4, respectively (median across
voxels in each map). These values are lower than the correspond-
ing values obtained for the controlled stimuli, underscoring the
fact that summary metrics of model performance are highly
dependent on the type of stimuli used. Nevertheless, the values are
encouragingly high and confirm that the SOC model has
predictive power for ecologically relevant stimuli [19]. One
interpretation of the reduced performance on object stimuli is
that such stimuli contain higher-order features that are not
accurately represented by the SOC model; investigating these
features can be the focus of future studies.

In the divisive normalization stage of the SOC model, the
population activity used to normalize filter outputs consists of the
sum of the outputs of filters at the same position but different
orientations (see Methods). The reason we assumed the population

Figure 6. SOC model has high cross-validation accuracy. Five-
fold cross-validation was used to quantify the accuracy of the CC, DN,
CSS, and SOC models. Vertical bars indicate the median accuracy across
voxels in a given visual field map. Solid horizontal lines indicate the
maximum possible performance given the noise in the data, and dotted
horizontal lines indicate the performance of a control model that simply
predicts the same response for every stimulus. The numbers at the top
indicate the median performance of the SOC model, expressed in terms
of explainable variance (see Methods). Within each visual field map, all
pairwise differences between models are statistically significant
(p,0.05, two-tailed sign test) with the exception of DN vs. CSS in V2.
doi:10.1371/journal.pcbi.1003079.g006

Two-Stage Cascade Model of Human Visual Cortex
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has the same spatial extent as the filter outputs is simplicity: by
making that assumption, the space of model parameters is vastly
reduced and the interpretation of the divisive normalization stage
is simplified. However, divisive normalization models of V1
neurons often consist of a central excitatory region that is
normalized by a larger surround region [20,21], and such models
are used to account for surround suppression, a phenomenon that
is closely related to second-order contrast (see Discussion). Thus,
one might speculate that if the spatial extent of the population
were enlarged, the resulting model might be sufficient to account
for our data.

To address this issue, we tested a version of the DN model in
which the spatial scale over which normalization occurs is flexible
and fit to the data. The hypothesis is that this model might account
for the data as well as (or better than) the more complex SOC
model. We find that the DN model with flexible normalization
(Figure 8B, yellow bar) outperforms the original DN model
(Figure 8B, orange bar) but does not achieve the same accuracy as
the SOC model (Figure 8B, green bar). This indicates that simply
enlarging the normalization pool is not sufficient and that the
additional computations in the SOC model are necessary to
account for the data. We also tested several other control models,
including a model that demonstrates that the squaring operation in
the computation of second-order contrast is critical (Figure 8B,
cyan bar).

One of the control models (RM2) omits the Divisive normalization
component of the SOC model, and performs about as well as the
full SOC model. This can be attributed to the fact that the effect of
Divisive normalization on the overall response of the model can be
approximated, through suitable choice of parameters, by the other
components of the model, most notably the Compressive nonlinearity
component. For a simple example of this phenomenon, suppose
we have a cascade of two power-law nonlinearities, each with
exponent 0.5. If the first nonlinearity is omitted, the overall input-
output relationship can still be preserved if the exponent of the
second nonlinearity is set to 0.25. While a compressive nonline-
arity is not an exact substitute for divisive normalization, it
approximates many of the same effects within our measurements.
We have chosen to include the Divisive normalization component in
the SOC model for two reasons. One is to maintain historical
continuity, as previous studies have incorporated divisive normal-
ization immediately following a linear filtering stage [e.g. 9]. The

second reason is that even though normalization (immediately
after the linear filtering stage) is not essential for the current set of
data, it is likely that normalization will prove essential at finer
scales of measurement (sub-millimeter voxels). For example, a
major effect explained by normalization is cross-orientation
suppression at the level of single neurons in V1 [10]; this effect
is largely obscured at the current scale of measurement (2.5-mm
voxels). This observation highlights the fact that the model
inferences we make are limited by the resolution of our BOLD
measurements and that there is value in developing models at finer
scales of measurement.

Model parameters
We now turn to examining the parameters of the SOC model.

There are three parameters of interest, s, n, and c. The s
parameter controls the size of the 2D Gaussian over which
contrast-energy is summed, the n parameter controls the strength
of the compressive nonlinearity, and the c parameter controls the
strength of the variance-like nonlinearity that generates selectivity
for second-order contrast (see Methods for details). To summarize
the n and c parameters, we calculate the median parameter value
across voxels in each map. To summarize the s parameter, we fit
a line relating receptive field eccentricity and s and extract the s
value at 2u eccentricity.

For each parameter of interest, we plot the summary value
observed in each visual field map (Figure 9, top). Because raw
parameter values are difficult to interpret, we also perform
simulations that clarify the effect of the parameter values on the
overall stimulus-response relationship (Figure 9, bottom). In these
simulations, we calculate the response of the SOC model using the
typical parameter values found in each visual field map (thus, four
instances of the SOC model were simulated). These simulations
directly reflect the behavior of the SOC model as fitted to each
map and do not incorporate any assumptions beyond what is
determined from the data and the model.

Inspecting the variation in parameter values, we find that the s
parameter increases from V1 to V2 to V3 to hV4, reflecting an
increase in receptive field size (Figure 9A). We find that the n
parameter decreases from V1 to V2 to V3 to hV4, reflecting an
increase in normalization (Figure 9B). Finally, we find that the c
parameter is higher in V2 and V3 than it is in V1 and hV4,

Figure 7. Data and cross-validated model predictions. Here we visualize the cross-validation results by averaging across voxels in a visual field
map. Black bars indicate the median response across voxels, and colored curves indicate the median model prediction across voxels. The CC model
captures qualitative features of the data but fails quantitatively. The DN and CSS models fare better than the CC model but systematically
underestimate and overestimate certain responses. The SOC model does well quantitatively predicting the full range of responses.
doi:10.1371/journal.pcbi.1003079.g007

Two-Stage Cascade Model of Human Visual Cortex
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Figure 8. Additional control models. (A) Schematic of models. Six variants of the SOC model were tested. Text annotations indicate modifications
to model components (see Methods for details). (B) Cross-validation accuracy. Format same as in Figure 6 except that accuracy is now expressed in
terms of explainable variance (the CC model is omitted as it falls outside the visible range). No model outperforms the SOC model. The RM2 model—
which is a variant of the SOC model that omits the Divisive normalization component—performs about as well as the SOC model. This can be
explained by the fact that there is some degree of overlap in functionality between the Divisive normalization and Compressive nonlinearity
components of the SOC model.
doi:10.1371/journal.pcbi.1003079.g008

Figure 9. Parameters of the SOC model vary systematically across visual field maps. (A) Size parameter (s). The top panel shows the
estimated s value at 2u eccentricity for each visual field map. To quantify receptive field size, we compute model responses to small white spots
(0.25u60.25u) and fit 2D Gaussians to the results. The bottom panel shows contours at 62 s.d. of the fitted Gaussians. (B) Exponent parameter (n). The
top panel shows the median n value for each visual field map. To demonstrate the effect of n, we compute model responses to full-field noise
patterns varying in contrast (same patterns used for the spatial stimuli). The bottom panel shows the resulting contrast response functions,
normalized such that the maximum response is 1. (C) Second-order parameter (c). The top panel shows the median c value for each visual field map.
To interpret the effect of c, we compute model responses to a 20%-contrast plaid pattern covering the entire receptive field and the same plaid
pattern covering half of the receptive field. The bottom panel shows responses to the full and half plaids, normalized such that the response to the
full plaid is 1. For reference we also show results obtained when c is set to 0.
doi:10.1371/journal.pcbi.1003079.g009

Two-Stage Cascade Model of Human Visual Cortex
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reflecting increased selectivity for second-order contrast
(Figure 9C). All pairwise differences between visual field maps
are statistically significant (p,0.05, two-tailed randomization test)
with the exception of n in V3 vs. hV4 and c in V2 vs. V3.

Discussion

We describe a computational model, termed the second-order
contrast (SOC) model, that predicts BOLD responses in early
visual cortex to grayscale band-pass filtered images. The model
builds on earlier modeling work [7,10,15] and introduces a
variance-like nonlinearity that generates selectivity for second-
order contrast. The parameters of the model vary systematically
across visual field maps, reflecting differences in receptive field
size, differences in the strength of normalization, and differences in
selectivity for second-order contrast.

Building functional models of visual responses
We have developed a model that predicts BOLD responses to a

wide range of stimuli. Stimulus-driven BOLD responses arise
principally from metabolic demands of peri-synaptic neural
activity [22,23]. Hence, BOLD is one of the many ways that
neural activity can be measured, and our model of BOLD
responses is a model of neural population responses. However, the
spatial resolution of our BOLD measurements (2.5-mm voxels) is
lower than the resolution required to analyze and dissect neural
circuits, and this may lead some to conclude that our model of
BOLD responses does not actually provide much insight into
neural computation. We believe this view to be in error.

To explain our position, it is useful to highlight the distinction
between functional models and circuit models. Functional models are
stimulus-referred (i.e. start with the stimulus) and specify what
aspects of the stimulus drive responses in a given area. Building
functional models has a long history in electrophysiology [for
review, see 24,25], where researchers explain the spiking activity of
neurons in terms of relatively simple computations applied to the
stimulus. Circuit models go further than functional models by
identifying the specific neural circuitry that gives rise to the
observed responses. Hence, functional models may be simpler
than circuit models and multiple competing circuit models may be
consistent with a given functional model. There is value in
functional characterizations of neural responses, especially if one
seeks to link neural circuits to perceptual judgments and behavior
[26].

To illustrate the distinction between functional models and
circuit models, consider a model that explains the spiking activity
of a V1 simple cell by the application of an oriented linear filter to
the stimulus, followed by a rectification nonlinearity. This model,
known as an LN or linear-nonlinear model [24], is a functional but
not a circuit model—it describes how stimuli relate to responses,
but does not characterize the many stages of processing performed
by the visual system before V1 (e.g. retina, LGN) nor the specific
neural circuit by which orientation tuning arises [e.g. feedforward
computation on LGN afferents or intracortical processing within
V1—see 27]. Nevertheless, the model is useful for understanding
how stimuli are represented in the visual system.

The SOC model developed in this paper is a functional
model—it characterizes the relationship between visual stimuli
and measured BOLD responses. Like functional models of
neuronal responses, the SOC model does not propose specific
neural circuits. Rather, the SOC model provides insight at the
functional level, that is, in identifying the aspects of the stimulus
that drive responses in different visual field maps. For example, the
model indicates that second-order contrast is an important factor

that drives population responses in V2 and V3, and we can
reasonably infer that this same stimulus property drives responses
of individual neurons in these maps. To test and expand upon this
hypothesis, one could adapt the stimuli and model used in this
study to single-unit electrophysiology and assess how well neuronal
responses are accounted for. In doing so, we may find it necessary
to extend the model to account for response properties that are
evident at the level of individual neurons but which are not readily
observed at the population level.

Nonlinearities in neurovascular coupling
Neural activity is coupled to the BOLD response through a

complex set of neurovascular mechanisms [23,28]. Thus, physi-
ological responses measured using BOLD fMRI reflect both
neural activity and these coupling mechanisms. Since the coupling
mechanisms are not explicitly modeled in the present work, an
implicit assumption in the interpretation of our results is that the
BOLD response provides a linear (or approximately linear)
measure of some aggregated neural activity. Under this assump-
tion, we attribute the various nonlinear operations in the SOC
model to nonlinearities arising in neural processing. However,
there may be nonlinearities in neurovascular coupling, and this
possibility limits the inferences we can make from our BOLD
measurements. For example, if there is a nonlinearity in the
relationship between the total amount of neural activity in a voxel
and the strength of the BOLD response measured from that voxel,
then the level of compression estimated by the Compressive
nonlinearity component of the SOC model may differ from the
level of compression associated with the underlying neural activity.
Going forward, we believe that developing a better understanding
of the different types of neural activity (e.g. synaptic activity,
spiking activity) and the mechanisms that couple these various
types of neural activity to the BOLD response is of high
importance.

Cascade architecture of the SOC model
The SOC model has a cascade architecture, consisting of a

series of computations that are applied to the stimulus. The success
of the SOC model is consistent with the long-standing hypothesis
that the visual system can be characterized as a cascade of
operations [29–34]. However, cascade models come in a variety of
different forms and vary in essential characteristics such as the
number of stages in the model and the computations that are
applied at each stage. Our work contributes to the field by
proposing a specific model and showing that this model
quantitatively accounts for a sizable range of experimental
measurements in the living human brain.

The SOC model is most similar to the cascade model that is
being developed by Heeger, Landy, and colleagues [34,35]. These
authors propose that the stimulus is transformed through two or
more stages of canonical operations, each stage consisting of
filtering, which is a linear operation (L); rectification, which is a
nonlinear operation (N); and normalization, which is a nonlinear
operation (N). Mapping these operations onto the SOC model, we
see that the SOC model is a two-stage cascade model with an
overall form of LNNLNN (Figure 2A).

There are differences between the SOC model and the Heeger-
Landy model. First, the SOC model is fully computable, starting
with images and predicting physiological responses. Second, the
filtering operation in the second stage of the SOC model is
generic: variance in contrast-energy drives responses irrespective
of how contrast-energy is arranged in the stimulus. In contrast, the
Heeger-Landy model uses oriented second-order filters. Third, the
normalization operation in the second stage of the SOC model is
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implemented as a compressive nonlinearity. This is reasonable
because under certain conditions, the effects of divisive normal-
ization can be approximated with a compressive nonlinearity [11].

It is common in cascade models to designate different stages as
corresponding to different visual areas. Thus, it is tempting to view
the first stage of operations in the SOC model (the first LNN) as
corresponding to primary visual cortex (V1) and the second stage
of operations (the second LNN) as corresponding to extrastriate
areas. However, this interpretation is complicated by the fact that
the full two-stage SOC model predicts V1 responses more
accurately than the one-stage DN model (see Figure 6). To
reconcile this finding, we hypothesize that the computation of first-
order contrast (the first LNN) occurs in V1 (or is inherited from
earlier processing), the computation of second-order contrast (the
second LNN) occurs downstream from V1, and feedback
introduces second-order effects into V1 responses. Some support
for this circuit-level hypothesis comes from studies reporting that
surround suppression—which, as we later explain, is intimately
related to second-order contrast—is mediated by feedback from
extrastriate areas to V1 [36,37].

Second-order contrast in the visual system
A key component of the SOC model is a nonlinearity that

computes variance in contrast-energy within a specific region of
the visual field. This nonlinearity enhances responses to stimuli
that have heterogeneous distribution of contrast-energy and
suppresses responses to stimuli that have homogeneous distribu-
tion of contrast-energy. We find that the nonlinearity is
substantially stronger in extrastriate areas V2 and V3 compared
to V1, suggesting that selectivity for second-order contrast is
mainly a feature of extrastriate cortex. We do find, however, that
the strength of the nonlinearity in hV4 is comparable to that in
V1, indicating that in hV4 first-order contrast is relatively effective
at driving responses.

The concept of second-order contrast—or, more generally,
second-order stimuli—has a long history in visual psychophysics
[for review, see 12,13] and other sensory modalities [38]. Second-
order stimuli involve modulation of a stimulus property (e.g.
contrast) across space or time in such a way that the modulation
cannot be detected by a first-order filter. For example, consider a
sinusoidal grating whose amplitude is modulated by a sinusoidal
grating of lower spatial frequency. Such a stimulus varies in
contrast across space, but this variation cannot be detected by a
first-order luminance filter since average luminance remains
constant throughout the extent of the stimulus. To explain the
perception of second-order stimuli, researchers have proposed
filter-rectify-filter (FRF) models in which first-order filters are
applied to the stimulus, the outputs of these filters are rectified, and
second-order filters are applied to the rectified outputs.

Extending results from animal models [e.g. 39,40,41], several
fMRI studies have found evidence of second-order processing in
human visual cortex [35,42]. These studies used adaptation
techniques to infer selectivity for second-order modulation of
contrast [42] and orientation [35,42], and proposed a variant of
the FRF model to account for their results [35]. Our results are
consistent with these adaptation studies in finding that second-
order effects exist in many visual field maps including V1. We
extend these studies by executing a different experimental and
modeling approach: We demonstrate second-order effects directly
in visually evoked responses. Moreover, we develop a model that
operates on images and quantitatively predicts responses at the
level of single voxels.

Our finding that selectivity for second-order contrast is
particularly strong in extrastriate areas is consistent with the fact

that sparsely distributed contours strongly activate such areas [43].
This is because sparsely distributed contours give rise to large
amounts of contrast variation. Our results are also consistent with
the results of a study that developed and compared models of
neural responses in V1 and V2 [44]. In that study, neural
responses were characterized using a model in which V1-like filters
are applied to the stimulus, the outputs of the filters are rectified,
and then a flexible set of weights on the rectified filter outputs is
used to predict responses. Importantly, fitted weights tended to be
more negative in V2 than in V1. This suppression may serve to
reduce responses to stimuli that are spatially homogeneous in
contrast-energy, similar to the variance-like nonlinearity we
propose in the SOC model. A quantitative comparison of these
models is an important future direction.

Relationship between second-order contrast and
surround suppression

Second-order contrast is a key feature of the SOC model, and it
is useful to clarify the connection between second-order contrast
and phenomena that have been extensively studied in the visual
system. One such phenomenon is surround suppression, which has
been studied both psychophysically and physiologically and is
thought to underlie perceptual processes such as scene segmen-
tation [45], perceptual constancies [46], and enhancement of
salience differences [47]. A basic form of surround suppression is
size tuning, whereby the response of a neuron is highest for a
grating of a certain size and is suppressed if the grating is enlarged
[20,48]. The SOC model was not specifically designed to account
for size tuning, but a simulation demonstrates that the SOC model
does in fact exhibit size tuning (Figure 10). Intuitively, response
suppression for large gratings stems from the absence of variation
in contrast-energy; conversely, response enhancement for small
gratings stems from the presence of variation in contrast-energy.
This simulation demonstrates the close relationship between
second-order contrast and surround suppression.

The SOC model’s explanation of surround suppression differs
from that provided by traditional models of surround suppression.
In such models, a central excitatory region is divisively normalized
by a larger surround region, and response suppression for large
gratings stems from increased stimulation of the surround [20,21].
The fact that surround suppression might have different compu-
tational explanations—either divisive normalization over a large
spatial extent or second-order mechanisms—has been previously
recognized [35]. We find that divisive normalization by itself does
not fully account for our data, even if the spatial extent of
normalization is enlarged (see Figure 8B, yellow bar). Thus, our
results suggest that second-order mechanisms play an essential role
in producing surround suppression effects. The ability to tease
apart computational explanations such as these is made possible by
our approach of measuring responses to a wide range of stimuli
and testing general models that operate on arbitrary stimuli.

Prevalence of second-order contrast in natural images
Second-order contrast also has an interesting connection to the

statistics of natural images. The distribution of local contrast in a
natural image tends to be sparse, with local contrast often near
zero [50–53]. We reasoned that because of this sparseness, the
amount of second-order contrast in natural images should be
relatively high. To verify this hypothesis, we constructed a
collection of natural image patches and quantified the amount of
second-order contrast in each image by computing the response of
the SOC model to the image. For comparison we also computed
responses of the SOC model after scrambling the phase spectrum
of each patch.
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The responses of the SOC model are, on average, higher for the
natural image patches (Figure 11A). Reduced responses to the
phase-scrambled patches can be attributed to the fact that phase-
scrambling takes localized structures (which induce high variation
in contrast-energy) and disperses them throughout the image
(Figure 11B). The fact that natural stimuli have relatively high
amounts of second-order contrast is consistent with previous
analyses of natural image statistics [54]. We suggest that selectivity
for second-order contrast can be interpreted as an efficient coding
strategy in which the visual system is tuned to the statistical
features of natural scenes [49]. Stated simply, the idea is that the
visual system is tuned in such a way that commonly experienced
stimuli (e.g. stimuli with second-order contrast) evoke stronger
responses than less commonly experienced stimuli (e.g. stimuli
without second-order contrast).

Our simulations show that scrambling the phase spectra of
natural image patches reduces variation in contrast-energy and
leads to reduced responses from the SOC model. In general,
reduction in contrast-energy variation may explain why phase
scrambling tends to reduce activation levels in the visual system.
For example, phase-scrambling line and edge stimuli reduces
variation in contrast-energy and, as expected, reduces BOLD
responses in early visual areas [55]. Of course, the phase spectrum
consists of other stimulus characteristics besides variation in
contrast-energy, and the visual system might also be sensitive to
these characteristics. One example is alignment of phases across
spatial frequencies, which occurs at edges in natural images [56].

Future improvements to the SOC model
The SOC model has high accuracy but is not perfect, especially when

tested on naturalistic object stimuli (see Results). To improve
performance, future work could continue the approach taken in the
present study of designing controlled stimuli, assessing model predictions,
and introducing new model components as necessary. It may be
productive to consider how well the SOC model predicts responses to
simple icons and shapes as such stimuli have been previously used to
study the tuning properties of extrastriate areas [57–59].

Figure 10. SOC model exhibits surround suppression. (A)
Simulation results. Stimuli consisted of a horizontal grating presented
within circles of different sizes. Using the typical parameter values
found in V2 (see Figure 9), we simulated the response of an array of
model units tiling the visual field. Responses are strongest for units
positioned at the edge of the grating since responses are driven
primarily by variation in contrast-energy. (B) Responses of one unit
(marked by a white dot in panel A). With increasing stimulus size, the
response rises and then falls, consistent with surround-suppression
effects found in electrophysiology [e.g. 20,48].
doi:10.1371/journal.pcbi.1003079.g010

Figure 11. Natural images have relatively large amounts of second-order contrast. (A) Simulation results. We prepared a collection of
band-pass filtered natural image patches and phase-scrambled versions of these patches. We then quantified the amount of second-order contrast in
each patch by computing the response of the SOC model to the patch (model parameters were set to the typical values found in V2). The median
and interquartile range of responses are shown. For comparison we show results obtained when the second-order parameter c is set to 0. The SOC
model but not the control model exhibits larger responses to the natural image patches. (B) Example patches. The natural image patch exhibits
spatial variation in contrast, whereas its phase-scrambled counterpart is relatively homogeneous in contrast across space. Natural images were
obtained from the McGill Colour Image Database [73].
doi:10.1371/journal.pcbi.1003079.g011
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Future work could also be directed towards expanding the range
of stimuli for which the SOC model operates. For tractability we
restricted the stimuli in this study to a band-pass range of spatial
frequencies. A natural step would be to extend the SOC model to
operate on stimuli with arbitrary spatial frequency content. This
could be done, for example, by replicating the model architecture
at multiple spatial scales and allowing the predicted response to be
a weighted sum across scales. Ultimately, additional stimulus
properties such as color, motion, and depth will need to be
considered.

Methods

Subjects
Three experienced fMRI subjects (three males; age range 29–

39; mean age 33) participated in this study. All subjects had
normal or corrected-to-normal visual acuity. Informed written
consent was obtained from all subjects, and the experimental
protocol was approved by the Stanford University Institutional
Review Board. One subject ( JW) was an author. Subjects
participated in 1–2 scan sessions for the main experiment, and
one subject participated in an additional scan session for the object
experiment. Subjects also participated in 1–4 separate scan
sessions to identify visual field maps [details in 60].

Visual stimuli
Display and task. Stimuli were presented using a Samsung

SyncMaster 305T LCD monitor positioned at the head of the
scanner bed. Subjects viewed the monitor via a mirror mounted
on the RF coil. The monitor operated at a resolution of 12806800
at 60 Hz, and the luminance response of the monitor was
linearized using a lookup table based on spectrophotometer
measurements (maximum luminance 117 cd/m2). Stimuli sub-
tended 12.5–12.8u of visual angle (viewing distance 179–183 cm).
A MacBook Pro computer controlled display calibration and
stimulus presentation using code based on Psychophysics Toolbox
[61,62]. Behavioral responses were recorded using a button box.

For subject 1, a small dot (0.1u60.1u) at the center of the
stimulus served as the fixation point. The color of the dot changed
randomly between red, green, and blue every 5–9 s. The subject
was instructed to fixate the dot and to press a button whenever the
dot changed color. For subjects 2–3, a more demanding
attentional task was used [35]. A small digit (0.25u60.25u) at the
center of the stimulus served as the fixation point. The identity of
the digit (0–9) changed every 0.67 s: each digit was presented for
0.5 s and was followed by a delay of 0.17 s. To minimize visual
adaptation, the digit color alternated between black and white on
successive presentations. Subjects were instructed to fixate the digit
and to press a button whenever the same digit repeated. Digit
repetitions occurred with a probability of 1/6, with a maximum of
two successive identical digits allowed.

General stimulus characteristics. Stimuli were construct-
ed at a resolution of 256 pixels6256 pixels and were upsampled to
800 pixels6800 pixels for display purposes. All stimuli were
presented within a circular aperture filling the height of the
display; the rest of the display was filled with neutral gray. The
outer 0.5u of the circular aperture was smoothly blended into the
background using a half-cosine function.

Stimuli consisted of grayscale images restricted to a band-pass
range of spatial frequencies centered at 3 cycles per degree. To
enforce this restriction, a custom band-pass filter was used in the
generation of some of the stimuli. The filter was a zero-mean
isotropic 2D Difference-of-Gaussians filter whose amplitude
spectrum peaks at 3 cycles per degree and drops to half-maximum

at 1.4 and 4.7 cycles per degree. Restricting the spatial frequency
content of the stimuli avoids the complications of building multi-
scale models and helps constrain the scope of the modeling
endeavor. Even with the spatial frequency restriction, it is possible
to construct a rich diversity of stimuli including objects and other
naturalistic stimuli.

Main experiment (subjects 1–3). This experiment consisted
of 156 stimuli. Data corresponding to 103 of the stimuli are
reported in this paper; data corresponding to the remaining 53
stimuli are not used and therefore not described in further detail.
Each stimulus consisted of nine distinct images that were presented
in quick succession. The purpose of this design was to take
advantage of the slow dynamics of the BOLD response and
average over stimulus dimensions of no interest (e.g. using
sinusoidal gratings differing in phase to average over phase).

SPACE (69 stimuli). These stimuli consisted of noise patterns
covering different portions of the visual field. Noise patterns were
created by low-pass filtering white noise at a cutoff frequency of
0.5 cycles per degree, thresholding the result, performing edge
detection using derivative filters, inverting image polarity such that
edges are black, and applying the custom band-pass filter
(described previously). We generated nine distinct noise patterns
and scaled the contrast of the patterns to fill the full luminance
range. We then varied the location of the noise patterns by
masking the patterns with spatial apertures. The design of the
apertures was identical to that used in a previous study [11]. A
total of 69 apertures were used: 31 vertical apertures proceeding
left to right, 31 horizontal apertures proceeding bottom to top, and
7 circular apertures expanding in size from the center. To
maintain the band-pass characteristic of the stimuli, aperture edges
were smoothly transitioned into the background using half-cosine
functions 1/6u in width.

ORIENTATION (8 stimuli). These stimuli consisted of full-
contrast sinusoidal gratings at eight different orientations. The
spatial frequency of the gratings was fixed at 3 cycles per degree.
Each stimulus consisted of gratings with the same orientation but
nine different phases (equally spaced from 0 to 2p).

GRATING (4 stimuli). These stimuli consisted of horizontal
sinusoidal gratings at 2%, 4%, 9%, and 20% Michelson contrast.
The spatial frequency of the gratings was fixed at 3 cycles per
degree. Each stimulus consisted of gratings with the same contrast
but nine different phases (equally spaced from 0 to 2p).

PLAID (4 stimuli). These stimuli consisted of plaids at 2%, 4%,
9%, and 20% contrast (defined below). Each condition comprised
nine plaids, and each plaid was constructed as the sum of a
horizontal and a vertical sinusoidal grating (spatial frequency 3
cycles per degree, random phase). The plaids were scaled in
contrast to match the root-mean-square (RMS) contrast of the
GRATING stimuli. For example, the plaids in the 9% condition
were scaled such that the average RMS contrast of the plaids is
identical to the average RMS contrast of the gratings in the 9%
GRATING stimulus.

CIRCULAR (4 stimuli). These stimuli were identical to the
PLAID stimuli except that sixteen different orientations were used
instead of two.

CONTRAST (10 stimuli). These stimuli were constructed by
varying the contrast of the noise patterns used in SPACE. Ten
different contrast levels were used: 1%, 2%, 3%, 4%, 6%, 9%,
14%, 21%, 32%, and 50%. These contrast levels are relative to the
contrast of the patterns used in SPACE, which is taken to be
100%.

SEPARATION (4 stimuli). These stimuli used the same type of
noise patterns as SPACE but varied the amount of separation
between contours. We generated noise patterns using cutoff
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frequencies of 2.8, 1.6, 0.9, 0.5, and 0.3 cycles per degree, and
numbered these from 1 (smallest separation) to 5 (largest
separation). The noise patterns used in SPACE correspond to
separation 4; thus, we only constructed stimuli for the remaining
separations 1, 2, 3, and 5. The noise patterns occupied the full
stimulus extent (no aperture masking).

Object experiment (subject 3). This experiment consisted
of 35 stimuli, each of which corresponds to a single band-pass
filtered object flashed nine times in quick succession (same
temporal pattern as the stimuli in the main experiment). To
construct the object stimuli, we obtained pre-segmented objects
used in a previous study [63]. Objects were converted to grayscale,
scaled to 200 pixels6200 pixels (9.9u69.9u), and centered at
fixation. Each image was whitened (to remove low-frequency bias)
and then filtered with the custom band-pass filter (described
previously). Finally, the contrast of each image was scaled to fill the
full luminance range.

Experimental design
We used a randomized event-related design to minimize

anticipatory and attentional effects. Stimuli were presented in 8-s
trials, one stimulus per trial. During the first 3 s of a trial, the nine
images comprising a given stimulus were presented in random
order at a rate of 3 images per second (duty cycle: 167-ms ON/
167-ms OFF). Then for the next 5 s, no stimulus was presented.

For the main experiment, the 156 stimuli were randomly
divided into four groups. In each run, the stimuli from one of the
groups were presented once and in random order. To establish the
baseline signal level, each run also included null trials in which no
stimuli were presented (‘‘blank’’ stimuli). Two null trials were
inserted at the beginning and end of each run, and one null trial
was inserted after every five stimulus trials. Each run lasted
6.7 minutes. Each scan session consisted of three sets of four runs
(thus, each stimulus was presented three times over the course of
the session). For the object experiment, the 35 stimuli were
presented once and in random order in each run. Null trials were
included to establish the baseline signal level as in the main
experiment. Each run lasted 6.0 minutes, and each scan session
consisted of ten runs.

To improve signal-to-noise ratio for the main experiment in
subjects 1 and 2, two independent scan sessions were conducted.
The stimulus ordering in the second session was matched to that in
the first session, and the data from the two sessions were directly
averaged together (after data pre-processing).

MRI data acquisition
Functional MRI data were collected at the Stanford Center for

Cognitive and Neurobiological Imaging using a 3T GE Signa
MR750 scanner and a Nova 32-channel RF head coil. In each
scan session, 22 slices roughly parallel to the parieto-occipital
sulcus were defined: slice thickness 2.5 mm, slice gap 0 mm, field-
of-view 160 mm6160 mm, phase-encode direction anterior-pos-
terior. A T2*-weighted, single-shot, gradient-echo EPI pulse
sequence was used: matrix size 64664, TR 1.337702 s, TE
28 ms, flip angle 68u, nominal spatial resolution
2.562.562.5 mm3. The TR was matched to the refresh rate of
the display such that there were exactly 6 TRs for each 8-s trial.

For post-hoc correction of EPI spatial distortion, measurements
of the B0 magnetic field were performed. Field maps were
collected in the same slices as the functional data using a 16-shot,
gradient-echo spiral-trajectory pulse sequence. Two volumes were
successively acquired, one with TE set to 9.091 ms and one with
TE increased by 2.272 ms, and the phase difference between the
volumes was used as an estimate of the magnetic field. To track

slow drifts in the magnetic field (e.g. due to gradient heating), field
maps were collected before and after the functional runs as well as
periodically between functional runs.

Data analysis
Voxels in each visual field map were pooled across subjects.

Unless otherwise indicated, error bars represent 61 standard error
(68% confidence intervals) across voxels and were obtained using
bootstrapping.

Data pre-processing. The first five volumes of each
functional run were discarded to allow magnetization to reach
steady-state. Differences in slice acquisition times were corrected
using sinc interpolation. Field maps were phase-unwrapped using
FSL’s prelude utility (http://fsl.fmrib.ox.ac.uk), spatially smoothed
using local linear regression [64], and then interpolated over time
to estimate the field strength at the acquisition time of each
functional volume. These field estimates were then used to
undistort the functional volumes [65]. Motion was estimated from
the undistorted volumes using utilities in SPM (http://www.fil.ion.
ucl.ac.uk/spm/). Motion estimates were restricted to a manually
defined 3D ellipse to avoid artifact-prone regions (e.g. near the ear
canals), and were low-pass filtered at 1/90 Hz to remove high-
frequency modulations that may have been caused by BOLD
activations [66]. Finally, the combined effects of distortion and
motion were corrected using a single cubic interpolation of the
slice-time corrected functional volumes. Raw scanner units were
converted to units of percent BOLD signal change by dividing by
the mean signal intensity in each voxel.

For each subject, data from all scan sessions were co-registered
to data from the initial scan session. This was accomplished by
determining rigid-body transformations that align the functional
volumes of additional scan sessions to the functional volumes of the
initial scan session and incorporating these transformations into
the interpolation procedure that corrects distortion and motion.

GLM analysis. We analyzed the time-series data from each
experiment using a variant of the general linear model (GLM)
commonly used in fMRI [a general review of the GLM can be
found in 67]. The GLM variant that we used consisted of a flexible
hemodynamic response function (HRF) characterizing the shape
of the timecourse of the BOLD response, beta weights character-
izing the amplitude of the BOLD response to each stimulus,
polynomial regressors characterizing the baseline signal level, and
global noise regressors characterizing BOLD fluctuations unrelat-
ed to the stimulus. Cross-validation (i.e. predicting left-out runs)
was used to estimate the accuracy of the GLM, and bootstrapping
(i.e. sampling with replacement from the runs) was used to estimate
the reliability of the GLM (including error bars on response
amplitudes). All subsequent analyses involved analyzing the
response amplitudes estimated by the GLM. [See 11 for additional
details on the GLM analysis.]

Second-order contrast (SOC) model. The second-order
contrast (SOC) model attempts to characterize how the images
shown to the subject are encoded in the response amplitudes of
each voxel. In this section we describe the computations that
comprise the model; in later sections we address other issues such
as model fitting and model accuracy.

Stimulus pre-processing. The original stimulus image has a
resolution of 800 pixels6800 pixels and values in the range
[0,254]. The model starts by remapping the values to the range
[20.5,0.5] (which has the effect of mapping the neutral-gray
background to 0) and downsampling the image to 150 pixels6150
pixels. The image is then enlarged to 180 pixels6180 pixels by
padding with zeros on all sides.
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V1 energy. The first component of the model is an adaptation of a
simple V1 model that we previously developed [7]. The image is
projected onto a set of isotropic Gabor filters occurring at 8
orientations, 2 quadrature phases, and a range of positions (90690
grid). Filters occur at a single scale (appropriate since the stimuli
are band-pass), with a peak spatial frequency of 3 cycles per degree
and a spatial frequency bandwidth of 1 octave (full-width at half-
maximum of the amplitude spectrum). Each filter is scaled such
that the response to a full-contrast optimal grating is 1. Outputs of
quadrature-phase filters are squared, summed, and square-rooted,
analogous to the complex-cell energy model [68]. The results can
be expressed as

ccpos,or~
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where ccpos,or indicates the complex-cell output at a given position
and orientation, stimulus indicates the pre-processed stimulus
image, filterpos,or,ph indicates the filter at a particular position,
orientation, and phase, and ? indicates dot product.

Divisive normalization. Each complex-cell output is divisively
normalized by local population activity [9,10,69]. Local popula-
tion activity is taken to be the average complex-cell output across
the orientations at a given position. Formally, the operation is
given by
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where nccpos,or is the normalized complex-cell output at a given
position and orientation, numor is the total number of orientations,
and r and s are parameters that control the strength of the
normalization.

Spatial summation. The normalized complex-cell outputs are
summed across orientation, yielding a measure of local contrast-
energy at each position:

ai~
X
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where ai is the amount of contrast-energy at position i. Contrast-
energy is then summed across space using isotropic 2D Gaussian
weights:
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where wi = (x9,y9) is the weight at position i indexed by coordinates x9
and y9; x and y are parameters that control the center of the
Gaussian; and s is a parameter that controls the standard
deviation of the Gaussian. Note that because of the scaling term,
the sum of the weights equals one:
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Second-order contrast. The summation of contrast-energy across
space is not linear but involves a nonlinear squaring operation

(which can be understood more generally as a rectification-type
nonlinearity). Specifically, the summation is computed as
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where SOC is the result of the summation and c is a parameter that
controls the strength of the nonlinearity. The summation term
inside the parentheses computes a spatially-weighted average of
contrast-energy, and the overall expression computes spatially-
weighted variance in contrast-energy. To ease interpretation, we
bounded the c parameter between 0 and 1. When c is 0, the
variance effect is absent and the computation is analogous to mean
contrast-energy; when c is 1, the variance effect is strong and the
computation is analogous to variance in contrast-energy; and
when c is between 0 and 1, the computation is in between pure
mean and pure variance.

Compressive nonlinearity. The final component of the model is a
compressive power-law nonlinearity that is applied after spatial
summation. The predicted response of the model is given by

RESP~g|(SOC)n

where RESP is the predicted response, n is an exponent parameter
that controls the strength of the compression, and g is a gain
parameter.

Overall summary. There are eight free parameters in the SOC
model: r and s control the strength of divisive normalization, x, y,
and s control the region over which spatial summation occurs, c
controls the strength of the second-order contrast effect, n controls
the strength of the compressive nonlinearity, and g controls the
overall gain of the predicted responses. Note that the model does
not include an offset parameter. This ensures that the predicted
response to a blank stimulus is 0, which is appropriate since
response amplitudes reflect changes in the BOLD signal relative to
a blank stimulus.

Model fitting
We fit the SOC model to each voxel using response amplitudes

to the SPACE, ORIENTATION, GRATING, PLAID, CIRCU-
LAR, and CONTRAST stimuli. Model fitting was performed
using nonlinear optimization (MATLAB Optimization Toolbox)
with the objective of minimizing squared error. The predicted
response to a given stimulus was obtained by computing the
response of the model to each of the nine images comprising the
stimulus and then taking the average across these responses.

Fitting all of the parameters in the SOC model (r, s, x, y, s, c, n,
g) simultaneously is computationally prohibitive. To reduce
computational requirements, we determined a single set of
canonical values for the r and s parameters before fitting the
remaining parameters (detailed below). This strategy has the
additional benefit of simplifying the interpretation of the model;
for example, voxel-to-voxel differences in the overall strength of
normalization can be solely attributed to differences in the n
parameter and not differences in the r and s parameters (see
Figure 9B).

Our fitting approach was as follows. To determine a single set of
canonical values for the r and s parameters, we selected from each
subject the ten voxels in V1 with the highest GLM cross-validation
accuracy and exhaustively evaluated each combination of r and s,
where r is chosen from {.01 .05 .1 .2 .3 .4 .5 .6 .7 1 1.5 2} and s is
chosen from {.002 .005 .01 .02 .05 .1 .2 .5 1 2 4 8}. For each
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combination of r and s, we optimized x, y, s, and g with c fixed to
0.9 and n fixed to 0.5, and then optimized all of these parameters
simultaneously. On average across voxels, the values that
produced the best fits were r = 1 and s = 0.5. We then fixed the r
and s parameters to these values and fit the remaining parameters
of the model for every voxel. To guard against local minima, we
used a variety of initial seeds for the c and n parameters. For every
combination of c and n, where c is chosen from {.1 .4 .7 .8 .85 .9
.95 .975 .99 .995} and n is chosen from {.05 .1 .2 .3 .4 .5 .6 .7 1},
we optimized x, y, s, and g with c and n fixed, and then optimized
all of these parameters simultaneously.

The SOC model was fit using two different resampling schemes.
In the full fit scheme, we fit the model to the entire set of responses.
This was used to derive best estimates of the parameters of the
SOC model. In the cross-validation scheme, we fit the model using
five-fold cross-validation (random selection of folds). This was used
to obtain unbiased estimates of the accuracy of the SOC model.

Model accuracy
Accuracy was quantified as the percentage of variance

explained (R2) in the measured response amplitudes by the cross-
validated predictions of the response amplitudes:

R2~100| 1{

P
i

di{mið Þ2

P
i

dið Þ2

0

B@

1

CA

where di indicates the ith measured response amplitude and mi

indicates the ith predicted response amplitude. The R2 value
indicates the percentage of variance relative to 0 that is predicted
by the model. Note that defining R2 with respect to deviations
from 0 as opposed to deviations from the mean (which is the
typical statistical formulation) avoids the arbitrariness of the mean,
which varies depending on the specific data points under
consideration.

Model accuracy was compared to the noise ceiling, defined as the
maximum accuracy that a model can be expected to achieve given
the level of noise in the data [70,71]. Noise ceiling estimates were
obtained using Monte Carlo simulations in which a known signal
and noisy measurements of the signal are generated and the
expected R2 between the signal and the measurements is
calculated. In these simulations, the signal and noise are assumed
to be Gaussian-distributed with parameters matched to the
response amplitudes and associated error bars obtained from each
voxel [see 11 for additional details]. Model accuracy was also
compared to a flat response model that simply predicts the mean
response for every stimulus.

To obtain a metric of model accuracy that is adjusted for the
noise ceiling and the flat response model, we define percent
explainable variance as

PEV~100|
R2{FR

NC{FR

where R2 indicates the raw performance of the model, FR indicates
the performance achieved by the flat response model, and NC
indicates the noise ceiling. For example, 50% explainable variance
means that the amount of variance predicted by a model is
halfway between the amount of variance predicted by the flat
response model and the maximum amount of variance that can be
predicted given the noise in the data.

As an additional assessment of model accuracy, we took the fits
of the SOC model from the main experiment (full fit scheme) and

predicted the response amplitudes in the object experiment. To
compensate for instability in the gain of response amplitudes
across scan sessions (e.g. due to imperfections in co-registration),
we allowed a non-negative scale factor to be applied to the
predicted response amplitudes before computing R2 values. For
fair comparison, the simulations used to estimate the noise ceiling
for the object predictions also included the scale adjustment.

Simplified versions of the SOC model. We compared the
SOC model with the CC, DN, and CSS models, which are
simplified versions of the SOC model (see Figure 2C). Model
fitting proceeded similarly for the simplified models, including
using cross-validation to estimate model accuracy. For the CSS
model, we exhaustively evaluated each combination of r and s; the
remaining parameters were optimized by first optimizing x, y, s,
and g with n fixed to 0.5, and then optimizing the parameters
simultaneously. We also tested an alternative version of the CSS
model in which canonical values for the r and s parameters are
determined before fitting the remaining parameters of the model,
similar to the fitting strategy for the SOC model. The
performance of this model was similar to the fully-optimized
CSS model, so we report results for only the latter model. For the
CC and DN models in Figure 3, since the grating stimuli do not
vary in space, we fit both models assuming spatial summation at
the center of the visual field. For the DN and CSS models in
Figure 4, the parameters controlling the strength of divisive
normalization (r, s) were fixed to the values determined in the
example of Figure 3.

Additional control models. Besides the CC, DN, and CSS
models, several additional control models were evaluated. The
linear second-order (LSO) model is identical to the SOC model
except that the squaring operation in the computation of second-
order contrast is omitted. The flexible spatial pool (FSP) model is
identical to the DN model except that the spatial scale over which
normalization occurs is flexible and fit to the data. The FSP model
was implemented by smoothing the map of population activity
with a 2D Gaussian before divisive normalization. For each voxel
we performed an exhaustive search over a range of Gaussian sizes
to determine the optimal model fit. Reduced models 1–4 (RM1,
RM2, RM3, RM4) are simplified versions of the SOC model (see
Figure 8A). The RM1 and RM4 models use a fixed square-root
nonlinearity after the computation of second-order contrast in
order to maintain the scale of the computation. Versions of these
models that omit the nonlinearity altogether perform even worse
(results not shown).

Alternative methods for model selection. Cross-validation
is a simple but computationally intensive technique for estimating
the prediction error of a model (i.e. the error of the model on data
not used to train the model). Alternatively, there are analytic
methods that estimate prediction error—these include Akaike’s
information criterion (AIC) and Bayesian information criterion
(BIC). Assuming Gaussian noise and adding a correction for small
sample sizes, AIC is equal (up to additive constants that do not
depend on the model) to n log(SSE/n)+2k+2k(k+1)/(n–k–1) where n
is the number of data points, SSE is the sum of the squares of the
residuals of the model fit, and k is the number of free parameters in
the model. Assuming Gaussian noise, BIC is equal (up to additive
constants) to n log(SSE/n)+k log(n). The model that minimizes AIC
(or BIC) is selected as the best model [for details, see 64,72]. We
calculated AIC and BIC for the CC, DN, CSS, and SOC models
and confirmed that these metrics provide similar results to cross-
validation (see Supporting Figure S1). Note that AIC and BIC are
sensitive to the scale of the data, so to aid interpretation the data
from each voxel were z-scored prior to the calculation of AIC and
BIC.
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Estimation of receptive field location. Although receptive
field location can be inferred from the fits of the SOC model, it is
simpler and more convenient to derive receptive field location
from the fits of a purely spatial model. We used a spatial model
[11] in which the predicted response is obtained by computing a
weighted (isotropic 2D Gaussian) sum of an image indicating the
location of the stimulus, followed by a static nonlinearity (power-
law function). We fit this spatial model to each voxel using
response amplitudes to the SPACE stimuli. We then derived
receptive field location as a contour at two standard deviations of a
2D Gaussian that describes the response of the model to point
stimuli. [This Gaussian has the same center as the model Gaussian
but has a standard deviation equal to the standard deviation of the
model Gaussian divided by the square root of the power-law
exponent; see 11.] Receptive field locations derived in this manner
are used in Figure 4 and in voxel selection procedures as described
below.

Voxel selection. After fitting the GLM to each voxel, we
selected for further consideration all voxels that have positive
GLM cross-validation accuracy (indicating that responses exhibit a
reliable relationship to the stimulus) and response amplitudes that
are positive on average (this excludes peripheral voxels which
typically exhibit negative BOLD responses to centrally presented
stimuli). These voxels were then used for all subsequent analyses,
with the following exceptions.

One exception was the cross-validation procedure for quanti-
fying model accuracy in the main experiment (Figures 6–8). For
this procedure we selected from each visual field map in each
subject the 10 voxels with the highest GLM cross-validation
accuracy (30 voxels total for each map). Note that GLM cross-
validation accuracy is not biased towards any particular stimulus-
response model. The number 10 was chosen to reduce compu-
tational requirements to tractable levels while also being
sufficiently large to produce reliable results (e.g. see error bars
on Figure 6). To verify that results do not depend on this particular
threshold level, we performed an additional analysis in which we
analyzed a larger number of voxels (50 voxels from each map in
each subject; 150 voxels total for each map) and systematically
varied the number of voxels used for model comparison
(Supporting Figure S1).

Another exception was the summary of model parameters
(Figure 9). For this we selected all voxels for which at least 90% of
the receptive field (as derived from the simple spatial model) is
contained within the stimulus bounds. This is a liberal criterion
that simply excludes voxels that were inadequately sampled by the
stimulus protocol.

Natural image simulations. To prepare a collection of
natural image patches, we obtained photographs from the McGill
Colour Image Database [73]. The photographs were converted to
grayscale luminance values based on supplied calibration infor-
mation and downsampled by a factor of two to reduce high-

frequency noise. From the photographs we randomly extracted
10,000 image patches (33 pixels633 pixels) and filtered these
patches using the same band-pass filter used to construct the
experimental stimuli. We then took each patch, created a version
of the patch in which the phases of the Fourier components are
randomized, and jointly scaled the contrast of the intact patch and
the phase-scrambled patch to fill the full luminance range.

We computed the response of the SOC model to the full set of
image patches. The n and c parameters of the model were matched
to typical values found in V2 (n = 0.13, c = 0.993; see Figures 9b
and 9c) and the g parameter was set such that the average response
across all patches is 1. For simplicity, the parameters relating to
spatial weighting (x, y, s) were omitted from the model, and spatial
constraints were enforced by simply matching the patch size to the
typical receptive field size in V2 at 2u eccentricity (2.8u; see
Figure 9A). We also computed the response of a control model
identical to the original model except that the c parameter is set to
0. Setting c to 0 eliminates the second-order contrast effect from
the SOC model.

Public datasets and software code
Example datasets and code implementing the SOC model are

provided at http://kendrickkay.net/socmodel/.

Supporting Information

Figure S1 Model selection using alternative metrics and
different threshold levels. As an alternative to cross-
validation, we evaluated the accuracy of the CC, DN, CSS, and
SOC models using Akaike’s information criterion (AIC) and
Bayesian information criterion (BIC). Here we plot model
accuracy as a function of the number of voxels considered (voxels
are selected based on GLM cross-validation accuracy; see
Methods). Lines indicate the median accuracy across voxels in a
given visual field map, and shaded regions indicate standard error
(68% confidence intervals). Trends in model performance are
consistent across metrics and are robust with respect to the
number of voxels used in the model comparison.
(TIF)
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