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ABSTRACT 

In this paper we explore a method for automatically gen-
erating Carnatic style rhythmic. The method uses a set of 
annotated Carnatic percussion performances to generate 
new rhythmic patterns. The excerpts are short percussion 
solo performances in ādi tāla (8 beat-cycle), performed in 
three different tempi (slow/moderate/fast). All excerpts 
were manually annotated with beats, downbeats and 
strokes in three different registers — Lo-Mid-Hi. N-gram 
analysis and Markov chains are used to model the rhyth-
mic structure of the music and determine the progression 
of the generated rhythmic patterns. The generated com-
positions are evaluated by a Carnatic music percussionist 
through a questionnaire and the overall evaluation pro-
cess is discussed. Results show that the system can suc-
cessfully compose Carnatic style rhythmic performances 
and generate new patterns based on the original composi-
tions.  

1. INTRODUCTION 
Automatic generation of music has been a focus of com-
putational music research for a long time. Researchers 
have been designing systems to imitate or compose vari-
ous musical styles from Classical to Jazz music [1], [2]. 
Despite the progress achieved so far in the development 
of generative music systems for Western music genres 
there is limited work regarding methodologies of auto-
matic generation of music in non-western styles.  
In this paper, we propose CAMeL an automatic music 
generation system, which focuses on the generation of 
Carnatic style rhythms. Carnatic music is an art music 
tradition from South India with a long history, which has 
its own musical grammar and significant musicological 
literature [3]. Carnatic music has a very well defined 
rhythmic framework and an interesting rhythmic struc-
ture, which makes it interesting and challenging to ex-
plore in an automatic music generation system. The ap-
proach proposed in this paper is focused on percussion-
based Carnatic music style rhythms using a set of anno-
tated training data of music excerpts. The annotations 
include the stroke register (Lo-Mid-Hi), the inter-onset 
interval duration of the strokes and the amplitude of the 
music excerpts. By extracting these features the system is 
capable of automatically generating new rhythmic pro-
gressions stylistically similar to the training composi-

tions. N-gram analysis and statistical learning is used to 
model the rhythmic structure using the extracted features. 
Markov chains are then used to build the rhythmic devel-
opment and describe the pattern transition likelihoods of 
the generation sequences. The system generates rhythmic 
patterns based on an n-gram input. If a five-gram analysis 
is selected then the algorithm generates the strokes using 
the transition probability of the five-grams.  
The proposed method for generating rhythmic pattern 
progression of Carnatic style music was evaluated by a 
professional Carnatic percussionist — Akshai Anantap-
admanabham. The same percussionist composed and per-
formed the datasets for training the system. The evalua-
tion is based on feedback of the rhythmic structure and 
development of the generated sequences compared to a 
human-based performance. The results of the evaluation 
provide insights into the rhythmic organization and inter-
pretation of the generated rhythmic patterns.  
Musicians can use the proposed system for creative pur-
poses in their performance and training. It can be also 
used as a tool in music education as a means of actively 
enculturing lay people into this music style; for example, 
by creating software applications that include generative 
systems of Carnatic music, allowing users to “play” Car-
natic music percussion on mobile devices and get en-
trained in this style by getting familiar with the underly-
ing rhythmic structure and grammar of this music. 
The paper is organized as follows: section 1.1 presents 
background information on the rhythmic structure in 
Carnatic music while section 2 presents previous research 
on automatic music generation methods. Section 3 de-
scribes the proposed approach while section 4 discusses 
the evaluation of the method. Discussion and Conclusions 
are drawn in sections 5 and 6 respectively. 

1.1 Rhythmic structure in Carnatic music 
The rhythmic framework of Carnatic music is based on 
the tāla, which provides a structure for repetition, group-
ing and improvisation. The tāla consists of a fixed time 
length cycle called āvartana, which can also be called the 
tāla cycle. The āvartana is divided into equidistant basic 
time units called akṣaras, and the first akṣara of each 
āvartana is called the sama [3]. Two primary percussion 
accompaniments in Carnatic music are the Mridangam 
and Kanjira. The Mridangam is made of a cylindrical 
shell with stretched membranes on either side of the in-



strument body. While one side is loaded with a black 
paste that creates a pitched tone, the other membrane cre-
ates a bass-like sound. The Kanjira on the other hand is a 
frame-drum, with a tonally rich membrane. Unlike the 
Mridangam, the Kanjira is not tuned to a specific key, but 
it can cover a wide range of frequencies with especially 
rich lower frequencies. The rhythmic complexities of 
Carnatic rhythm are especially showcased during the solo 
or taniavartanam. First, each instrument performs sepa-
rately and then they trade off in shorter cycles with a pre-
cise question-answer like session, followed by a joint 
climactic ending. All training excerpts used in the pro-
posed generation method were performed by the Kanjira 
drum in the context of a concert solo. We decided to use 
the Kanjra compositions as a training corpus because the 
strokes had a simpler frequency distribution compared to 
the Mridangam. 

2. RELATED WORK 
Probably the most popular study of musical style imita-
tion is David Cope’s Experiments in Musical Intelligence 
(EMI) system. EMI analyzes the score of MIDI sequenc-
es in terms of patterns and stores the patterns in a data-
base where the system learns the style of a composer giv-
en a number of training examples [4]. Bel and Kippen [5] 
present the Bol Processor, a software system that models 
tabla drumming improvisation. The system is based on a 
linguistic model derived from pattern languages and a 
formal grammar that has the ability to handle complex 
structures by using a set of training examples. Dias and 
Guedes in [1] discuss a contour based algorithm for real 
time automatic generation of jazz walking bass lines, 
following a given harmonic progression. The algorithm 
generates melodic phrases that connect the chords in a 
previously defined harmonic grid, by calculating a path 
from the current chord to the next, according to user-
defined settings controlling the direction and range of the 
melodic contour. Biles in [2] developed a generative sys-
tem for composing jazz solos based on a genetic algo-
rithm, which starts with some initial musical data initial-
ized randomly or by human input. Using a repeated pro-
cess similar to biological generation the system produces 
similar musical data. Dias et al [6] present the GimmeD-
aBlues app that allows the user to play jazz keyboard and 
solo instruments along a predefined harmonic progres-
sion, by automatically generating the bass and drums 
parts, responding to the user’s activity. Assayag, Dubnov 
and Delerue [7] proposed a dictionary based universal 
prediction algorithm that provides an approach to ma-
chine learning in the domain of musical style. Operations 
such as improvisation or assistance to composition can be 
realized on the resulting representations. The system uses 
two dictionaries, the motif and continuation. A generation 
algorithm is used to predict a sequence based on the motif 
dictionary. The continuation dictionary gives probabili-
ties of various continuations and is used to determine the 
next symbol. Pachet discusses the continuator [8] an in-
teractive imitation system, which generates new melodic 
phrases in any style, either in standalone mode or as con-
tinuations of musician’s input. The system is based on an 
incremental parsing algorithm to train a variable-length 

Markov chain that stores possible probabilities of se-
quences. The system progressively learns new phrases 
from a musician and develops a robust representation of 
his or her style. A framework for generating similar var-
iations of guitar and bass melodies is proposed in [9]. The 
melody is initially segmented into sequences of notes 
using onset detection and pitch estimation. A set of hier-
archical representations of the melody is estimated by 
clustering the pitch values. The pitch clusters and the 
metrical locations are then used to train a prediction 
model using variable-length Markov chain.  

3. SYSTEM IMPLEMENTATION  

3.1 Dataset 
The training corpus consisted of 8 percussion solo 
compositions in ādi tāla (8 beat- cycle) in three different 
tempo levels (slow/moderate/fast). The compositions 
were performed by Akshay Anantapadmanabham, in the 
Kanjira. These examples were recorded using a 
metronome.  
All excerpts were manually annotated using Sonic 
Visualizer [10] including the sāmā  and the other  beats 
comprising the tāla. Each stroke event was coded as a 
string based on its register (Lo-Mid-Hi), the inter-onset-
interval (IOI) between strokes and a value indicating the 
velocity of the stroke. The fourth author annotated the 
music excerpts by using the following process: The met-
ronome was recorded in a separate channel and used as 
reference for each performance. A note onset transfor-
mation was estimated for the audio track by which note 
onsets were detected. By looking at the note onsets, the 
spectrogram of the sound and by listening to it at a re-
duced playback speed, the different types of strokes were 
categorized into three categories and the annotation 
marker positions were manually adjusted. Based on the 
spectrogram analysis, the frequency spectrum of the 
strokes was divided into three frequency bands (low, mid 
and high) depending on the frequency content of each 
stroke (110-190 Hz for low, 190-600 Hz for mid and 600-
1200 Hz for high strokes). Although the Kanjira has a 
richer variety of registers and strokes, the reduction to 
three registers was a step to simplify the different stroke 
definition. This reduction was validated by Anantap-
admanabham as a process to faithfully encode the differ-
ent strokes in the Kanjira. The normalized velocity values 
of the strokes were obtained by computing an onset de-
tection function, and estimating its amplitude level with a 
value between 0.2 and 1 according to the strength of the 
stroke. In the present work, the complex domain onset 
detection [11] was used to compute the onset detection 
function implemented in the Vamp-plugins in version of 
Sonic Visualizer. Table 1 lists the coded feature values 
used to model each stroke event. 

  



 

Features Value 
Register Lo-Mid-Hi 

IOI duration (sec)     T1     = 2  

    T2     = 1.75  

    T3      = 1.66  

    T4     = 1.5    

    T5     = 1.33 

    T6      = 1.25  

    T7      = 1    

    T8      = 0.75  

    T9     = 0.66  

    T10   = 0.5  

    T11   = 0.33  

    T12   = 0.25  

    T13   = 0.16  

    T14  = 0.125  

       Velocity V1 (0.2)  
V2 (0.5) 
V3 (1.0) 

 
Table 1. Features for modeling stroke events. 

3.2 N-gram model 
All coded stroke events from the compositions were 
merged in a single training corpus to learn a statistical 
model. We used n-gram analysis to model the underlying 
rhythmic progression of the strokes in the training data. 
The general n-gram definition is given in (1), while the 
representations of a unigram, bigram and trigram are giv-
en in (2), where s denotes a stroke event.  
 
             p(si s1,..., si−1) = p(si si−n+1,..., si−1)         (1) 

                               

              
unigram :
bigram :
trigram :

            
p(si )
p(si si−1)

p(si si−2 , si−1)

            (2) 

An example of a trigram encoding the strokes is given 
below: 

MidT10V1   LoT12V3    LoT12V3 

This trigram consists of three stroke events. The first 
stroke has a Mid register with an eighth note duration 
performed with 0.2 velocity followed by two strokes with 

Lo register and sixteenth note duration performed with 
1.0 velocity. 
We estimated the n-gram probabilities up to a five-gram 
by counting the frequency of the strokes on the training 
corpus where N is the total numbers of stroke events in 
the training data. The unigram and bigram probabilities 
are calculated using equations (3) and (4) where sa de-

notes a particular stroke event, sb its preceding stroke and 

c the count of a stroke: 
 
                    p̂(sa ) =

c(sa )
N

                                (3) 

 

         p̂(sb sa ) =
c(sa, sb )
Σsbc(sa, sb )

≈
c(sa, sb )
c(sa )

              (4) 

 
The n-gram model provides the transition probabilities 
between stroke events. For example, consider the case of 
a bigram model where two stroke events are present. The 
first tagged as Mid stroke register with a quarter note 
duration and with 0.2 velocity value and the second as a 
Lo stroke register with a sixteen note duration and veloci-
ty value of 0.2. What would the probability be that the 
next stroke will be a Lo stroke register with a sixteen note 
duration and high velocity given the previous stroke 
events representation? 
We computed all the n-grams probabilities up to a five-
gram because we wanted to test how past information and 
size of accumulated memory could affect and change the 
generation process. All n-gram probabilities were stored 
in tables to be used later during the generation process. 
The generation process used these data to generate new 
strokes events sequentially. Given a sequence of strokes, 
a stroke event is generated based on the weighting proba-
bility of the most likely stroke to follow given the previ-
ous strokes. 

3.3  Generation 

The generation process depends on the n-gram selection 
of and on the number of stroke events. If a trigram is se-
lected the generation starts with the first trigram of the 
training file. The next stroke event is generated based on 
the probabilities of trigrams that start with the last two 
stroke events in the generated sequence. When the stroke 
event is generated the algorithm looks for the next last 
two stroke events in the sequence to generate the next 
stroke and search again for the highest probability of tri-
grams that start with the last two stroke events. This pro-
cess is iterative until the number of initial selected stroke 
events is reached. The overall process is presented in 
Figure 1.  

 
 



 

Figure 1. Generation process using a trigram model and 
probability estimation. 

4. EVALUATION 
Several approaches for the evaluation of generative music 
systems have been proposed in the past. Researchers have 
tried to use Turing tests [12] to compare the output be-
tween computer-aided and non-computer aided composi-
tions by measuring the degree of perceptual quality. This 
model has been criticized in the past for its application in 
executing and evaluating listener surveys [13]. Pearce 
and Wiggins [14] use a set of musical examples to train a 
genetic-algorithm based system. A discrimination test is 
used to evaluate whether the output of the system can be 
distinguished from the training compositions. Cont, Dub-
nov and Assayg [15] evaluate a generative system using 
the same model as a classifier. The model is trained for a 
particular style of music and outputs a probability to a 
given music excerpt. A quasi-Turing test is used in [5] to 
evaluate the Continuator. The evaluation is used to assess 
to what extend a listener can determine that a melody 
generated by the system was composed or played by a 
human or by a machine. Collins [16] evaluates an algo-
rithmic system that creates electroacoustic art music by 
using three expert composer judges. They evaluate the 
system based on how music material was assembled its 
form, structure and instrumentation. The authors in [9] 
use a group of experts to evaluate an automatic guitar and 
bass phrase continuation melody system. Their feedback 
is related to the type of similarities and differences they 
notice between the original and generated examples and 
the aesthetic outcome.  

Since we are interested in generating new sequences of 
Carnatic music percussion from the training data and 
there is no benchmark dataset for music generation per-
formance of other systems we decided to conduct a pre-
liminary evaluation based on the feedback of the musi-
cian who also provided the dataset. The fact that 
Anantapadmanabham is an expert in Carnatic music per-
cussion and also provided the dataset that we used for 
analysis provides a unique set of conditions to do a pre-
liminary evaluation of the generative model and this ap-
proach. 

A questionnaire was prepared and presented to Anantap-
admanabham. The new sequences were generated using 
different n-grams (bigram, trigram, fourgram and five-
gram) with duration of 2 minutes each. He was asked first 
to listen to the compositions as many times needed to get 
familiar with the rhythmic structure and development of 
the excerpts and then answer the questionnaire.  
Examples of the generated excerpts can be downloaded at 
https://github.com/Trochidis/CAMeL-Carnatic-
Percussion-Music-Generation-Using-N-Gram-Models. 
Anantapadmanabham was first asked to judge if the gen-
erated compositions contained recognizable Carnatic mu-
sic rhythmic patterns, which he positively answered. The 
next question of the form was related to the short-term 
level of rhythmic structure asking if the rhythmic patterns 
were occurring in metrical appropriate positions. He an-
swered that sometimes they were and others they were 
not. Based on his feedback there were certain strokes, 
particularly in the percussive roll sections of the generat-
ed compositions that they were repeated consecutively. 
This sometimes created a feeling that the same succession  
of strokes kept playing without variation which does not 
usually happen in the rhythmic structure of Carnatic mu-
sic. The next question was related to the long-term evolu-
tion and rhythmic progression asking if the rhythmic 
structure of the generations evolved in time as expected 
in this style. He answered that most of the generated 
compositions in particular the ones with the shorter 
memory (bigram-trigram) failed to capture the long-term 
rhythmic structure and the correct transition between 
longer rhythmic structures. 
His additional comments were that n-grams with larger 
memory such as fourgrams and fivegrams were more 
successful in capturing Carnatic rhythm groupings com-
pared to bigrams or trigrams and contained more rhyth-
mic patterns in resemblance with the original Carnatic 
music patterns. 

5. DISCUSSION 
This work presents a method for automatically generating 
new Carnatic style rhythmic patterns based on a set of 
training examples. An n-gram analysis and Markov 
Chains are used to model short and long-term patterns 
and represent rhythmic progressions. Based on the ex-
pert’s feedback the method is able to generate recogniza-
ble Carnatic-style rhythmic patterns with some success. 
The evaluation indicates that the n-gram analysis is more 
successful on capturing short-term rhythmic patterns 
compared to long-term ones. Moreover, larger n-grams 
such as fourgrams or fivegrams generate more appropri-
ate and interesting Carnatic style rhythmic patterns. This 
is due to the fact that they are more successful in model-
ing the long-term pattern transitions compared to shorter 
structures such as unigrams and bigrams. An improve-
ment over the current method will be to implement a 
cluster analysis to the larger n-grams i.e fivegrams or 
sevengrams and generate rhythmic patterns based on the 
cluster transitional probabilities. This might improve the 
rhythmic representation and progression of long-term 
rhythmic structures compared to the one implemented in 
our current system. 

Input 
MidT12V1  MidT14V1  LoT8V1

Output 
MidT12V1  MidT14V1  LoT8V1  MidT14V1

Generation ….

Next Possible Trigrams 
MidT14V1 LoT8V1 MidT14V1       0.6667
MidT14V1 LoT8V1 HiT11V2          0.1111
MidT14V1 LoT8V1 MidT14V2       0.1111
MidT14V1 LoT8V1 LoT8V1           0.1111

Probability



Another approach to tackle the problem of long-term rep-
resentation of rhythmic progression is to use a Long 
Short Term Memory Recurrent Neural Network (LSTM-
RNN) [17]. LSTM RNNs are capable of learning long-
term dependencies and have been used successfully in 
language modeling and speech recognition. The LSTM 
RNNs architecture is based on a dynamic memory with 
cells that stores information about the previous states. 
They can combine previous states and current memory to 
make decisions and efficiently capture long-term depend-
encies by dynamically changing their memory.  

6. CONCLUSION 
In the present paper, a method for automatically generat-
ing Carnatic style rhythmic patterns is explored. By ex-
tracting features such as the stroke register (Lo-Mid-Hi), 
inter-onset interval duration of the strokes and amplitude 
of the strokes the system is capable of automatically gen-
erating new rhythmic progressions stylistically similar to 
the training compositions. N-gram analysis and statistical 
learning is used to model the rhythmic structure and build 
the rhythmic development using the extracted features. 
The generated outcome was evaluated by a professional 
composer and percussionist of Carnatic music in terms of 
rhythmic development and musical aesthetics. Feedback 
from the evaluation shows that the method is capable of 
generating new interesting Carnatic style rhythmic pat-
terns by training on previous data. Future work will test 
the method on a larger dataset of recordings and evaluate 
the effectiveness of the method by conducting a percep-
tual study using a group of professional Carnatic musi-
cians. Furthermore, we would like to perform a statistical 
analysis of the evaluation results to test the percentage 
and the strength of the generated excerpts that were posi-
tively evaluated by the human-experts. Finally, we aim to 
test the method against other approaches such as cluster-
ing and deep belief networks. 
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