Transforming musical rhythms: meter and syncopation

George Siordsand Carlos Guedes

!Faculdade de Engenharia da Universidade do Porto
gsioros@nuai | . com

2NYU Abu Dhabi
cag204@vyu. edu

Abstract. Syncopation is a rhythmic phenomenon found inoterimusical cul-
tures. In this paper, we present a formalized motisyncopation. It consists of
a limited set of simple rhythmic transformationatttake the form of displace-
ment of musical events. The transformations aredas fundamental features
of the musical meter and syncopation, as seen &amgnitive and a musical
perspective. Starting from a binary pattern the ehggnerates a large number
of output patterns by applying a series of thesf@mations. The patterns are
then organized in tree structures that can be be#idfor analysis and genera-
tion of syncopation.
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1 Introduction

Rhythmic syncopation is essential for several andrde styles of western music, as
well as for certain non-western music. It often duces rhythmic complexity and
tension [1, 2 p. 310, 3]. Definitions describe sypation as a contradiction to the
prevailing regularities of the rhythm commonly eagged in the musical meter [4].
Musicological definitions describe the concept phcopation [4, 5] in more detail
while musicians focus on the technique. More forpeal definitions approach it as a
matter of magnitude [6—10] and define metrics f@asuring the amount of syncopa-
tion. Other studies are limited to specific cadeld pr music styles [6, 12].

Recently we presented an algorithm that allowgHermanipulation of syncopation
in binary patterns [13]. Here, we extend the atpamito a set of formalized generic
transformations that can analyze, generate andpuiaig the syncopation in binary
patterns. The transformations are based on theitn@yaspects of the phenomenon
related to metrical expectations [2].

Using the transformations, one can generate a tomdtiof rhythms starting from a
single pattern in a formalized and systematic Wéde generated patterns are natural-
ly organized in tree structures. Patterns belongindpe same tree originate from the
same root, i.e. they originate from the same narc@pating pattern. The tree struc-



ture can be useful in developing models for clusterhythms together or in defining
measures of rhythmic similarity and distance.

In section 2, we provide with a brief descriptiohtlee main syncopation defini-
tions and measures related to our model. In se8tiave describe a way of automati-
cally constructing a metrical template and how itsinbe adapted for modeling syn-
copation. In section 4 we describe the transfaonatfor binary patterns and we
present the concept a syncopation tree as a steuiiuorganizing rhythmic patterns.
Finally, in section 5, we present the main condasiof this study.

2 Definitions of Syncopation

Musical meter as a cognitive mechanism expresses)@ectations about when music
events will occur [14]. Meter is evoked by the ragities in the music and has the form
of alternating strong and weak pulses. Strong putsincide with regularly occurring
events [8]. Syncopation has been described as#lied of surprise that arises when a
rhythmic event that was anticipated at a particolament does not actually occur [2].

Longuet-Higgins and Lee presented a model thattiftesnthe syncopation in the
pairs of notes and the rests or tied notes thiwiolhem [15]. Accordingly, a rest or
tied note in a strong metrical position precededbyevent in a weaker metrical posi-
tion constitutes syncopation. David Huron, in higdg of the American popular music
[6], used a similar definition using the term “Laell. Behind both definitions lies the
same expectation principle: an event in a weakicad{position is bound to an event in
the following strong metrical position and when éx@ected strong note does not occur
the weak one is left hanging [2 p. 295].

Longuet-Higgins and Lee assigned metrical weightfi¢ metrical positions of the
bar in order to quantify the metrical strength atle pulse. The weights correspond
directly to the metrical level that each positioitiates (see section 3 for a more de-
tailed description). In Fig. 1, the metrical levelsa 4/4 meter are shown. If one
would number the 5 levels starting with 0 for thenest, the metrical weights would
be the negative of those indexes (i.e. from -4)td_6nguet-Higgins and Lee defined
syncopation as a note onset in a position witvau@ight that is not followed by an
onset in the following pulse with a higher weight.

David Temperley explored the uses of syncopatioroak [11], using a definition
that bears strong resemblance to the Longuet-Hsgail Lee definition and Huron'’s
expectation principle. In his study, he defined tilven as the displacement of events
from metrically strong positions to preceding weadees.

The above definitions suggest that a formalized wfgescribing the underlying
meter is needed before we are able to manipulatesyhcopation in a rhythmic pat-
tern. We need, therefore, to construct a metrimaiplate that corresponds to the time
signature. In the next section we describe sudnwlate, and an automatic way of
constructing it. It will serve as the basis fortAlk manipulations that follow.



3 Construction of aMetrical Template

Complex music, even when it is not repetitive fien evokes the sensation of a regular
pulse in listeners that becomes evident when thpyirt synchrony with the music. A
single music can evoke simultaneously more tharsank pulse sensations with differ-
ent durations [16]. When those pulses are ovetitedg form a hierarchical structure like
the one in Fig. 1 where slower layers have pulsatihns that are integer multiple of
all faster ones [17, 18]. The various pulses hafferdnt metrical strength values that
represent the alternating strong and weak beatsnomty found in a musical meter.
Similarly to the metrical structure used by LongHéggins and Lee in their syncopa-
tion definition [15], each pulse initiates a medtitevel according to the time signa-
ture and its metrical strength is proportionaltiattlevel, e.g. the quarter notes or the
sixteenth notes found in a 4/4 bar. The pulsestitatesa metrical grid which quan-
tizes the time positions of the onsets of the evént rhythmic pattern resulting into
a binary representation of the rhythm.

The metrical template is constructed automaticédly each time signature and
tempo by successively subdividing the durationhef bar into faster metrical levels.
For example, the 4/4 meter can be subdivided ifitsttwo half notes, then each half
note into two quarter notes, each quarter notetimtoeight notes and so on, until the
fastest metrical subdivision is reached. The ntiievels are indexed by numbers
(hereafter metrical indexes) starting with the nem® for the slower one. The met-
rical strength of a pulse is then proportionalhe imetrical index of the corresponding
level. The stronger a pulse is, the slower the icadtlevel it belongs to (lower index),
so that weak pulses belong to faster metrical teykigher indexes). In Fig. 1, an
example of such a metrical template is given. Aailed description of an automatic
way of generating a metrical template for any gitieme signature can be found in
[19].

The lower threshold for the duration of a metrisabdivision has been estimated
in several studies to be roughly around 100ms20621 p. 29]. Therefore, the fastest
metrical subdivision that is included in the meadtitemplate must respect this bound-
ary and therefore depends on the tempo.

An upper threshold for the duration of the metrigalels needs also to be deter-
mined. The need for such a threshold becomes appareen one tries to de-

duration in ms:

% 1?28 JO 0 high threshold = 1000ms
375 é
160 bpm 51)§77§ .ﬁ low threshold = 100ms

Fig. 1. Exampleof a metrical template for a 4/4 meter. The mes$esticcessively subdivid
generating the 5 metrical levels. The metricalrgitle (ectangles) of each matcal positior
corresponds to the metrical levels it belongs toe Very fast metrical levels (below 100
duration) and very slow ones (above 1s duration)disregardedwhite rectangles). On the
right the index of each level is shown (0 — 2)
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Fig. 2. Syncopatiorat slow metrical levels. A: a pattern syncopatittha eighth note metric
level. B: The same pattern at half speed. Abovetie patterns theorresponding metric
template is shown. The black rectangles repreberibéat level.

syncopate certain rhythmic patterns. For examplaehé patterns of Fig. 2, one will
follow different approaches for pattefandB. While in patternA, the tied eighth
note should clearly be moved to the following gemrtote, in patters, the tied quar-
ter note falls on the beat and therefore is nositared syncopation.

However, the two cases are identical with respedhé definitions presented in
section 2. The difference between the two is tredation to what is considered to be
the beat level (or tactus), that is the most stimetrical level. The metrical salience
of each level depends predominantly by its duratiath a peak salience in the region
between 500ms — 1s [16, 21 chap. 2]. As the exaoffigg. 2 illustrates, syncopation
involving slower metrical levels than the beatds felt as strong.

We chose the level that falls in the range betwe@®ms and 1s as the slowest
metrical level represented in our structure. Faneple, in the case of the metrical
template of Fig. 1, a 4/4 meter at 160bpm (g.n75n3s), only 3 metrical levels sur-
vive with corresponding durations of 750ms (0), 13851) and 187.5ms (2).

4 Displacing Event Onsets

According to the Longuet-Higgins and Lee [15] aurbih’s [2 p. 295] definition of
syncopation, a syncopating event is an event ireakwnetrical position that is not
followed by an event in the next strong metricasipon. If this event was shifted to
the strong position the syncopation would be elated. With this observation in

J de-syncopation syncopation
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Fig. 3. The desyncopation transformation shift events forwarcslmwver metrical levels. TI
syncopation transformation shifts events backwerdaster metrical levels.



mind, the event at the weak position can be thoafjas belonging to the strong posi-
tion but been anticipated at an earlier positidmer&fore, one can imagine the inverse
shift as a way of generating syncopation at a gtroetrical position, i.e. by shifting
an event found at a strong position to an eanieigker pulse (Fig. 3). The transfor-
mations described in section 4.1 are such simgfesatf onsets in a binary pattern.
The following formalization of the transformatioosnsists of defining the conditions
under which such shifts remove or generate syn@mpat a given binary rhythmic
pattern. Applying the formalized transformation @minary pattern gives rise to the
syncopation tree, a network of interconnected pattedescribed in 4.2. In section 4.3
we provide with recursive algorithms for automdticgenerate specific branches.

4.1 TheTransformations

The transformations take a binary pattern and nudaip the syncopation by shift-
ing the onsets between the pulses according tm#tacal template. In order to elim-
inate the syncopation, one needs to shift forwhaedcorresponding event to a stronger
metrical position (Fig. 3, left). In a pattern wikveral syncopating events, each such
shift results in a new pattern with decreased gyation. After all events have been
shifted to non-syncopating positions, we call thsufting pattern a root. The de-
syncopation process moves events from fast metaeals to slower ones.

Syncopation is generated by anticipating eventseaker metrical positions (Fig.
3, right). Each shift of an event results in a mEattern with increased syncopation.
The syncopation process, opposite to the de-syticopprocess, “pushes” events to
the faster metrical levels. When all events are edow the fastest metrical positions
the resulting syncopated pattern cannot be fudhecopated.

A detailed description of the transformations faito

Syncopation. Onsets in pulses that belong to strong metricaitipms (slow metrical
levels, low metrical indexes) are shifted to préeggulses belonging to weaker met-
rical positions (faster metrical levels, higherdeindexes).

A strong pulse might be preceded by more than oeekwulses, e.g. a quarter
note is preceded by an eighth note but also bytaesith note (Fig. 4). We define as
the type of syncopation the value of the differenE¢he metrical levels of the two
pulses: the pulse that the onset belongs origiraitythe one that it is shifted"to

Each syncopation shift is described by a pair ofibers: the pulse that originally
carries the onset and the type of shift that theebandergoes. They can be thought of
as the “coordinates” of the transformation. Thespuhdex directly corresponds to the
“horizontal” coordinate. The type value correspotalthe vertical length of the arrow
that represents the shift (Fig. 4). In general, ltiger the type of the transformation
the fastest is the metrical level that the onsethifted to. Encoding the shifts into

1 Alternatively we could have encoded the transfiiom as the pair of pulses, the initial

pulse of the onset and the pulse it is shifted’tos way of encoding correctly describes the
particular transformation. However, as it will bew® apparent in the following, using the
level differences is a more general and more flexibpresentation.



0123456 738

) _
R »
! -
3 =3

Fig. 4. An example of the types of syncopation transfoiomet available for an onset at a spe-
cific pulse (pulse 8). White square represent tteegling pulses of faster metrical levels

are available for syncopating pulse 8. The reghefpulses have been greyed out. The corre-
sponding de-syncopation transformation is obtalmeteversing the direction of the arrows.

types of metrical level differences provides witle freedom to associate them either
to metrical positions, to metrical levels or to gfie onsets. The number of syncopa-
tion types that is available for each pulse depemdsow many faster metrical levels

exist in the template.

An onset cannot be shifted if one or more onsaiskoits way. This rule ensures
that the order that the events are performed isgpved. In the example of Fig. 4, we
could not apply the transformation (8, 1) if an@nwas found in any of the pulses 5,
6 or 7. The transformation is forbidden.

De-syncopation. The de-syncopation transformation is a direct eqnence of its
operational definition followed in this article |2 295, 15]. This definition attributes
the feeling to the event being anticipated. Howgether syncopation is only felt at the
moment of the following silent pulse and is retexsjvely attributed to the event being
heard. The following alternative phrasing of thérdgon puts the focus on to the silent
pulse where the syncopation is actually felt indtefithe onset that initiates itsyhco-
pation is found in the silent pulses that belong in strong metrical positions (dower lev-
els, lower indexes) and that are preceded by onsets in one of the immediately preceding
weaker metrical positions’. Thus, the two transformations are essentiallg time re-
verse of the other. The de-syncopation is appbeti¢ silent pulse by shifting the pre-
ceding onset. In Fig. 4, onsets that might be foumgulses 4, 6, or 7, can be de-
syncopated by reversing the direction of the arrdw$-ig. 5, de-syncopating pulse 8
is done by shifting the onset of pulse 6 to pul¢sdid arrow), yielding the correspond-
ing type and completing the pair (8, 2).

The de-syncopation can be thought of as the aBgbyscess yielding the type of
transformation that was previously applied in orttesyncopate. Because of the na-
ture of the transformation, it is essential to geewpate first the faster metrical levels
and then the slower ones. For example, if an eigefdund in pulse 5 in Fig. 5, in
order to de-syncopate pulse 8, we must first deyate pulse 6. That is equivalent
to reversing the order of the syncopation transédioms as well as the direction. The



----- syncopation of type =1
— de-syncopation -> type = 2

Fig. 5. If the order of onsets was not preserved durimgtthnsformations, the 1-1 correspond-
ence of the two transformations would be lost.

result of the de-syncopation would be the corredpantransformations (6, 1) and (8,
1) in the reverse order.

The de-syncopation transformations reveal an inambnteason for preserving the
order of onsets when syncopating and forbiddingagetransformations. Imagine an
onset originally existing in pulse 8 of Fig. 5 aadply the (8, 1) transformation
(dashed arrow). The de-syncopation of pulse 8 woesdlt in a different pattern than
the one we started with. Moreover, it would retardifferent transformation type (2
as we already saw). Thus, the two transformationsldvnot be reversible if two
onsets could reverse their order. Moreover, thiy the transformations are more
general and can be expanded to include phenomeoahts, such as pitch or timbre
changes, or other properties of the events thatake them distinct.

An important property of the transformations conaemut from the alternating
strong and weak pulses in the template. Since #a level is the slowest metrical
level included in the template, each transformatias local character; it displaces
events within the duration of a single Be@ee Fig. 6), either forward to slower met-
rical levels or backwards to faster ones. Thuy, fmttern longer than a beat can be
considered a concatenation of shorter and indepesitegle beat patterns.

[
root examples{
-

Fig. 6. The syncopation shifts can only move onsethémduration of a single beat.

2 The duration of the beat is offset by a singlésgio what commonly is considered the

duration of the beat (Fig. 6). The beat duratioretends ON the beat and includes all pre-
ceding pulses between the current and the previeat



4.2  The Syncopation Tree

The two transformations described above can be tsgeénerate syncopation trees.
Starting from a root pattern, one can apply allsiide combinations of transfor-
mations to generate a large number of patterngh®reft side of Fig. 7, we present
an example of how a branch is generated startorg the root pattern and applying a
series of transformations until we reach the enthefbranch where no onset can be
syncopated further. However, one could start from pattern and apply a series of
transformations to reach another pattern of theesaee.

The root pattern of the example has 3 events awdnsidered to be a repeating
loop (the first event is repeated at the end). Bitach consists of a set of transfor-
mations of specific types indicated by the two nerslnext to each pattern. The spe-
cific branch is generated by applying the transftions in a particular order. The
pairs of numbers form two arrays: 1) one contalres indexes of the pulses in the
particular order of the transformations and 2) skeond contains the type of each
transformation. The two arrays completely desctitgebranch. We refer to such cou-
pled arrays as the branch arrays.

The order of the transformations can change torgéme different branch. In the
right side of Fig. 7, we show the branches of theasponding syncopation tree that
include all possible permutations of the transfdromes in the left (solid lines, the
thick solid line is the branch shown in detail la¢ 1eft). Each dot in the right part of
the figure represents a specific pattern and eaetal transformation. It must be noted
that not all permutations are possible. Here, thesformation (8, 1) must always be
applied before the (6, 1) otherwise there will lbeomset in pulse 6 to be shifted. Each
pattern is connected to the root pattern in a nurabsteps that is independent of the
exact branch that one might follow. This is a gahproperty of all syncopation trees
and not of this particular example.
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Fig. 7. Left: An example of a branch starting from thetrpattern and finishing to an end pat-
tern that cannot be further syncopated. Right: Exarapa syncopatn tree (partially showr
The patterns are shown as dots and the lines chingeélsem correspond to the indicated trans-
formations. The thick line corresponds to the bhasitown on the left. The patterns showr
connected with the same set of syncopation tramsftions applied in a different order.



The entire tree is formed by several branchestlikeones shown in Fig. 7 and has
several ends. The number of ends depends on thbamwhpossible transformations
that can be performed. In our example, the 3 orisatsng to different beats and can
undergo 2 different transformations each. Therefaehave 2= 8 different ends in
this tree. In Fig. 7, we show only the branches tbad to the end pattern shown on
the left. The rest of the ends are connected tg#terns of the figure through the
dashed lines. Generating branches that connecifisgesttterns is equivalent to ana-
lyzing the relations between them.

4.3 Recursive Algorithms

De-syncopation. A recursive de-syncopation algorithm is providemtehas a means
of completely de-syncopating a binary pattern andirfig its root. The corresponding
branch consists in a series of transformationsesgad as a branch array, i.e. an order
array coupled to a type array. |

The de-syncopation process recursively appliessydeopation transformation on
each silent pulse that is found to syncopate tim¢ite is no syncopating pulse. Using
the output of the algorithm one can generate &#rimediate patterns from the corre-
sponding root pattern to the original input pattérhe root pattern is independent of
the order in which the pattern is de-syncopated.

Fig. 8 illustrates the process through an exanfpléses are examined in a certain
order and when a silent pulse is preceded by aatansa faster metrical level, the
onset is shifted as described in section 4.1. érettample the pattern is scanned from
right to left. However, the order in which the mgsare examined can be, in principle,
freely chosen.

puIsesJ:0123456789101112

N 0

1 input

b 2
binary pattern: O O
(2,1) @= @
(@]

de-syncopation

o ©0

root pattern: @)
output

Fig. 8. lllustration of a recursive de-syncopation procd$se metrical template shown corre-
sponds to a 6/8 meter at 180bpm (quarter note 8rh§0 Each onset of the binary patter
numbered in a circle. The de-syncopated procestsoiwn as arrows.



The following pseudo code illustrates the basipssie the de-syncopation algorithm:

##i nput s

bool PATTERN = {O1, @, ..., On}
int LEVELS = {L1, L2, ..., Ln}
int ORDER = {P1, P2, ..., Pni
##out put s

int outORDER = {enpty array}
int outTYPE = {enpty array}
## DE- SYNCOPAI ON LOOP
Repeat
For each position p in ORDER
if (J p]==FALSE AND L[ p] <=max(LEVELS)
r = Find_Precedi ng_Pul se(p)
if (Jr to p-1 r]==FALSE)
O r]=FALSE; d p] =TRUE// Shift onset r->p
Qut put PATTERN
Append p in out ORDER
Append (L[p]-L[r])in outTYPE
end
Until no onsets can be shifted
CQut put out ORDER, out TYPE

The above code makes use of a subroutine for fintltie preceding onset, if any:

Fi nd_Pr ecedi ng_Pul se(p)

LMN = L[p]
p--; CurrentM. = L[p]
Wiile (L[p] > LM N AND J i ] ==FALSE)
p--; CurrentM. = min(L[p], CurrentM)
End
If (Jp]==TRUE AND L[p]== Current M. AND L[ p]>LM N)
Return p
El se Return -1
End

The above code receives as input three arrayshelpattern as a binary string
(PATTERN), 2) the metrical template as an arrayhef metrical indexes (LEVELS)
and 3) the ORDER array which represents the omlevhich the pulses should be
scanned and the found syncopations should elimdnakbe algorithm outputs the
new binary pattern with each shift of an eventthi same time it stores the details of
each shift in two arrays. The outORDER array caomstdine pulse of each shift and the
OUtTYPE array contains the metrical level differenghe two arrays together com-
prise the branch arrays generated by the de-sytioapand describe the transfor-
mations applied to the input pattern. They are aigp the end of the loop.



In the example of Fig. 8 the two arrays would be:

OUt ORDER = 2, 4, 6
out TYPE 1, 0, 1

A couple of examples of default values for the inprder array would be the puls-
es in their natural order, from left to right (0, 2, etc.), or in their order of im-
portance, e.g. according to their metrical levettar indispensability values of Clar-
ence Barlow [22, 23]. Not all pulses need to bet@ioed in the order array, since not
all pulses carry onsets that need to be de-synedpatowever, it is important to en-
sure that all pulses that will syncopate in anythed intermediate steps of the de-
syncopation process will be included in the inprdeo array. As long as this is en-
sured, the order of transformations only affects ititermediate steps. The root pat-
tern and the instances of syncopation found arsdhee for any order. The number of
elements in the output branch arrays, as wellavatues of each pair in the arrays, is
unaffected by the input order. Only their positiarthe arrays could in certain cases
change, depending on the pattern. In the examplepf8, the result is always the
same; all output arrays and patterns will be eyatttt same, independently of the
input order.

Syncopation. In order to automatically syncopate an input paft@ne can apply
repeatedly a series of syncopation transformatimtis no onsets can be further shift-
ed. The branch arrays for the process need todadll pulses that carry onsets in the
original input pattern and any of the output paseof the applied transformations.
That will ensure that when the transformationsapplied recursively all onsets will
be shifted in syncopating positions and the entth@branch will be reached.

The process is similar to the one shown on thesid# of Fig. 7. However, in that
example, the transformations were applied oncevesr@ particular to the generated
branch. In a recursive syncopation process, thechrarrays can be generic and can
automatically generate a complete branch from too¢nd pattern. For example, a
default order of transformations can be generaiedtarting from the pulses in the
faster metrical levels and continue to slower oumesl all pulses are included (the
fastest metrical level can be ignored). After apmythe possible transformations to
all the pulses in the array, the process repediisnanonset can be displaced.

For each pulse, a type of transformation should bks assigned. Several options
for default values are available. The simplest oastant value for all pulses. The
types can also be chosen according the metricel fveach pulse. For example, all
notes could be shifted to the preceding sixteentk.rThat would be a type 2 for the
quarter notes and a type 1 for the eight notes.

In cases when the level difference expressed ityfhe of syncopation results to a
metrical level faster than the fastest metricald$vibion included in the metrical tem-
plate, then this fastest metrical subdivision iscdisregarding the type. For example,
if the type is set to 2 for an onset at the eigterlevel, it should be shifted to the
preceding thirty-second note. If the metrical templonly goes as fast as the six-



teenth note level, then the onset should be shiftethe preceding sixteenth note,
disregarding the type value found in the array.

If one wishes to reverse the transformations geedray the de-syncopation algo-
rithm, he needs to reverse the two branch array§RDER and outTYPE, produced
by the recursive de-syncopation process. Perforrfiegtransformation once on the
root pattern generates the exact steps of the meppgtion.

The following pseudo code illustrates the basipsia the syncopation algorithm:

##i nput s

bool PATTERN = {01, @2, ..., On}

int LEVELS = {L1, L2, ..., Ln}

int ORDER = {P1, P2, ..., Pk}

int TYPE = {T1, T2, ..., Tk}

i nt MAXrepeat = nmaxi num nunber of repetitions
int step = 0;

##out put s

int outORDER = {enpty array}
int outTYPE = {enpty array}
## SYNCOPATI ON LOOP
Repeat
For each position p[i] in ORDER //at index i of ORDER
if p[i]]==TRUE AND L[p[i]]!=nmaxi nmuni LEVELS]
Find preceding position r: L[r]=L[p[i]]+T[i]
if dp[i]-1 to r]==FALSE
Op[i]]=FALSE; dr]=TRUE//Shift p[i]->Tr
Qut put PATTERN
Append p[i]in out ORDER
Append (L[r]-L[p[i]])in outTYPE
end
step += 1
Until no onsets can be shifted OR step >= MAXrepeat
Cut put out ORDER, out TYPE

A “find preceding position” subroutine is used to find the preceding pulsa the-
longs to the faster metrical level. The subroutmsimilar to the one used in the de-
syncopation algorithm with the difference thatsit@oking for a silent pulse and that
the pulse belongs to specific metrical level deteet by the type of transformation.

At the end of the algorithm shown above, a paibmainch arrays is output. These
arrays can differ from the input ones. As the patte scanned according to the input
order, some transformations might be blocked gopsidl when an onset is not found
resulting in a different final order. The two arsaputORDER and outTYPE, contain
the actual transformations that were performed.

Fig. 9 presents a schematic overview of the eptioeess of generating a complete
branch that passes through a particular pattera.pracess is divided in an analysis
and a generation stage. First, the de-syncopafidheocinput pattern to its root pro-
vides a detailed analysis of the syncopation irt&arnn the given pattern. Second, a
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Fig. 9. Overview of the generation of a branch of syncopation ti@msétions that pass
through a given input rhythmic pattern

complete branch is generated, starting with thé pattern, reaching the input pattern
and expanding to the other end, to a maximally syated pattern. The first part, the
analysis, is performed by the de-syncopation allgoriand the second, the genera-
tion, by the syncopation algorithm.

It is important to note that the de-syncopationcpes functions as an analysis
stage, even though it actually generates all tterrimediates between the root and the
input pattern as part of the analysis. The rootepattogether with the branch arrays
of order and types gives a complete picture ofgbeerated patterns and their rela-
tions in a compressed form. The mere collectiothef actual intermediate patterns
can be thought of as a bi-product of the process.

The second part of the process generates the énéineh beginning with the root.
By altering the order of elements in the syncopaticrays, one can generate a differ-
ent branch that might not pass by the given in@ftepn but it will end at the same
end pattern. The patterns found in that branch stifire the same types of syncopa-
tions, although the patterns in their entirety widonibt be identical. However, altering
the type values leads to a completely differenhbina

5 Conclusions

In this paper we present a set of generic transitioms that can serve as the basis for
a formalized model of syncopation. The generatisure of the transformations
makes them suitable for both analysis and generaticyncopation in rhythmic pat-
terns. In fact the two processes are combined utigeconcept of the syncopation
tree; a way of generating transformation paths betwpatterns.

The rhythmic patterns found on the branches otréne are interconnected through
specific sequences of transformations. Any twoegpagt on a tree can be transformed
from one to the other following a branch of singtep transformations. One can nav-
igate from one pattern to another unveiling thatiehs between the patterns. In each
tree, it exists only one pattern with no syncopatialled the root pattern. The partic-
ular branch that connects a pattern to its roovigdes with a detailed description of
the syncopation in the pattern, such as the numbsyncopating events, their posi-
tions and the metrical levels involved. The transfations and the tree can serve as
the basis for rhythmic similarity or distance measu



The way each transformation is encoded and desthibthis model helps in crea-
tively exploring its uses. For example, one cankhof modeling the syncopation of
one particular music style as specific transforaretion certain root patterns. These
transformations could then be applied on root past¢hat do not belong to the mod-
eled styled. The modeling of a musical style candoae by automatically de-
syncopating a number of patterns characteristithéostyle, e.g. rhythmic patterns
performed simultaneously by different instrumentie resulted transformations
could then be combined applied to the root of afgiopattern effectively “copying”
the syncopation style.

The transformation can be employed in automaticiengsneration algorithms.
For example, one can imagine a simple algorithnt ¢femerates root patterns in a
certain meter and then a series of transformaiapplied to generate more complex
syncopated patterns. The generated root patteménchude pitch information such
as a melody or baseline in a certain key.

The applications of the syncopation transformatiares left to be explored in the
future work of our group. However, we developed#iveare application as a small
example of a creative application of the transfdioms. It has the form of a
Max4Live midi device that manipulates the syncapatf midi clips. The Max4Live
devices and related externals are available for nitmwd at our website:
http://smc.inescporto.pt/shakeit/
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