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Abstract. Syncopation is a rhythmic phenomenon found in various musical cul-
tures. In this paper, we present a formalized model of syncopation. It consists of 
a limited set of simple rhythmic transformations that take the form of displace-
ment of musical events. The transformations are based on fundamental features 
of the musical meter and syncopation, as seen from a cognitive and a musical 
perspective. Starting from a binary pattern the model generates a large number 
of output patterns by applying a series of the transformations. The patterns are 
then organized in tree structures that can be used both for analysis and genera-
tion of syncopation. 
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1 Introduction 

Rhythmic syncopation is essential for several and diverse styles of western music, as 
well as for certain non-western music. It often produces rhythmic complexity and 
tension [1, 2 p. 310, 3]. Definitions describe syncopation as a contradiction to the 
prevailing regularities of the rhythm commonly expressed in the musical meter [4]. 
Musicological definitions describe the concept of syncopation [4, 5] in more detail 
while musicians focus on the technique. More formalized definitions approach it  as a 
matter of magnitude [6–10] and define metrics for measuring the amount of syncopa-
tion. Other studies are limited to specific cases [11] or music styles [6, 12].  

Recently we presented an algorithm that allows for the manipulation of syncopation 
in binary patterns [13]. Here, we extend the algorithm to a set of formalized generic 
transformations that can analyze, generate and manipulate the syncopation in binary 
patterns. The transformations are based on the cognitive aspects of the phenomenon  
related to metrical expectations [2].  

Using the transformations, one can generate a multitude of rhythms starting from a 
single pattern in a formalized and systematic way. The generated patterns are natural-
ly organized in tree structures. Patterns belonging in the same tree originate from the 
same root, i.e. they originate from the same non-syncopating pattern. The tree struc-



ture can be useful in developing models for clustering rhythms together or in defining 
measures of rhythmic similarity and distance.  

In section 2, we provide with a brief description of the main syncopation defini-
tions and measures related to our model. In section 3, we describe a way of automati-
cally constructing a metrical template and how it must be adapted for modeling syn-
copation.  In section 4 we describe the transformations for binary patterns and we 
present the concept a syncopation tree as a structure for organizing rhythmic patterns. 
Finally, in section 5, we present the main conclusions of this study.      

2 Definitions of Syncopation 

Musical meter as a cognitive mechanism expresses our expectations about when music 
events will occur [14]. Meter is evoked by the regularities in the music and has the form 
of alternating strong and weak pulses. Strong pulses coincide with regularly occurring 
events [8]. Syncopation has been described as the feeling of surprise that arises when a 
rhythmic event that was anticipated at a particular moment does not actually occur [2].  

Longuet-Higgins and Lee presented a model that identifies the syncopation in the 
pairs of notes and the rests or tied notes that follow them [15]. Accordingly, a rest or 
tied note in a strong metrical position preceded by an event in a weaker metrical posi-
tion constitutes syncopation. David Huron, in his study of the American popular music 
[6], used a similar definition using the term “Lacuna”. Behind both definitions lies the 
same expectation principle: an event in a weak metrical position is bound to an event in 
the following strong metrical position and when the expected strong note does not occur 
the weak one is left hanging [2 p. 295].  

Longuet-Higgins and Lee assigned metrical weights to the metrical positions of the 
bar in order to quantify the metrical strength of each pulse. The weights correspond 
directly to the metrical level that each position initiates (see section 3 for a more de-
tailed description). In Fig. 1, the metrical levels of a 4/4 meter are shown. If one 
would number the 5 levels starting with 0 for the slowest, the metrical weights would 
be the negative of those indexes (i.e. from -4 to 0). Longuet-Higgins and Lee defined 
syncopation as a note onset in a position with a low weight that is not followed by an 
onset in the following pulse with a higher weight.  

David Temperley explored the uses of syncopation in rock [11], using a definition 
that bears strong resemblance to the Longuet-Higgins and Lee definition and Huron’s 
expectation principle. In his study, he defined the term as the displacement of events 
from metrically strong positions to preceding weaker ones.  

The above definitions suggest that a formalized way of describing the underlying 
meter is needed before we are able to manipulate the syncopation in a rhythmic pat-
tern. We need, therefore, to construct a metrical template that corresponds to the time 
signature. In the next section we describe such a template, and an automatic way of 
constructing it. It will serve as the basis for all the manipulations that follow. 



3 Construction of a Metrical Template 

Complex music, even when it is not repetitive, it often evokes the sensation of a regular 
pulse in listeners that becomes evident when they tap in synchrony with the music. A 
single music can evoke simultaneously more than one such pulse sensations with differ-
ent durations [16]. When those pulses are overlaid they form a hierarchical structure like 
the one in Fig. 1 where slower layers have pulse durations that are integer multiple of 
all faster ones [17, 18]. The various pulses have different metrical strength values that 
represent the alternating strong and weak beats commonly found in a musical meter. 
Similarly to the metrical structure used by Longuet-Higgins and Lee in their syncopa-
tion definition [15], each pulse initiates a metrical level according to the time signa-
ture and its metrical strength is proportional to that level, e.g. the quarter notes or the 
sixteenth notes found in a 4/4 bar. The pulses constitute a metrical grid which quan-
tizes the time positions of the onsets of the events in a rhythmic pattern resulting into 
a binary representation of the rhythm. 

The metrical template is constructed automatically for each time signature and 
tempo by successively subdividing the duration of the bar into faster metrical levels. 
For example, the 4/4 meter can be subdivided first into two half notes, then each half 
note into two quarter notes, each quarter note into two eight notes and so on, until the 
fastest metrical subdivision is reached. The metrical levels are indexed by numbers 
(hereafter metrical indexes) starting with the number 0 for the slower one. The met-
rical strength of a pulse is then proportional to the metrical index of the corresponding 
level. The stronger a pulse is, the slower the metrical level it belongs to (lower index), 
so that weak pulses belong to faster metrical levels (higher indexes). In Fig. 1, an 
example of such a metrical template is given. A detailed description of an automatic 
way of generating a metrical template for any given time signature can be found in 
[19]. 

The lower threshold for the duration of a metrical subdivision has been estimated 
in several studies to be roughly around 100ms [16, 20, 21 p. 29]. Therefore, the fastest 
metrical subdivision that is included in the metrical template must respect this bound-
ary and therefore depends on the tempo. 

An upper threshold for the duration of the metrical levels needs also to be deter-
mined. The need for such a threshold becomes apparent when one tries to de-

Fig. 1. Example of a metrical template for a 4/4 meter. The meter is successively subdivided 
generating the 5 metrical levels. The metrical strength (rectangles) of each metrical position 
corresponds to the metrical levels it belongs to. The very fast metrical levels (below 100ms 
duration) and very slow ones (above 1s duration) are disregarded (white rectangles). On the 
right the index of each level is shown (0 – 2) 



syncopate certain rhythmic patterns. For example, in the patterns of Fig. 2, one will 
follow different approaches for pattern A and B. While in pattern A, the tied eighth 
note should clearly be moved to the following quarter note, in pattern B, the tied quar-
ter note falls on the beat and therefore is not considered syncopation.  

However, the two cases are identical with respect to the definitions presented in 
section 2. The difference between the two is their relation to what is considered to be 
the beat level (or tactus), that is the most salient metrical level. The metrical salience 
of each level depends predominantly by its duration, with a peak salience in the region 
between 500ms – 1s [16, 21 chap. 2]. As the example of Fig. 2 illustrates, syncopation 
involving slower metrical levels than the beat is not felt as strong. 

We chose the level that falls in the range between 500ms and 1s as the slowest 
metrical level represented in our structure. For example, in the case of the metrical 
template of Fig. 1, a 4/4 meter at 160bpm (q.n. = 375ms), only 3 metrical levels sur-
vive with corresponding durations of 750ms (0), 375ms (1) and 187.5ms (2). 

4 Displacing Event Onsets 

According to the Longuet-Higgins and Lee [15]  or Huron’s [2 p. 295] definition of 
syncopation, a syncopating event is an event in a weak metrical position that is not 
followed by an event in the next strong metrical position. If this event was shifted to 
the strong position the syncopation would be eliminated. With this observation in 

Fig. 2. Syncopation at slow metrical levels. A: a pattern syncopating at the eighth note metrical 
level. B: The same pattern at half speed. Above the two patterns the corresponding metrical 
template is shown. The black rectangles represent the beat level. 

Fig. 3. The de-syncopation transformation shift events forward to slower metrical levels. The 
syncopation transformation shifts events backwards to faster metrical levels.   



mind, the event at the weak position can be thought of as belonging to the strong posi-
tion but been anticipated at an earlier position. Therefore, one can imagine the inverse 
shift as a way of generating syncopation at a strong metrical position, i.e. by shifting 
an event found at a strong position to an earlier, weaker pulse (Fig. 3). The transfor-
mations described in section 4.1 are such simple shifts of onsets in a binary pattern. 
The following formalization of the transformations consists of defining the conditions 
under which such shifts remove or generate syncopation in a given binary rhythmic 
pattern. Applying the formalized transformation on a binary pattern gives rise to the 
syncopation tree, a network of interconnected patterns, described in 4.2. In section 4.3 
we provide with recursive algorithms for automatically generate specific branches.  

4.1 The Transformations 

The transformations take a binary pattern and manipulate the syncopation by shift-
ing the onsets between the pulses according to the metrical template. In order to elim-
inate the syncopation, one needs to shift forward the corresponding event to a stronger 
metrical position (Fig. 3, left). In a pattern with several syncopating events, each such 
shift results in a new pattern with decreased syncopation. After all events have been 
shifted to non-syncopating positions, we call the resulting pattern a root. The de-
syncopation process moves events from fast metrical levels to slower ones. 

Syncopation is generated by anticipating events in weaker metrical positions (Fig. 
3, right). Each shift of an event results in a new pattern with increased syncopation. 
The syncopation process, opposite to the de-syncopation process, “pushes” events to 
the faster metrical levels. When all events are moved to the fastest metrical positions 
the resulting syncopated pattern cannot be further syncopated.  

A detailed description of the transformations follows.   

Syncopation. Onsets in pulses that belong to strong metrical positions (slow metrical 
levels, low metrical indexes) are shifted to preceding pulses belonging to weaker met-
rical positions (faster metrical levels, higher level indexes).  

A strong pulse might be preceded by more than one weak pulses, e.g. a quarter 
note is preceded by an eighth note but also by a sixteenth note (Fig. 4). We define as 
the type of syncopation the value of the difference of the metrical levels of the two 
pulses: the pulse that the onset belongs originally and the one that it is shifted to1.  

Each syncopation shift is described by a pair of numbers: the pulse that originally 
carries the onset and the type of shift that the onset undergoes. They can be thought of 
as the “coordinates” of the transformation. The pulse index directly corresponds to the 
“horizontal” coordinate. The type value corresponds to the vertical length of the arrow 
that represents the shift (Fig. 4). In general, the larger the type of the transformation 
the fastest is the metrical level that the onset is shifted to. Encoding the shifts into 

                                                           
1  Alternatively we could have encoded the transformation as the pair of pulses, the initial 

pulse of the onset and the pulse it is shifted to. This way of encoding correctly describes the 
particular transformation. However, as it will become apparent in the following, using the 
level differences is a more general and more flexible representation. 



types of metrical level differences provides with the freedom to associate them either 
to metrical positions, to metrical levels or to specific onsets. The number of syncopa-
tion types that is available for each pulse depends on how many faster metrical levels 
exist in the template. 

An onset cannot be shifted if one or more onsets block its way. This rule ensures 
that the order that the events are performed is preserved. In the example of Fig. 4, we 
could not apply the transformation (8, 1) if an onset was found in any of the pulses 5, 
6 or 7. The transformation is forbidden.  

De-syncopation.  The de-syncopation transformation is a direct consequence of its 
operational definition followed in this article [2 p. 295, 15]. This definition attributes 
the feeling to the event being anticipated. However, the syncopation is only felt at the 
moment of the following silent pulse and is retrospectively attributed to the event being 
heard. The following alternative phrasing of the definition puts the focus on to the silent 
pulse where the syncopation is actually felt instead of the onset that initiates it: “synco-
pation is found in the silent pulses that belong in strong metrical positions (slower lev-
els, lower indexes) and that are preceded by onsets in one of the immediately preceding 
weaker metrical positions”. Thus, the two transformations are essentially one the re-
verse of the other. The de-syncopation is applied to the silent pulse by shifting the pre-
ceding onset. In Fig. 4, onsets that might be found in pulses 4, 6, or 7, can be de-
syncopated by reversing the direction of the arrows. In Fig. 5, de-syncopating pulse 8 
is done by shifting the onset of pulse 6 to pulse 8 (solid arrow), yielding the correspond-
ing type and completing the pair (8, 2).  

 The de-syncopation can be thought of as the analysis process yielding the type of 
transformation that was previously applied in order to syncopate. Because of the na-
ture of the transformation, it is essential to de-syncopate first the faster metrical levels 
and then the slower ones. For example, if an event is found in pulse 5 in Fig. 5, in 
order to de-syncopate pulse 8, we must first de-syncopate pulse 6. That is equivalent 
to reversing the order of the syncopation transformations as well as the direction. The 

Fig. 4. An example of the types of syncopation transformations available for an onset at a spe-
cific pulse (pulse 8). White square represent the preceding pulses of faster metrical levels that 
are available for syncopating pulse 8. The rest of the pulses have been greyed out. The corre-
sponding de-syncopation transformation is obtained by reversing the direction of the arrows.  



result of the de-syncopation would be the corresponding transformations (6, 1) and (8, 
1) in the reverse order.  

The de-syncopation transformations reveal an important reason for preserving the 
order of onsets when syncopating and forbidding certain transformations. Imagine an 
onset originally existing in pulse 8 of Fig. 5 and apply the (8, 1) transformation 
(dashed arrow). The de-syncopation of pulse 8 would result in a different pattern than 
the one we started with. Moreover, it would return a different transformation type (2 
as we already saw). Thus, the two transformations would not be reversible if two 
onsets could reverse their order. Moreover, this way the transformations are more 
general and can be expanded to include phenomenal accents, such as pitch or timbre 
changes, or other properties of the events that can make them distinct. 

An important property of the transformations comes about from the alternating 
strong and weak pulses in the template. Since the beat level is the slowest metrical 
level included in the template, each transformation has local character; it displaces 
events within the duration of a single beat2 (see Fig. 6), either forward to slower met-
rical levels or backwards to faster ones.  Thus, any pattern longer than a beat can be 
considered a concatenation of shorter and independent single beat patterns.  

                                                           
2  The duration of the beat is offset by a single pulse to what commonly is considered the 

duration of the beat (Fig. 6). The beat duration here ends ON the beat and includes all pre-
ceding pulses between the current and the previous beat. 

Fig. 5. If the order of onsets was not preserved during the transformations, the 1-1 correspond-
ence of the two transformations would be lost. 

Fig. 6.    The syncopation shifts can only move onsets in the duration of a single beat. 



4.2 The Syncopation Tree 

The two transformations described above can be used to generate syncopation trees. 
Starting from a root pattern, one can apply all possible combinations of transfor-
mations to generate a large number of patterns. On the left side of Fig. 7, we present 
an example of how a branch is generated starting from the root pattern and applying a 
series of transformations until we reach the end of the branch where no onset can be 
syncopated further. However, one could start from any pattern and apply a series of 
transformations to reach another pattern of the same tree. 

The root pattern of the example has 3 events and is considered to be a repeating 
loop (the first event is repeated at the end). The branch consists of a set of transfor-
mations of specific types indicated by the two numbers next to each pattern. The spe-
cific branch is generated by applying the transformations in a particular order. The 
pairs of numbers form two arrays: 1) one contains the indexes of the pulses in the 
particular order of the transformations and 2) the second contains the type of each 
transformation. The two arrays completely describe the branch. We refer to such cou-
pled arrays as the branch arrays.   

The order of the transformations can change to generate a different branch. In the 
right side of Fig. 7, we show the branches of the corresponding syncopation tree that 
include all possible permutations of the transformations in the left (solid lines, the 
thick solid line is the branch shown in detail at the left). Each dot in the right part of 
the figure represents a specific pattern and each line a transformation. It must be noted 
that not all permutations are possible. Here, the transformation (8, 1) must always be 
applied before the (6, 1) otherwise there will be no onset in pulse 6 to be shifted. Each 
pattern is connected to the root pattern in a number of steps that is independent of the 
exact branch that one might follow. This is a general property of all syncopation trees 
and not of this particular example.  

Fig. 7. Left: An example of a branch starting from the root pattern and finishing to an end pat-
tern that cannot be further syncopated. Right: Example of a syncopation tree (partially shown). 
The patterns are shown as dots and the lines connecting them correspond to the indicated trans-
formations. The thick line corresponds to the branch shown on the left. The patterns shown are 
connected with the same set of syncopation transformations applied in a different order.  



The entire tree is formed by several branches like the ones shown in Fig. 7 and has 
several ends. The number of ends depends on the number of possible transformations 
that can be performed. In our example, the 3 onsets belong to different beats and can 
undergo 2 different transformations each. Therefore, we have 23 = 8 different ends in 
this tree. In Fig. 7, we show only the branches that lead to the end pattern shown on 
the left. The rest of the ends are connected to the patterns of the figure through the 
dashed lines. Generating branches that connect specific patterns is equivalent to ana-
lyzing the relations between them. 

4.3 Recursive Algorithms 

De-syncopation. A recursive de-syncopation algorithm is provided here as a means 
of completely de-syncopating a binary pattern and finding its root. The corresponding 
branch consists in a series of transformations expressed as a branch array, i.e. an order 
array coupled to a type array.  

The de-syncopation process recursively applies a de-syncopation transformation on 
each silent pulse that is found to syncopate until there is no syncopating pulse. Using 
the output of the algorithm one can generate all intermediate patterns from the corre-
sponding root pattern to the original input pattern. The root pattern is independent of 
the order in which the pattern is de-syncopated.   

Fig. 8 illustrates the process through an example. Pulses are examined in a certain 
order and when a silent pulse is preceded by an onset in a faster metrical level, the 
onset is shifted as described in section 4.1. In the example the pattern is scanned from 
right to left. However, the order in which the pulses are examined can be, in principle, 
freely chosen.  

Fig. 8. Illustration of a recursive de-syncopation process. The metrical template shown corre-
sponds to a 6/8 meter at 180bpm (quarter note = 1000ms). Each onset of the binary pattern is 
numbered in a circle. The de-syncopated process is shown as arrows. 



The following pseudo code illustrates the basic steps in the de-syncopation algorithm: 

##inputs 
bool PATTERN = {O1, O2, ..., On} 
int LEVELS = {L1, L2, ..., Ln} 
int ORDER = {P1, P2, ..., Pm} 
##outputs 
int outORDER = {empty array} 
int outTYPE = {empty array} 
## DE-SYNCOPAION LOOP 
Repeat 
  For each position p in ORDER 
    if (O[p]==FALSE AND L[p]<=max(LEVELS)  
      r = Find_Preceding_Pulse(p)  
      if (O[r to p-1 r]==FALSE) 
       O[r]=FALSE; O[p]=TRUE//Shift onset r->p 
       Output PATTERN 
       Append p in outORDER 
       Append (L[p]-L[r])in outTYPE  
  end 
Until no onsets can be shifted 
Output outORDER, outTYPE 

The above code makes use of a subroutine for finding the preceding onset, if any: 

Find_Preceding_Pulse(p)  
 LMIN = L[p] 
 p--;  CurrentML = L[p] 
 While (L[p] > LMIN AND O[i]==FALSE) 
   p--;  CurrentML = min(L[p], CurrentML) 
 End 
 If (O[p]==TRUE AND L[p]== CurrentML AND L[p]>LMIN) 
  Return p 
 Else Return -1 
End 

The above code receives as input three arrays: 1) the pattern as a binary string 
(PATTERN), 2) the metrical template as an array of the metrical indexes (LEVELS) 
and 3) the ORDER array which represents the order in which the pulses should be 
scanned and the found syncopations should eliminated. The algorithm outputs the 
new binary pattern with each shift of an event. At the same time it stores the details of 
each shift in two arrays. The outORDER array contains the pulse of each shift and the 
outTYPE array contains the metrical level difference. The two arrays together com-
prise the branch arrays generated by the de-syncopation and describe the transfor-
mations applied to the input pattern. They are output at the end of the loop. 



In the example of Fig. 8 the two arrays would be: 

outORDER  = 2, 4, 6 
outTYPE  = 1, 0, 1 

A couple of examples of default values for the input order array would be the puls-
es in their natural order, from left to right (0, 1, 2, etc.), or in their order of im-
portance, e.g. according to their metrical level or the indispensability values of Clar-
ence Barlow [22, 23]. Not all pulses need to be contained in the order array, since not 
all pulses carry onsets that need to be de-syncopated. However, it is important to en-
sure that all pulses that will syncopate in any of the intermediate steps of the de-
syncopation process will be included in the input order array. As long as this is en-
sured, the order of transformations only affects the intermediate steps. The root pat-
tern and the instances of syncopation found are the same for any order. The number of 
elements in the output branch arrays, as well as the values of each pair in the arrays, is 
unaffected by the input order. Only their position in the arrays could in certain cases 
change, depending on the pattern. In the example of Fig. 8, the result is always the 
same; all output arrays and patterns will be exactly the same, independently of the 
input order.   

Syncopation. In order to automatically syncopate an input pattern, one can apply 
repeatedly a series of syncopation transformations until no onsets can be further shift-
ed. The branch arrays for the process need to include all pulses that carry onsets in the 
original input pattern and any of the output patterns of the applied transformations. 
That will ensure that when the transformations are applied recursively all onsets will 
be shifted in syncopating positions and the end of the branch will be reached. 

The process is similar to the one shown on the left side of Fig. 7. However, in that 
example, the transformations were applied once and were particular to the generated 
branch. In a recursive syncopation process, the branch arrays can be generic and can 
automatically generate a complete branch from root to end pattern. For example, a 
default order of transformations can be generated by starting from the pulses in the 
faster metrical levels and continue to slower ones until all pulses are included (the 
fastest metrical level can be ignored). After applying the possible transformations to 
all the pulses in the array, the process repeats until no onset can be displaced.   

For each pulse, a type of transformation should also be assigned. Several options 
for default values are available. The simplest is a constant value for all pulses. The 
types can also be chosen according the metrical level of each pulse. For example, all 
notes could be shifted to the preceding sixteenth note. That would be a type 2 for the 
quarter notes and a type 1 for the eight notes.  

In cases when the level difference expressed in the type of syncopation results to a 
metrical level faster than the fastest metrical subdivision included in the metrical tem-
plate, then this fastest metrical subdivision is used disregarding the type. For example, 
if the type is set to 2 for an onset at the eight note level, it should be shifted to the 
preceding thirty-second note. If the metrical template only goes as fast as the six-



teenth note level, then the onset should be shifted to the preceding sixteenth note, 
disregarding the type value found in the array. 

If one wishes to reverse the transformations generated by the de-syncopation algo-
rithm, he needs to reverse the two branch arrays, outORDER and outTYPE, produced 
by the recursive de-syncopation process. Performing the transformation once on the 
root pattern generates the exact steps of the de-syncopation.  

The following pseudo code illustrates the basic steps in the syncopation algorithm: 

##inputs 
bool PATTERN = {O1, O2, ..., On} 
int LEVELS = {L1, L2, ..., Ln} 
int ORDER = {P1, P2, ..., Pk} 
int TYPE = {T1, T2, ..., Tk} 
int MAXrepeat = maximum number of repetitions 
int step = 0; 
##outputs 
int outORDER = {empty array} 
int outTYPE = {empty array} 
## SYNCOPATION LOOP 
Repeat 
  For each position p[i] in ORDER //at index i of ORDER 
    if O[p[i]]==TRUE AND L[p[i]]!=maximum[LEVELS]  
      Find preceding position r: L[r]=L[p[i]]+T[i] 
      if O[p[i]-1 to r]==FALSE 
       O[p[i]]=FALSE; O[r]=TRUE//Shift p[i]-> r 
       Output PATTERN 
       Append p[i]in outORDER 
       Append (L[r]-L[p[i]])in outTYPE  
  end 
step += 1 
Until no onsets can be shifted OR step >= MAXrepeat 
Output outORDER, outTYPE 

A “ find preceding position” subroutine is used to find the preceding pulse that be-
longs to the faster metrical level. The subroutine is similar to the one used in the de-
syncopation algorithm with the difference that it is looking for a silent pulse and that 
the pulse belongs to specific metrical level determined by the type of transformation. 

At the end of the algorithm shown above, a pair of branch arrays is output. These 
arrays can differ from the input ones. As the pattern is scanned according to the input 
order, some transformations might be blocked or skipped when an onset is not found 
resulting in a different final order. The two arrays, outORDER and outTYPE, contain 
the actual transformations that were performed.  

Fig. 9 presents a schematic overview of the entire process of generating a complete 
branch that passes through a particular pattern. The process is divided in an analysis 
and a generation stage. First, the de-syncopation of the input pattern to its root pro-
vides a detailed analysis of the syncopation instances in the given pattern. Second, a 



complete branch is generated, starting with the root pattern, reaching the input pattern 
and expanding to the other end, to a maximally syncopated pattern. The first part, the 
analysis, is performed by the de-syncopation algorithm and the second, the genera-
tion, by the syncopation algorithm. 

It is important to note that the de-syncopation process functions as an analysis 
stage, even though it actually generates all the intermediates between the root and the 
input pattern as part of the analysis. The root pattern together with the branch arrays 
of order and types gives a complete picture of the generated patterns and their rela-
tions in a compressed form. The mere collection of the actual intermediate patterns 
can be thought of as a bi-product of the process.  

The second part of the process generates the entire branch beginning with the root. 
By altering the order of elements in the syncopation arrays, one can generate a differ-
ent branch that might not pass by the given input pattern but it will end at the same 
end pattern. The patterns found in that branch will share the same types of syncopa-
tions, although the patterns in their entirety would not be identical. However, altering 
the type values leads to a completely different branch. 

5 Conclusions 

In this paper we present a set of generic transformations that can serve as the basis for 
a formalized model of syncopation. The generative nature of the transformations 
makes them suitable for both analysis and generation of syncopation in rhythmic pat-
terns. In fact the two processes are combined under the concept of the syncopation 
tree; a way of generating transformation paths between patterns.  

The rhythmic patterns found on the branches of the tree are interconnected through 
specific sequences of transformations. Any two patterns on a tree can be transformed 
from one to the other following a branch of single-step transformations. One can nav-
igate from one pattern to another unveiling the relations between the patterns. In each 
tree, it exists only one pattern with no syncopation, called the root pattern. The partic-
ular branch that connects a pattern to its root provides with a detailed description of 
the syncopation in the pattern, such as the number of syncopating events, their posi-
tions and the metrical levels involved. The transformations and the tree can serve as 
the basis for rhythmic similarity or distance measures. 

Fig. 9. Overview of the generation of a branch of syncopation transformations that passes 
through a given input rhythmic pattern 



The way each transformation is encoded and described in this model helps in crea-
tively exploring its uses. For example, one can think of modeling the syncopation of 
one particular music style as specific transformations on certain root patterns. These 
transformations could then be applied on root patterns that do not belong to the mod-
eled styled. The modeling of a musical style can be done by automatically de-
syncopating a number of patterns characteristic to the style, e.g. rhythmic patterns 
performed simultaneously by different instruments. The resulted transformations 
could then be combined applied to the root of any other pattern effectively “copying” 
the syncopation style. 

The transformation can be employed in automatic music generation algorithms. 
For example, one can imagine a simple algorithm that generates root patterns in a 
certain meter and then a series of transformations is applied to generate more complex 
syncopated patterns. The generated root patterns can include pitch information such 
as a melody or baseline in a certain key.   

The applications of the syncopation transformations are left to be explored in the 
future work of our group. However, we developed a software application as a small 
example of a creative application of the transformations.  It has the form of a 
Max4Live midi device that manipulates the syncopation of midi clips. The Max4Live 
devices and related externals are available for download at our website: 
http://smc.inescporto.pt/shakeit/ 
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