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Abstract—Split manufacturing was introduced as an effective
countermeasure against hardware-level threats such as IP piracy,
overbuilding, and insertion of hardware Trojans. Nevertheless,
the security promise of split manufacturing has been challenged
by various attacks, which exploit the well-known working princi-
ples of physical design tools to infer the missing BEOL intercon-
nects. In this work, we advocate a new paradigm to enhance the
security for split manufacturing. Based on Kerckhoff’s principle,
we protect the FEOL layout in a formal and secure manner,
by embedding keys. These keys are purposefully implemented
and routed through the BEOL in such a way that they become
indecipherable to the state-of-the-art FEOL-centric attacks. We
provide our secure physical design flow to the community. We
also define the security of split manufacturing formally and
provide the associated proofs. At the same time, our technique
is competitive with current schemes in terms of layout overhead,
especially for practical, large-scale designs (ITC’99 benchmarks).

Index Terms—Split manufacturing, proximity attack, ATPG

I. INTRODUCTION

The semiconductor industry has seen a growing reliance on
external parties for cost-effective access to advanced fabrica-
tion facilities. However, such sharing of the valuable intellec-
tual property (IP) with potentially untrusted parties has raised
several security concerns. For example, it is estimated that
15% of all the “spare and replacement semiconductors” bought
by the Pentagon are counterfeit which can have potential
consequences on national security [1].

To address such concerns directly at manufacturing time,
IARPA advocated a concept called split manufacturing [2], [3].
The asymmetry between metal layers facilitates splitting the
design into two parts; the front-end-of-line (FEOL) contains
the active device layer and lower metal layers (usually ≤
M3), whereas the back-end-of-line (BEOL) contains the higher
metal layers (≥ M4). The fabrication of the FEOL requires
access to an advanced facility and, thus, this part is outsourced
to a high-end but potentially untrusted foundry. The BEOL is
subsequently grown on top of the FEOL at a low-end but
trusted foundry. Several studies [3], [4], [5] have successfully
demonstrated split manufacturing for complex designs, such
as for an asynchronous FPGA.

Recently, the promise of split manufacturing has been called
into question by a class of attacks known as proximity attacks.
Even though the design can be split into two parts during
manufacturing, the physical design (PD) tools still have to
work on the design holistically to be able to apply various
optimization techniques. This fact, in conjunction with the
deterministic nature of commercial PD tools, leaves hints in
the FEOL layout which can be exploited to infer the missing
BEOL connections. In particular, to-be-connected cells are

placed nearby in the FEOL, mainly to minimize delay. This
hint of physical proximity was first explored by Rajendran et
al. [6]. Several other attacks with consideration of further hints
have followed, e.g., [7], [8], [9].

Consequently, several studies sought to defend against prox-
imity attacks, e.g., [6], [10], [11], [8], [12], [13]. Nevertheless,
almost all prior protection schemes rely on some heuristics,
which can be broadly understood as perturbing the placement
and/or routing of the FEOL. Such schemes have two general
pitfalls: (1) without any formal security guarantees, the re-
silience of the schemes can only be evaluated empirically, and
(2) perturbing the FEOL layout “on top” of regular design
optimization tends to induce large overhead. Therefore, there
is a clear need for formally secure, yet affordable schemes to
advance split manufacturing.

To the best of our knowledge, this work represents the first
formally secure scheme for split manufacturing concerning
the classical threat model.1 We propose and follow a new
paradigm for split manufacturing—lock the FEOL, unlock at
the BEOL—where the resilience of the split layout is formally
underpinned with a secret key. Toward this end, we follow
Kerckhoff’s principle, i.e., our approach remains secure even
if all the implementation details are available except the key.

The contributions and structure of this paper are summa-
rized as follows:
• A new paradigm for split manufacturing is proposed: lock

the FEOL, unlock at the BEOL. The essence of it is to
adapt the notion of logic locking to secure the FEOL and
to route the nets holding the key through the BEOL.

• We formally define the security promise of split manu-
facturing and establish our paradigm with related proofs.

• We show that the key can be purposefully implemented
without providing any hints to an FEOL-centric attacker,
hence hindering any kind of proximity attacks.

• A physical design framework is developed for end-to-
end security and layout analysis. The framework serves
to (1) lock the FEOL by embedding a key into it,
(2) implement the key with TIE cells and route the related
nets through the BEOL, and (3) control the layout cost.

• Extensive experiments on ITC’99 and ISCAS bench-
marks are carried out to illustrate the efficacy of our
scheme in terms of security and overhead. For an em-

1Imeson et al. [14] were presumably the first to offer a formal notion for
split manufacturing in 2013. However, their work considers a different threat
model: the attacker already holds the full netlist and aims for targeted Trojan
insertion. In our work, we consider the classical threat model, where the
objective for the attacker is to infer the full netlist from the FEOL.
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pirical security analysis, we leverage the state-of-the-art
proximity attack in [7]. Besides, we further assume an
“ideal proximity attack,” providing the most conservative
analysis setup, which still cannot break our scheme.

II. CONCEPT AND FORMAL ANALYSIS

Our work is inspired by the notion of logic locking [15],
[16], but there are important differences as detailed next.

A. Threat model
Our threat model (Fig. 1), i.e., the classical one for split

manufacturing, differs from that for logic locking. Locking
protects against untrusted end-users and untrusted foundries,
whereas split manufacturing can only protect against untrusted
FEOL fabs. This difference implies two consequences: (1) For
locking, the untrusted end-user forces the designer to store
the key in a tamper-proof memory. Such memories remain an
active area of research [17] and, hence, their practicality is
currently limited. Additionally, the need for such a memory
requires dedicated circuitry such as read/write logic, which
can adversely affect the layout cost. (2) For ours, since the
chip fabrication is not yet complete and, in any case, since
the end-user is trusted, there is no physical oracle available to
the attacker. Nevertheless, the attacker has access to the FEOL
and full knowledge of the PD tools, the technology library, etc.

B. Physical embedding of the key
Locking the FEOL. We secure the layout by inserting ad-
ditional gates into the design, so-called key-gates. We lock
the entire FEOL by inserting a sufficient number of key-gates
that are driven by a secret key. Toward that end, any locking
technique can be applied, including random insertion of key-
gates [15]. The conceptional difference to locking, however, is
that for us the key is implemented through connections only in
the BEOL (as opposed to a tamper-proof memory), particularly
in a way that is indecipherable to the FEOL-centric attacker
applying proximity attacks.

In this work, key-gates are connected with TIE cells. These
cells provide constant logic 1 and 0, as TIEHI and TIELO
cells, respectively. A naı̈ve physical design of TIE cells and
key-gates might reveal some hints such as proximity-related
information (Fig. 2(a)). Thus, we advocate the following two
strategies to ensure security.
Randomized placement of TIE cells. To defeat any proximity
attack, it is critical that the placement of TIE cells does not
reveal any connectivity hints. Thus, we propose to randomize
the placements of TIE cells (Fig. 2(b)). We can reasonably
expect that doing so has only little impact on layout cost. TIE
cells are very small in comparison to regular cells and, being
no actual drivers, moving TIE cells randomly away from their
sinks (the key-gates) does not induce larger loads.
Lifting of key-nets. We denote nets connected to TIE cells,
representing the key-bits, as key-nets. It is easy to see that in
case a key-net is fully routed in the FEOL, the related key-bit
can be readily discerned by the attacker (Fig. 2(a, b)). Thus,
we advocate a systematic and careful lifting of all key-nets to
the BEOL (Fig. 2(c)). Once the design is split, the lifted key-
nets form broken connections for an FEOL-centric attacker
(Fig. 2(d)), hiding the underlying secret key from him/her.

Fig. 1. The threat model for split manufacturing. Red means the entity is
untrusted (FEOL fab), whereas green means trusted (all other).

C. Formal security analysis

We formally define the problem of split manufacturing and
highlight the underlying notion of security. Without loss of
generality, we assume n inputs, m outputs, and k key-bits.

Definition 1. Let a combinational circuit be denoted as C,
where C implements a Boolean function F : I −→ O;
I ∈ {0, 1}n and O ∈ {0, 1}m, i.e., C(x, i) = F (i)∀i ∈ I ,
where x are the combinational elements of C.2 Thus, a split
manufacturing scheme S can be defined as follows:

1) A split procedure is a function G : C(x) −→
{C(x1, x2), λ(x2)}, where x1 denotes the combinational
elements whose connections are complete, whereas x2

denotes the elements which are left unconnected. λ(x2)
contains the connectivity information for x2.

2) C(x1, x2) is outsourced to FEOL, whereas λ(x2) is
completed at a trusted BEOL, i.e., it remains the secret.

3) A circuit is compiled by completing λ(x2) connections
on C(x1, x2) which can be viewed as a function H :
{C(x1, x2), λ(x2)} −→ Ch(x) such that Ch(x, i) =
C(x, i),∀i ∈ I .

Hence, the security relies on successfully hiding λ(x2) from
the untrusted FEOL foundry. The success of the attacker can
be measured by the difficulty of his/her ability to recover λ(x2)
from C(x1, x2). Let us assume an attacker A∆, following an
attack strategy ∆, tries to recover λ′(x2). We define the attack
success if and only if λ′(x2) ≡ λ(x2), such that

∀i ∈ I : C′
h(x, i) = C(x, i);

C′
h(x1, x2) = H(C(x1, x2), λ

′(x2)) : λ′(x2)←− A∆(C(x1, x2))

Definition 2. A split manufacturing scheme S is considered
to be secure if, for any probabilistic polynomial time (PPT)
attacker, the probability of finding λ′(x2) ≡ λ(x2) is not
greater than ε(γ), i.e.,

Pr[λ′(x2) ≡ λ(x2)] ≤ ε(γ)

where a function ε is negligible iff ∀c ∈ N, ∃γ0 ∈ N such that
∀γ ≥ γ0, ε(γ) < γ−c, with γ being the security parameter.

The following theorem establishes the security of our pro-
posed scheme against proximity attacks.

Theorem 1. Our proposed scheme is secure against a PPT
attacker following the strategy of [7], denoted as Ψ, i.e.,

Pr[λ′(x2) ≡ λ(x2)] ≤ ε(γ); λ′(x2)←− AΨ(C(x1, x2))

Proof outline. The success of any proximity attack hinges
on FEOL-level hints that can be exploited to infer the missing

2We formalize here for only combinational circuits, but the notion can be
readily extended for sequential designs.
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Fig. 2. Physical design of the key. (a) Locked layout, with key-nets driven by TIE cells, but with naı̈ve physical design. (b) Locked layout of (a), with
randomized placement for TIE cells. (c) Locked layout of (b), with key-nets lifted to the BEOL (above M3 here). Note that lifting makes use of stacked vias
to reduce FEOL routing to the bare minimum. (d) Locked layout of (c) after splitting. As there are no placement- and routing-related hints remaining for the
broken key-nets concerning their assignment to TIE cells, the key is indecipherable for an FEOL-centric attacker.

BEOL connections. Specifically, the state-of-the-art attack
in [7] discusses 1) physical proximity between connected cells,
2) routing of nets in the FEOL, 3) load constraints for drivers,
4) absence of combinational loops, and 5) timing constraints.3

It is important to understand that none of the above hints apply
to the TIE cells and key-gates in our scheme:

1) Physical proximity between TIE cells and key-gates are
eliminated by randomizing the placement of TIE cells.

2) FEOL routing for the key-nets is completely eliminated
by lifting whole key-nets to the BEOL (Fig 2; see also
Sec. III). This way, any FEOL wiring which might
otherwise leave hints is avoided to begin with.

3) Load capacitance constraints are not applicable to TIE
cells, since they are not actual drivers.

4) Combinational loops are absent from any key-net path
by default, since a TIE cell is not driven by another gate.
Thus, trying to avoid loops for key-nets cannot help an
attacker for ruling out incorrect connections.

5) Timing constraints do not apply to TIE cells, which
define only static paths for the key-nets.

In the following proof, we leverage the assumptions from
the proof outline above. As a consequence, an attacker is
forced to brute-force the key, which becomes exponentially
hard in the number of key-bits used to lock the design.

Proof. The probability of guessing the correct key-bit for each
key-gate is Pkb ≤ 1

2 + ε. Let us assume the probability of
finding the correct connection for all regular nets is Po. Thus,
the probability of successfully recovering all connections is

Pr[λ′(x2) ≡ λ(x2)] = Po × Pkb ≤ Pkb =

k∏
i=1

(
1

2
+ ε

)
≤ ε(k)

where k is the number of key-bits. Note that as the security of
our scheme depends only on the key-nets, not the regular nets,
we ignore Po.4 Thus, our scheme is secure for a sufficiently
large number of key-bits [18]. This concludes the proof.

Alternatively, an attacker may want to resort to key ex-
traction attacks commonly leveraged against logic locking, in

3As for other attacks (e.g., the machine-learning-based attack in [9], which
was not available to us at the time of writing), we believe that our security-
centric design of the key renders any FEOL-based hint on the key-bits void.

4In practice, finding the correct connections for all the regular nets poses
a significant challenge to the attacker; see also Section IV-A. Nevertheless,
following Kerckhoff’s principle, we base our formalism only on the key-nets.

particular SAT attacks, e.g., [19]. However, recall the absence
of an oracle for our scheme, and further note that locking has
been established as algorithmically secure in such an oracle-
less model [15]. Thus, such attacks are deemed futile.

III. PHYSICAL DESIGN FRAMEWORK

We would like to emphasize the fact that our scheme is
generic and agnostic to the underlying locking technique. For
a meaningful case study, however, we extend a recent locking
technique [16]. Figure 3 illustrates the flow; details are given
next. We also provide our flow to the community [20].

A. Security-centric and cost-driven synthesis stage

Besides locking, the other crucial concept in our scheme—
lifting of key-nets to the BEOL—may incur considerable cost,
as shown, e.g., in [12]. To limit such potential cost, we adapt
and extend the technique presented by Sengupta et al. [16].
Doing so even allows us to obtain area savings when compared
to the original, unprotected designs (Sec. IV-B). The key steps
in [16] are to (1) selectively introduce some stuck-at faults
in the original circuit, (2) re-synthesize the circuit to remove
the stuck-at logic parts, (3) insert some restore circuitry to
enable recovery from those faults, and (4) configure the restore
circuitry with a secret key, by making key-gates an essential
part of the restore circuitry.

We largely re-implement these steps, but also extend and
tailor them specifically for our scheme. Next, we provide some
details; an illustrative example is given in Fig. 4.

Stuck-at faults and their failing patterns can be fully enumer-
ated using automatic test pattern generation (ATPG) tools, but
doing so can impose considerable computational cost, depend-
ing on the size of the design to protect. Therefore, we initially
partition the netlist in a random but balanced manner. Then, we
can explore the stuck-at faults for all modules independently.
Besides parallel processing, this allows us to protect all the
parts of the design. For each of the modules, we pick its most
cost-effective failing pattern; see below for the cost model.
The selected patterns are then provided to the restore circuitry,
which is essentially a comparator along with the key-gates.
Hence, the key-nets can also be thought of as a hard-coded
input for the restore circuitry. To avoid re-structuring of the
key-nets by the design tools, we apply the specific commands
set dont touch and set dont touch network on the TIE cells
and key-nets, respectively.
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The number of key-bits/failing patterns dictates the layout
cost by the following trade-off: the more faults are injected,
the more logic can be removed, but the larger becomes the
restore circuitry. We consider the total cell area, including the
restore circuitry, to evaluate cost during the synthesis runs:5

cost = min
f∈F
{costfif + costrestf } such that

{
|K| = k

K
$←− {0, 1}k

where F is the list of faults, costfif denotes area cost for the
fault-injected circuit, costrestf denotes area cost for the restore
circuitry, and K denotes the key. The constraint |K| = k
ensures that the restore circuitry contains k key-bits, thereby,

5The cost model can be readily extended to power and/or timing, if desired.

ensuring adequate and controllable security. The constraint
K

$←− {0, 1}k ensures a uniform bit distribution for the key
K, which directly translates to an even distribution of TIEHI
and TIELO cells in the FEOL. Thus, an attacker cannot derive
hints from the distribution of TIE cells.

B. Secure layout generation

As indicated, randomizing the placement of TIE cells and
lifting the key-nets to the BEOL are essential steps in our
scheme. Toward this end, we randomize and fix the placement
of TIE cells and use set dont touch on the TIE cells. Before
regular placement of the locked design, TIE cells are detached
from the key-gates to avoid inducing any layout-level hints.
Afterwards, key-gates are re-attached before routing, and we
apply ECO routing to lift the key-nets to the BEOL. For that,
we enforce routing of key-nets as new nets, while other regular
nets are re-routed if needed. We declare routing constraints
such that stacked vias are used directly at the output pins of all
TIE cells and the input pins of all key-gates. These constraints
ensure that whole key-nets are lifted to the BEOL at once, and
they can be configured for different split layers.

IV. EXPERIMENTAL INVESTIGATION

In this work, we use 128 key-bits, which is deemed secure
according to modern security standards [18]. All experiments
have been carried out on an 128-core Intel Xeon processor
running at 2.2 GHz with 256 GB of RAM. We use Synopsys
Design Compiler (DC) and Cadence Innovus along with the
45nm Nangate OpenCell library [21] for layout generation. For
fault simulations, we use the Atalanta-M ATPG tool, which
is able to provide all failing patterns. Also, we use Cadence
Conformal LEC to verify the equivalence of the original design
and the locked design. That is required since Atalanta does not
guarantee formal equivalence by itself.

Runtimes for our experiments on the large-scale ITC’99
benchmarks (containing tens of thousands of gates) are in the
range of 5–18 hours. The most time-consuming aspect for our
flow are the re-synthesis runs using DC. Given the parallel
architecture of our flow, these runtimes could be significantly
reduced once a sufficient number of DC licenses is available.

A. Security analysis

Besides the formal analysis in Sec. II-C, we use the attack
of [7] for an empirical study. The attack as is may falsely
connect a key-gate to a regular driver. Since an attacker can
understand which gates are key-gates from the FEOL, we
customize/improve the attack as follows. For any key-gate
being falsely connected to a regular driver, we re-connect this
key-gate to a TIEHI or TIELO cell in a random manner (but
key-gates already connected to a TIE cell are kept as is).
Correct connection rate (CCR). CCR measures the ratio
of correctly inferred connections to that of the total number
of broken connections; the lower the CCR, the better the
protection. Since the security of our scheme depends on
the key-nets, we report CCR for regular nets and key-nets
separately. Further, we differentiate between physical and
logical CCR for key-nets: physical CCR concerns whether the
original routing from the particular TIE cell to the particular
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TABLE I
CCR (%) FOR ITC’99 BENCHMARKS WHEN SPLIT AT M4 AND M6, “NA”

MEANS ATTACK TIME-OUT AFTER 72H

Benchmark
M4 M6

Key nets Regular nets Key nets Regular netsLogical Physical Logical Physical
b14 52 1 17 54 2 47
b15 49 0 15 49 0 25
b17 NA NA NA 51 1 21
b20 54 0 17 60 0 36
b21 50 0 14 54 0 36
b22 52 0 14 55 0 25

Average 51 0 15 54 1 32

key-gate is correct, logical CCR concerns whether a particular
key-gate is connected to any TIE cell of correct logical value.
From a designer’s point of view, the logical CCR for key-nets
should be ∼50%, implying the attacker cannot do better than
random guessing (Sec II-C).

In Table I, we report CCR for two different setups, namely
for lifting of key-nets to M5 and M7 while splitting at M4
and M6, respectively. As can be expected for regular nets [7],
CCR improves for higher split layers. The physical CCR for
key-nets, however, is close to zero for all cases. This confirms
our claim of a physically secure key design. Moreover, the
logical CCR is ∼50%, i.e., the attack cannot perform better
than any random guess.6 Also note that any deviation from
50% cannot be leveraged by an attacker: he/she cannot know
which particular key-bits are correct/wrong without using an
oracle, and is thus left with a number of possible choices
that is exponential in the number of key-bits. Finally, another
important observation is that the logical CCR is similar for
both split layers. This establishes the fact that the security of
our scheme is agnostic to the split layer, i.e., key-nets can be
split at any layer without providing any further benefit than
random guessing does for the attacker.
Hamming distance (HD) and output error rate (OER).
HD quantifies the difference for the output between the
original netlist and the one recovered by the attacker. From the
defender’s perspective, the ideal HD is ∼50%. OER measures
the likelihood of any output error in the netlist recovered by
the attacker; the higher the OER, the better the protection.

From Table II, we see that the proximity attack is unable to
recover the functionality of the original netlist. While HD is
close to 50% for the layouts split at M4, we note that HD drops
for the layouts split at M6. That is because when splitting at
a higher layer, an attacker can readily obtain a larger part of
the design from the FEOL via the regular nets. For the overall
scheme, it is important to recall that the OER is 100% and
logical CCR for key-nets is ∼50% even for higher layers, so
the designs remain protected. Independently, the designer may
increase the number of key-bits to raise the HD.

To validate that our scheme remains secure even in the
presence of an “ideal proximity attack,” we also conduct the
following experiment. The baseline here is that we assume all
regular nets have been correctly inferred; only key-nets remain
to be attacked. As demonstrated above and throughout vast
prior art, this represents a strong assumption to begin with.

6Recall that we post-process falsely connected key-gates from [7]. Other-
wise, as we find in separate experiments, the logical CCR drops well below
50%, namely to 29.3% and 17.6% for split layers M6 and M4, respectively.

TABLE II
HD AND OER (%) FOR ITC’99 BENCHMARKS WHEN SPLIT AT M4/M6,

FOR 1M SIMULATION RUNS, “NA” MEANS ATTACK TIME-OUT AFTER 72H

Benchmark M4 M6
HD OER HD OER

b14 46 100 25 100
b15 52 100 20 100
b17 NA NA 31 100
b20 57 100 19 100
b21 56 100 26 100
b22 57 100 27 100

Average 53 100 25 100

Now, as established in Sec. II-C and empirically confirmed
above, an attacker cannot do better than randomly guessing
the key-nets. Therefore, we apply 1,000,000 runs for randomly
guessing the key-nets. For these experiments, the OER remains
at 100% across all benchmarks, establishing the security of our
technique even in the presence of such an ideal attack.
Comparison with prior art. Recall that our technique, unlike
prior art, offers formal security guarantees for the first time
concerning the classical threat model. Further, we validate
these formal claims empirically by running [7]. Nevertheless,
for a meaningful comparative study, we assess our work
against recent prior art (Tab. III). As preset by the prior art,
here we leverage the ISCAS benchmarks and present CCR,
HD, OER, and percentage of netlist recovery (PNR). PNR
measures the structural similarity between the protected netlist
and the one obtained by the attacker [12]; the lower the PNR,
the better the protection. Note that CCR for ours refers to the
physical CCR of the key-nets. It is evident from Table III that
ours is competitive or even superior to all the latest schemes.

B. Layout analysis

Figure 5 illustrates the layout cost across all considered
ITC’99 benchmarks. The general baseline are the regular,
unprotected layouts. We ensure that all regular and locked
layouts have only few, if any, outstanding DRC issues that can
be manually fixed. Toward that end, we reduce the utilization
rates as needed. Hence, area is reported in terms of die outline.

Prelift serves as a crucial reference point: it covers the
locked layouts as generated using a regular physical design
flow, but with TIE cells and key-nets marked as “don’t touch”
(i.e., Fig. 2(a)). We note considerable area savings in contrast
with the regular layouts, namely 12.75% on average. This is
attributed to the underlying principle of removing logic being
tailored for area saving in this work (Sec III). We would like to
re-emphasize that all locked layouts are functionally equivalent
to the original netlist. Naturally, such area savings enforce
some trade-off: power and timing are increased by 7.66% and
6.40% on average, respectively.

Next, we discuss the cost for the final layouts when com-
pared with the unprotected layouts. Notably, area savings still
carry over, namely with 8.83% and 10.05% for splitting at
M6 and M4, respectively. Power is increased by 15.46% and
20.34% when splitting at M6 and M4, respectively. That is
due to the fact that lifting of key-nets (using stacked vias)
enforces some re-routing of regular nets. This, in turn, requires
upscaling of drivers and/or insertion of buffers to meet timing
(applies only to regular nets, not key-nets). For timing, cost is
thus limited to 6.53% and 6.25% for M6 and M4, respectively.
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TABLE III
PNR, CCR, HD, AND OER (ALL IN %) FOR ISCAS BENCHMARKS WHEN SPLIT AT M4, “NA” MEANS NOT REPORTED IN THE RESPECTIVE PUBLICATION

Benchmark [22] [12] [13] Proposed
PNR CCR HD OER PNR CCR HD OER PNR CCR HD OER PNR CCR HD OER

c432 87.5 78.8 46.1 99.4 32.3 0 45. 9 100 NA 0 48.4 99.9 28 2 42.5 98.3
c880 86.8 45.8 18.0 99.9 28.3 0 39.9 100 NA 0 43.4 99.9 29 1 35.7 100
c1355 84.9 77.1 26.6 100 32.8 0 46.1 100 NA 0 40.1 99.9 31 0 32.3 100
c1908 91.2 83.8 38.8 100 29.5 0 48.1 100 NA 0 46.2 99.9 26 1 34.4 100
c3540 86.2 77.0 36.1 100 30.8 0 46.4 100 NA 0 47.9 99.9 16 2 37.8 100
c5315 87.7 74.7 18.1 100 31.6 0 35.4 100 NA 0 38.3 99.9 31 1 45.2 100
c7552 93.9 73.9 20.3 100 26.9 0 25.7 100 NA 0 27.8 99.9 31 1 71.7 100

Average 88.3 73.3 29.1 99.9 30.3 0 41.1 100 NA 0 41.7 99.9 27.5 1.1 42.8 99.8
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Fig. 5. Layout cost for our scheme. The baseline are the unprotected layouts.
Prelift refers to locked layouts without lifting of key-nets. Each box comprises
data points within the first and third quartile, the bar represents the median,
the whiskers the minimum/maximum values, and outliers are marked by dots.

In short, our secure PD flow for split manufacturing imposes
acceptable power and timing cost along with area savings.
Comparison with prior art. Few works report on layout
cost incurred by their protection scheme. Recently, [12], [13]
report layout cost, but for ISCAS benchmarks which contain
only few hundreds of cells. On average, these schemes incur
9.2%/10.7%/15.0% [12] and 0.0%/11.5%/10.0% [13] cost for
area/power/delay, respectively. The cost for our scheme is
competitive with this prior art in terms of delay, and we can
obtain even area savings which this prior work cannot, all the
while securing practically more relevant ITC’99 benchmarks.7

V. CONCLUSION AND FUTURE WORK

For the first time, we present a formally secure scheme for
split manufacturing concerning the classical threat model. Our
paradigm is to lock the FEOL by embedding a secret key;
this is in fundamental contrast to current defense schemes
which all rely on heuristic protection techniques (i.e., layout-
level perturbations). The secret key to unlock the design needs
to be implemented at the BEOL. We develop and openly
release a design flow to embed the key such that it becomes
indecipherable to an FEOL-centric proximity attack. At the
same time, our flow can provide cost savings in terms of
reduced die outlines. While we cannot foresee future proximity
attacks, e.g., based on advanced machine learning, we believe
our scheme will remain resilient. Any proximity attack has to
rely on FEOL-level hints, and such hints are inherently avoided
for the secret key by our core techniques of randomizing TIE
cells and lifting the key-nets in full.

We present extensive results on large-scale ITC’99 bench-
marks that further validate our formal claims. Two notable
findings are as follows. First, we show that our scheme is
secure against a state-of-the-art proximity attack, which cannot

7We may incur higher cost for ISCAS benchmarks (e.g., 34.8%/70%/1.6%
for c7552 for area/power/timing). Due to the small size of those designs, the
key-gates and restore circuitry form a considerable part. However, cost are
amortized for larger designs, as shown for ITC’99 benchmarks. We can also
argue that protecting overly small designs is not meaningful to begin with.

perform better than randomly guessing the key bits. Second,
the resilience of key-nets is independent of the split layer.

For that latter finding, we propose—for future work—a
scenario where a trusted packaging facility replaces the trusted
BEOL fab. As the security of our approach stems from hiding
the bit assignments for the key-nets, these nets can also be
connected to the IO ports of a chip and, in turn, tied to fixed
logic at the (trusted) package routing level.
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