

Protect Your Chip Design Intellectual Property: An Overview

Johann Knechtel, Satwik Patnaik, and Ozgur Sinanoglu {johann, sp4012, ozgursin}@nyu.edu

COINS 2019, May 6, Crete, Greece

Threats for IC Fabrication and Hardware Security

Growing Demand for Protection of Design IP

A Case Study in Fake Chips

In 2010 the United States prosecuted its first case against a counterfeit-chip broker. The company, VisionTech, sold thousands of fake chips, many of which were destined for military products.

Counterfeit parts sold by VisionTech

Real Fake Imtel® Intel® Imtel® pentium® Imtel® pentium® Imtel® Imtel® Imtel® pentium® Imtel® Imtel®

APRIL 2019: ZHENGZHOU CUSTOMS DESTROYS COUNTERFEIT TI CHIPS WORTH 704M YUAN

Zhengzhou Customs seized 20,000 automotive CPU ICs labeled with the Texas Instruments (TI) trademark, suspecting them to be counterfeit. [...] The intended function of the CPUs was to prevent short circuits caused by instantaneous current overload when a vehicle is started. Total value of the fake chips was estimated at 704 million yuan. (around 100 million USD).

Source: Sentencing memo, United States of America v. Stephanie A. McCloskey, filed 7 September 2011

Protect Your Chip Design IP: An Overview

Basics of Logic Locking (Encryption)

- IP owner locks the design at RTL, by inserting dedicated locking structures
- IP owner unlocks the design after fabrication, by loading secret key onto memory
- Protects against untrusted end-user + fab

Basics of Logic Locking (Encryption)

- Incorrect key \rightarrow Incorrect output
- Secure realization of tamper-proof memories
 Prone to analytical and invasive attacks

Introduction	Logic Locking	Layout Camouflaging	Split Manufacturing	Summary

Evolution of Logic Locking

SAT attacks broke all basic logic locking techniques

1	r		ŀ	r	\sim	Ы		~	нi	\sim	n	
1		I.	ι	ι.	U	u	u	U	υI	U	11	

SAT Attack Success

					Out	tput	Y fo	r diff	erer				
No.	а	b	с	Y	kQ	.k1	k2	k3	k4	k5	k6	k7	Pruned key values
0	0	0	0	0	1	1	1	1	1		0	1	
1	0	0	1	0	1	1	1	1	1	1	0	1	
2	0	1	0	0	1	1	1	1	1	1	0	1	
DIP 1	0	1	1	1	1	1	1	1	0	1	1	1	Iter 1: {k4}
DIP 3	1	0	0	0	1	1	1	1	1	1	0	1	Iter 3: all incorrect
5	1	0	1	1	1	1	1	1	1	1	1	0	
6	1	1	0	1	1	1	0	1	1	1	1	1	
DIP 2	1	1	1	1	1	0	0	1	1	1	1	1	lter 2: {k1, k2}

Attack success ≈ effectiveness and selection of DIPs

SAT Attack Success

Worst-case scenario for attack: Each DIP can eliminate only one key

> Worst case for attack: #DIPs = 2^k-1

Trade-off: SAT attack resilience v/s output corruptibility

	_				(Outp	out Y	′ for val	diffe ues	eren	t key	Y
No.	а	b	С	Y	k0	k1	k2	k3	k4	k5	k6	k7
0	0	0	0	0	0	1	0	0	0	0	0	0
1	0	0	1	0	1	0	0	0	0	0	0	0
2	0	1	0	0	0	0	0	1	0	0	0	0
3	0	1	1	1	1	1	1	1	1	1	1	1
4	1	0	0	0	0	0	0	0	0	1	0	0
5	1	0	1	1	1	1	1	1	0	1	1	1
6	1	1	0	1	1	1	1	1	1	1	1	1
7	1	1	1	1	1	1	1	1	1	1	1	0

troduction	Logic Locking	Layout Camouflaging	Split Manufacturing	Summary

Point-Function-Based Logic Locking Techniques

- Integration of point functions
 - E.g., AND/OR tree
 - Allows to control error injected into circuit
- Renders number of DIPs exponential in key size
- <u>Vulnerability</u>: Structural traces (identify & remove)

Stripped Functionality Logic Locking (SFLL)

- Based on "strip and restore"
 - Locked circuit obtained from original circuit
 by making various changes at gate/RTL level
 - *Restore circuit* is intertwined
- In principle secure against all known attacks
- Quantifiable protection

One output locked via SFLL

Example: 3 protected input patterns; Error Rate = 3/8 (on locked output)

SFLL Chip

- First-of-its kind demonstration of resilient logic locking in 2017
- ARM Cortex-M0 microprocessor, 65nm GlobalFoundries technology
 - Layout cost affordable (1.6% A, 5.6% P, 5.4% D)
- https://github.com/DfX-NYUAD/CCS17

Yasin et al., Provably-Secure Logic Locking: From Theory To Practice, Proc. Comp. Comm. Sec. (CCS), 2017, 1601-1618

Trade-offs for security and cost (manufacturing cost, layout cost)
 Prone to invasive and also to analytical attacks

Attacks on Layout Camouflaging

Rajendran et al.: Security Analysis of Integrated Circuit Camouflaging, Proc. Comp. Comm. Sec., 2013, 709-720

Modeling of unknown gates as locking problem, using SAT attacks Etching, failure analysis, electron microscopy, photon emission, etc.

FEOL-Centric Layout Camouflaging

- Dummy contacts, e.g., NAND-NOR-XOR primitive in [Rajendran-CCS13]
 - PPA cost of 5.5X, 1.6X, 4X over 2-input NAND gate
 - Small-scale application, possibly locking-inspired; low error rate
 - Can be reverse-engineered using SEM PVC

Rajendran et al.: Security Analysis of Integrated Circuit Camouflaging, Proc. Comp. Comm. Sec., 2013, 709-720

FEOL-Centric Layout Camouflaging

- Threshold-dependent gates, e.g., NAND-NOR-XOR in [Akkaya-ISSCC18]
 - Post-manufacturing configurability, unlike static camouflaging
 - PPA cost of 9.2X, 6.6X, 7.3X over 2-input NAND gate
 - Doping can be reverse-engineered using SEM (PVC) or careful etching

Akkaya et al., Secure Camouflaged Logic Family Using PostManufacturing Programming with a 3.6GHz Adder Prototype in 65nm CMOS at 1V Nominal VDD, Proc. Int. Sol.-St. Circ. Conf., 2018

Scanning Electron Microscopy Passive Voltage Contrast

Sugawara et al.: Reversing stealthy dopant-level circuits, J. Cryptogr. Eng., 2015

BEOL-Centric Layout Camouflaging

- Dummy vias, wires in [Chen-DFTS15], [Malik-ISVLSI15], [Patnaik-ICCAD17]
- Simple to manufacture only BEOL masks affected, any FEOL compatible
- No inherent gate-level cost
 - Full-chip camouflaging: SAT attack hindered by scalability issue
- BEOL materials: Mg/MgO vias in [Chen-DFTS15], [Patnaik-ICCAD17]

Chen et al.: Chip-level anti-reverse engineering using transformable interconnects, Proc. Int. Symp. Def. Fault Tol. in VLSI Nanotech. Sys., 2015, 109-114

BEOL-Centric Layout Camouflaging

- Dummy vias, wires in [Chen-DFTS15], [Malik-ISVLSI15], [Patnaik-ICCAD17]
- Simple to manufacture only BEOL masks affected, any FEOL compatible
- No inherent gate-level cost
 - Full-chip camouflaging: SAT attack hindered by scalability issue
- BEOL materials: Mg/MgO vias in [Chen-DFTS15], [Patnaik-ICCAD17]
 - Mg/MgO used in CMOS processes (for MTJs, Damascene process, ...)

Matsunaga et al.: Fabrication of a Nonvolatile Full Adder Based on Logic-in-Memory Architecture Using Magnetic Tunnel Junctions, Applied Physics Express, 2008, 1, 091301

BEOL-Centric Layout Camouflaging

- Dummy vias, wires in [Chen-DFTS15], [Malik-ISVLSI15], [Patnaik-ICCAD17]
- Simple to manufacture only BEOL masks affected, any FEOL compatible
- No inherent gate-level cost
 - Full-chip camouflaging: SAT attack hindered by scalability issue
- BEOL materials: Mg/MgO vias in [Chen-DFTS15], [Patnaik-ICCAD17]
 - Mg/MgO used in CMOS processes (for MTJs, Damascene process, ...)
 - Difficult to reverse engineer: Mg oxidizes
 - Charge-based SEM may fail as well

Derived from https://commons.wikimedia.org/wiki/File:Cmoschip_structure_in_2000s_(en).svg

Trade-off for security and practicability (split layer, BEOL requirements, wafer handling)
 Prone to analytical attacks

Attacks on Split Manufacturing – Proximity Attacks

- CAD tools work holistically on FEOL and BEOL
- Infer missing BEOL connections from FEOL layout [Rajendran-DATE13]
 - Placement proximity, direction of dangling wires
- Additional hints, various attack implementations
 - Load capacitance, no combinatorial loops, timing constraints [Wang-DAC16]

Knechtel et al., Protect Your Chip Design Intellectual Property: An Overview, COINS 2019

- Routing proximity, estimated routing congestion [Magana-ICCAD16]
- Machine-learning based attack [Wang17-ICCAD, Zhang18-DAC, Li19-DAC]

Summary

Defense Schemes

Placement perturbation [Wang-DAC16]

△ Selective, small-scale use – proximity attack rate at 92%

 Routing perturbation [Wang-ASPDAC17], [Magana-ICCAD16], [Feng-ICCAD17], [Patnaik-ASPDAC18]

Wang et al.: The Cat and Mouse in Split Manufacturing, Proc. DAC, 2016

Wang et al.: Routing Perturbation for Enhanced Security in Split Manufacturing, Proc. ASP-DAC, 2017

Defense Schemes

- Placement and routing pertubation "netlist restructuring" [Sengupta-ICCAD17, Patnaik-DAC18]
 - Better security, proximity attack success rate as low as 0%
 - △ PPA for large-scale application

Sengupta et al.: Rethinking Split Manufacturing: An Information-Theoretic Approach with Secure Layout Techniques, Proc. ICCAD, 2017

Patnaik et al.: Raise Your Game for Split Manufacturing: Restoring the True Functionality Through BEOL, Proc. DAC, 2018

Split Manufacturing for Protection Against Hardware Trojans

- When the fab attacker already knows the netlist, how to prevent Trojans? [Imeson13]
 - Layout cost
- When the fab attacker inserted some Trojan, how to test for? [Vaidyanathan14]

Extending Split Manufacturing by 3D Integration

- A Prior art: high layout cost, commercial cost, protect only against fab
- "Best of both worlds": split manufacturing and BEOL camouflaging

Security-driven "3D split" into two (or more) tiers

Patnaik et al., Best of Both Worlds: Integration of Split Manufacturing and Camouflaging into a Security-Driven CAD Flow for 3D ICs Proc. IEEE/ACM Int. Conf. on Computer-Aided Design (ICCAD), 2018, 8:1-8:8

Extending Split Manufacturing by 3D Integration

- Split manufacturing and BEOL camouflaging
 - Security-driven "3D split" into two (or more) tiers
 - Randomize and camouflage interconnects (RDLs)
 - Only trusted BEOL facility is required
 - Thwarts both malicious FEOL fabs and end-user

Patnaik et al., Best of Both Worlds: Integration of Split Manufacturing and Camouflaging into a Security-Driven CAD Flow for 3D ICs Proc. IEEE/ACM Int. Conf. on Computer-Aided Design (ICCAD), 2018, 8:1-8:8

