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Introduction

3D Chip Stacks: Meeting Trends for Modern Chip Design

"More than Moore" (Heterogeneous Integration)
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Introduction

Principles of 3D Chip Stacks

« Multiple vertically stacked active layers (dies)
© Shorter and vertical interconnects: power consumption, delay, bandwidth
© Separate and smaller dies: heterogeneous integration, yield, cost, size
& Complex design, design automation, and manufacturing processes

* Different options; focus on three most important options

T

Interposer Stack TSV-based 3D IC Monolithic 3D IC



Introduction

Interposer Stacks

« Chip-level integration

« Interposer as (Si) carrier with regular metal layers

« Mainly lateral stacking; “2.5D integration”

« Packaging-centric manufacturing; good acceptance in industry
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Introduction

TSV-based 3D ICs

« Block-level integration

« Through-Silicon Vias (TSVs): vertical metal plugs for electrical inter-
chip connections

« Die manufacturing and die stacking can be separated
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Introduction

Monolithic 3D ICs

« Transistor-level, fine-grain integration
« Inter-layer vias like regular vias
« Dedicated sequential manufacturing process
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Introduction

Very Early Foundations for TSVs (1950s,60s)
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Introduction

Early 3D ICs (1989)

« Very same motivation like today
— Heterogeneous integration (for process optimization)

— Shorter interconnects (b)

Gate array
PLA

SRAM

Fig.7 Cross=-sectional SEM

2nd Layer photograph of a four-layer-
stacked 3D-IC, including doped

1st Layer PolV-Si.




Introduction

Prototypes of TSV-based 3D ICs: Memory on Logic

« Teraflops Research Chip, Intel, 2007
— 80 cores, stacked SRAM on top

— 1 TB/s memory bandwidth; approx. 100x better power-performance figure
(here 2.2W; traditional bus: 20W for 100GB/s)

« Tile-based architecture; simplified (full-custom) design process

256 KB SRAM per core
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Introduction

Prototypes of TSV-based 3D ICs: Memory on Logic

« 3D-MAPS, Georgia Tech, 2010 onwards
— 64-128 cores, 1-2 logic dies, 1-3 memory dies
— Up to 64 GB/s (2,5x Intel i7 & DDR3), at 4 W power consumption

« Tile-based architecture; 2D EDA flow with custom scripts and tools

logic die

memory die




Introduction

Prototypes of TSV-based 3D ICs: Memory on Logic

« 3D-MAPS, Georgia Tech, 2010 onwards
— For example, flow for static timing analysis with signal integrity
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Introduction

First Commercial TSV-based 3D ICs: Memory Integration

 Hybrid Memory Cube (HMC), 2011 onwards
— 128 GB/s; 15x DDR3 at 30% power of DDR3

 High Bandwidth Memory (HBM), 2011 onwards
— JEDEC standard
— HBM2: 256 GB/s
— 2016: Samsung, mass production; SK Hynix, 4GB stacks in August
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Introduction

First Commercial Interposer Stacks

« Xilinx Virtex 7, 2011 onwards

First 3D FPGA: Virtex-7 2000T First Heterogeneous 3D FPGA:

Monolithic Device Based on Stacked Silicon Interconnect Virtex-7 H580T

Based on Stacked Silicon Interconnect

« AMD Fiji, 2015: GPU, GPU, HBM on interposer
— 8 years R&D; 20 partners; 15-16 prototypes
— 8.9 billion transistors; 3x smaller PCB footprint
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Introduction

Monolithic 3D ICs: Progress for Technology

V-NAND, Samsung and others, since 2012
— Probably in 256GB iPhone 7

CEA-Leti “"CoolCube”, since 2014

— First demonstration of CMOS-over-CMOS
3D VLSI CoolCube integration on 300mm,
2016 VLSI Symposium
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Introduction

Monolithic 3D ICs: Towards Novel Computing Designs

[ (a) 3D RRAM

Experimental demonstrations

~

-

f

(3) Fine-grained

. monolithic 3D integration

- Compute + memory elements

- Ultradense connectivity
using nanoscale vias

(2) High-density
nonvolatile memories

- 3D RRAM: massive storage
- STT-MRAM: quick access
(1) Energy-efficient FETs

- 1D CNTs

- 2D layered nanomaterials

7~ (5) Computation

immersed in memory

<= (4) Efficient heat removal



Introduction

Design Automation as Key Enabler for 3D Chip Stacks

Physical-
Design
Automation

SDIGChIpStacks

Tacnnolougy S
Mlzinuraceuring

& Tutorial Part 1 (Johann Knechtel): classical and novel EDA challenges
and solutions for 3D, logic integration

& Tutorial Part 2 (Ibrahim Elfadel): 3D in IoT sensors with focus on
MEMS, imaging, memory and photonics
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2. Classical Challenges — Aggravated but Solvable



Classical Challenges

Design Automation Flow for 3D Chip Stacks
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Introduction Classical Challenges Novel Challenges Summary

Thermal Modeling and Simulation

4 For d dies, approx. d-fold power density than 2D chips
@ Large heat to be dissipated
@ Thermal profiles very different for various stacking scenarios

& Need for flexible and scalable modeling and simulation

thermal maps for TSV-based 3D IC

Samal et al. Adaptive Regression-Based Thermal Modeling and Iyer, S. S. Heterogeneous Integration for
Optimization for Monolithic 3-D ICs Trans. Comp.-Aided Des. Performance and Scaling Trans. Compon., Packag.,
Integr. Circ. Sys., 2016, 35, 1707-1720 Manuf. Technol., 2016, 6, 973-982

J. Knechtel, 1. Elfadel, "Design Automation for 3D Chip Stacks: Challenges and Solutions®, Tutorial ICCD 2016 20



Classical Challenges

Thermal Modeling and Simulation

& Thermal modeling
— FEM, FDM
— Equivalent RC networks

— Tailored analytical models
(Green’s function etc.)
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Classical Challenges

Thermal Modeling and Simulation

& Thermal simulation: network simulation, can be coupled

Thermal Modeling Electrical Modeling

Package Circuit
Model Coupled !Electr(?- Model
Thermal Simulation
pE————
electric network thermal model _ _ [ i ] )
power disgipations L ! s
Chip = £ r 1
temperdtures L !
Models =: !
circuit simulator thermal simulator

Device | i----1"----- "
Models




Classical Challenges

Thermal Modeling and Simulation

& Thermal simulation: fast analytical simulations, e.g. power blurring

e |l |
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Classical Challenges

Power Delivery

& For d dies, approx. d-fold power density than 2D chips
&« Large current to be delivered without excessive noise
« PDN to be connected and designed across all dies

TIER 2 power network

& Decap dies, multiple power supplies, etc.
& TSVs: multiple, distributed and stacked

& Need for flexible and scalable modeling
and simulation Gname u

power network

VDD TSV

GND TSV

clustered P/G TSV location distributed P/G TSV location



Classical Challenges

Power Delivery

& Modeling and simulation of PDN noise

IR-Drop Distribution [mV] Die 1

& Similar as with thermal behavior Die3 ~ .
— Equivalent RC networks . g :
— Fast analytical models, e.g., o 3
superposed 2D Gauss functions dr >
L |
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. . 5
Grid-wire
resistor \ 0
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Classical Challenges

Clock Delivery

& Reliable, uniform and high-speed delivery across multiple dies
« Reliability and parametric variations of TSVs
« Inter-die variations become 1st order problem

& Multiple clock TSVs, distributed or in arrays
& Redundancy architectures
— Also helps with variations

& Multiple clock domains @—» PE 3 ] Layer 2
— Mitigates inter-die variations clock source 44 i
and impact fromTSvs ——— 1 T FIFO
— Enables KGD testability 4
— Essential for larger stacks @—' PE 1 Mpg 2 || Layer1
and interposer stacks Clock Source




Classical Challenges

Clock Delivery

(& Reliable, uniform and high-speed delivery across multiple dies

& Full-stack 3D clock-network synthesis
— 3D extension of effective techniques such as MMM and DME
— Account for variations (inter-die, intra-die, TSVs)

p=43.7, 6=16.6, Qo.95=75.9

p=103.5, 6=40.7, Qo.95=180.0

u=92.7, 6=36.3, Qo.g5=162.9

=

— Multiple TSVs
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B 7771w buffer variation only

w/ TSV, wire and buffer variations
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Introduction Classical Challenges Novel Challenges Summary

Partitioning and Floorplanning

£ Large impact of technology and stacking configuration
£ Large correlation/coupling among blocks
£ High computational complexity for 2.5D/3D design (NP-complete)

& Need for stacking- and technology-aware approaches
& Account for different interfaces and interconnect technologies

Beyne, E. The 3-D
Interconnect Technology
Landscape Designh & Test,
2016, 33, 8-20

J. Knechtel, 1. Elfadel, "Design Automation for 3D Chip Stacks: Challenges and Solutions®, Tutorial ICCD 2016 28



Classical Challenges

Partitioning and Floorplanning

& Account for different interfaces and interconnect technologies
& Extended min-cut partitioning: ordering of stacked (TSV-based) dies

total_tsv = 28 total_tsv = 21

[ ] 170 pad
QO celliblock
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Classical Challenges

Partitioning and Floorplanning

& Account for different interfaces and interconnect technologies
— Min-cut inappropriate for monolithic 3D stacks; many cuts desired
& Placement-driven and routing-aware partitioning

| Netlist | | Placement Legalization |
v v
| M3D Placement [ [ MIV Insertion |
NAND2_4X . v v
Intt\a/:;ltler | Routability-Driven Paritioning | | | Tier-by-Tier Route |
= v v
o Icg S | Top-off Placement | 3D Timing & Power Analysis |
Diameter

Double the capacity



Classical Challenges

Partitioning and Floorplanning

& Multi-objective, fast and scalable yet accurate tools
— Thermal management — Stress management
— PDN-noise management — Interconnects-aware timing (wires, TSVs)
— Co-arrangement of modules and global interconnects (wires, TSVs)
— Folding/splitting modules

input 3. final floorplan 4. floorplanning
architecture 1. block library 2.initial floorplan  with TSVs evaluation
RTL
power map
ocuiet > | [0 1 E
thermal map
module 2 —+—» : » stress map
- +
IR-drop map
reies > | e [
HEEEEN EM/TTFmap
reciies -+ | [ e [




Classical Challenges

Placement

P

High complexity and large correlation/coupling among blocks
& Need for flexible and scalable placement techniques

& Folding- or partitioning-based placement
— Reuse of 2D tools/know-how

— Limited consideration of interconnects/interfaces
— Practical for monolithic ICs
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Classical Challenges

Placement

& Analytic placement
— Motivated by recent progress for 2D placement
— “Natural” arrangement of cells in 2.5D/3D domain
— Complex; requires clustering and coarsening, global smoothing, etc.

Mixed-Size 3D Mixed-Size 2D Mixed-Size Macr(‘Standard-Cell 3D_ | Standard-Cell 2D
Global Placement | Global Placemen Legalization Global Placemen lobal Placement
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- 0 opt.|v
Gradient | Placement V mac&eell fillerdicel All-Tier 2D
Computation [< | | Remove Std-Cell Tier PPL{ Filler-Only
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Classical Challenges

Placement

& Hierarchical placement
— A framework for GP, DP, legalization
— Not flat; includes floorplanner
— Not restrictive; analytic placer engine(s) or others

: Initial 30
/ Netlist / / Placement /

"““‘L""' Pseudo 30 Full 3D

: I
; |
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Classical Challenges

Routability Estimation and Routing

(5 Heterogeneous, large-scale interconnect topologies
& Need for routability estimation and adapted routing

& Routability estimation: stacking- and technology-aware
— Interconnects distribution models, with TSVs, buffers etc.
— 3D HPWL and 3D routing graphs
— Probabilistic or heuristic routing models

- ——_
.l.|.i"|ili+i.l. N
=FF —lI=T—— ...ir

ARl

"l
-y
A\

(H—{}
|

||
e

AN

| I'.|Il|l'|.|.|

P

Ry

(¥
|
X

'
'
{}
R

ey

o

(F
|




Classical Challenges

Routability Estimation and Routing

(5 Heterogeneous, large-scale interconnect topologies
& Need for routability estimation and adapted routing

& Detailed routing: not fundamentally different than in 2D ICs

& Global routing: leverage on 3D routing for 2D ICs
& Extend classical techniques, e.g., 3D Steiner trees
& Thermal-, power-, and delay-aware tree construction




Classical Challenges

Routability Estimation and Routing

(5 Heterogeneous, large-scale interconnect topologies
& Need for routability estimation and adapted routing

& Global routing: different types of TSVs and global interconnects
& Synchronize with power delivery, floorplanning, placement, routing etc.

' (A) Vertical Bus

(B) TSV Stack

(C) 2D Bus
ground TSV (Fixed Pins)
power TSV
(D) 2D Bus

(Flexible Pins)




Classical Challenges

Routability Estimation and Routing

(5 Heterogeneous, large-scale interconnect topologies
& Need for routability estimation and adapted routing

& Global routing: 3D NoC design
— Synchronized design of distributed and partial NoCs
— Exploration of various topology, technology and architectural options
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Classical Challenges

Timing Closure

& Intra- and inter-die variations

& Stacking of properly matched dies

& SS/SS or FF/FF not to be stacked; no need to consider for design corners
& Match SS/FF or FF/SS

Mix-and-match
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Classical Challenges

Timing Closure

& Intra- and inter-die variations

& Stacking of properly matched dies
& Cut timing paths such that delays are balanced
& Reduces overhead and improves timing

133 | mGT2012 (orig) ~ mGT2012 (opt)
50 Shrunk2D (orig) m Shrunk2D (opt)
’g 0
— -50 Technology: 28FDSOI
= -150 MO 1.2ns
-200 - AES 1.1ns
'igg | VGA 1.0ns

ARM MO AES VGA



Classical Challenges

Timing Closure

& Intra- and inter-die variations
& TSVs induce cross-coupling and timing variations

& TSV coupling: models
& Equivalent networks, verified against FEM simulations

Bl Two TSV - Two TSV
Bl One TSV - One TSV
BGR TSV -GR TSV
o Measurements

& HFSS (~15 mins)
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Classical Challenges

Timing Closure

& Intra- and inter-die variations
& TSVs induce cross-coupling and timing variations

& TSV coupling: models
& Equivalent networks, verified against FEM simulations
& Can also account for coupling into transistors
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Classical Challenges

Timing Closure

& Intra- and inter-die variations
& TSVs induce cross-coupling and timing variations

& TSV coupling: countermeasures
& TSV arrangement and/or shielding




Classical Challenges

Timing Closure

& Intra- and inter-die variations
&5 TSVs induce cross-coupling and timing variations

& TSV coupling: countermeasures

& TSV arrangement and/or shielding
& Differential transmission or dual-rail encoding

Positive signal TSV m_
Negative signal TSV
Neutral
Data 1

L ']
Ack —— e ‘:l.' »

Neutral

Valid (“1”)

Neutral

Data O




Classical Challenges

Timing Closure

Intra- and inter-die variations
TSVs induce cross-coupling and timing variations

& TSV coupling: countermeasures
& TSV arrangement and/or shielding
& Differential transmission or dual-rail encoding

& Stress-aware (electron, hole mobility) DP or placement post-processing
(stress modeling discussed later)
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Classical Challenges

Physical Verification

& Multitude of components, various levels for DRC and LVS
« Novel physical and architectural components
« Verification on all levels: package-, chip-, gate-, and transistor-level

Verification Process

r (Local) | | (Global) Verification of the
| Single Component Verification | |Systems Component Interactions |
[ Technology Management ([ Interface Checks
DRC DRC

) Rule Management - 3D DRC
[ ]| (Sub-)Netlist Handling | [ | New Tool Formats
| ) Netlist Extraction \ | Multilevel LVS
(" Process Steps VT Challenges |



Classical Challenges

Physical Verification

£ Multitude of components, various levels for DRC and LVS

& Shared database, with converter capabilities and interfaces
& For example, assembly design kit (ADK)

/ System Description Technology and Rule %/

(geometrical, 3D) /,’\\ Coniguration for DRC/LV

Netlists, Pin Assignment v Modular and Parametric
(electrical) Rule Decks
Unified

Syst
PDKs, Rule Decks Modal Partial and Assembled
(technological) Netlists and Layouts

7

/ Layouts, Footprints Interfaces to established /

(geometrical, 2D) 3rd Party Tools




Classical Challenges

Physical Verification

£ Multitude of components, various levels for DRC and LVS

& Unified and hierarchical verification framework
& Delegate verification to available and new tools

System specification ® OIS .U Chip POKS lll Verified system




Classical Challenges

Design for Testability

Multiple testing requirements

Faults and symptomatic impact (e.g., delay) of wires and TSVs
Pre-bond, mid-bond, post-bond and final package testing

Slave die
T e P
;o i —H
D I
- § | 3
(a) . (b) (c) (d) E (e (f) (@) (h) (i)

fault-free :SA0/SA1 wired-AND wired-OR . . PDF SOF crosstalk PDF+crosstalk  SOF+crosstalk

Die 1
Die 1 Diel — [ pie2 /|  Pre-bond test
W} Die 2 Die3 | r—— Partial-stack
Sie 2 SHRARARAHRAE * R (mid-bond) test
v Full-stack
Die3 || - (post-bond) test

WY, Package

Package test




Classical Challenges

Design for Testability

» Multiple testing requirements
Faults and symptomatic impact (e.g., delay) of wires and TSVs

& Tailored fault models, e.g., ATPG considering stress and timing impact

stress- Once per technology e "Once per TSV geometry
aware model Cell Tran.  mobility FEA Simulation
Models Models
L * I ‘
T ming Encounter Library TSV Stress Tensor
Analysis ¢
Characterizer '

£ Full Chip Stress
Analysis
Characterized No ¥
all mobilities ?

| Pick appropriate library
e s & for each cell
Patterns | F | = e . . Y
PMOS : Nominal, NMOS : Nominal
Timing Libraries Primetime

| Fault
simulation



Classical Challenges

Design for Testability

(5 Multiple testing requirements
« Faults and symptomatic impact (e.g., delay) of wires and TSVs

« Pre-bond, mid-bond, post-bond and
final package testing

Kernel

© WIP IEEE P1838: DfT architecture  [la# MK Ml 2
& Support for different test stages Ii-ll
& Compatibility across different chips OWR

and stacking parties Y Y S—
— Test access based on IEEE 1149.1 Kernel

— Die wrapper register like IEEE 1500 TAP
— Internal debugging via IEEE P1687 S

BSR'/ DWR
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3. Novel Design Challenges and Emerging Solutions



Novel Challenges

High-Level Design and Pathfinding

1. High-level design: derive components from high-level descriptions

2. Pathfinding: generate and evaluate “coarse” layouts

deli d High-Level Design :
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Novel Challenges

High-Level Design and Pathfinding

1. High-level design: derive components from high-level descriptions
& Abstracted, modular components, e.g., RTL modules
& Parameterizable multi-port components for TSVs, bumps, etc.
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Introduction Classical Challenges Novel Challenges Summary

High-Level Design and Pathfinding

1. High-level design: derive components from high-level descriptions
& Abstracted, modular components, e.g., RTL modules
& Parameterizable multi-port components for TSVs, bumps, etc.

2. Pathfinding: generate and evaluate “coarse” layouts
& “Plug-and-play” of components, explore stacking and technology options
& Annotate stacks with design and simulation feedback
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Martin, B.; Han, K. & Swaminathan, M. “A Path Finding Based SI Design Methodology for 3D Integration”
Proc. Elec. Compon. Technol. Conf., 2014, 2124-2130
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Novel Challenges

Chip-Package Co-Design

& Design of 3D stacks is team effort, possibly using different tools
& Interfaces require orchestration of physical and functional design
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Novel Challenges

Chip-Package Co-Design

& Design of 3D stacks is team effort, possibly using different tools
& Interfaces require orchestration of physical and functional design

& Use of a shared, unified database such as an ADK
& Design abstraction with data propagation; “virtual die model”
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Novel Challenges

Chip-Package Co-Design

& Design of 3D stacks is team effort, possibly using different tools
& Interfaces require orchestration of physical and functional design

& Use of a shared, unified database such as an ADK
& Design abstraction with data propagation; “virtual die mode
& Shared physical interfaces: designer and tools hand-over points
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Novel Challenges

Multi-Physics Modeling and Simulation

&5 Strong coupling of physical domains in 3D stacks
« For example, thermo-mechanical stress induced by TSVs

& Need for techniques crossing physical domains and design levels
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Novel Challenges

Multi-Physics Modeling and Simulation

& Need for techniques crossing physical domains and design levels

& Fine-grain, detailed to abstracted, high level modeling and simulation
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Novel Challenges

Multi-Physics Modeling and Simulation

& Need for techniques crossing physical domains and design levels

& Fast analytical models, here with local and global superposition
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Novel Challenges

Multi-Physics Modeling and Simulation

& Need for techniques crossing physical domains and design levels

& Fast analytical models, here with local and global superposition

von Mises stress (MPa)
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Novel Challenges

Security and Trustworthiness

& Hardware as root of trust; many potential attacks and attackers

& 3D chips: more distributed design and manufacturing landscape
« Potentially higher threat exposure than 2D chips
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Novel Challenges

Security and Trustworthiness

&5 3D chips: benefits on physical and design level for security

& Nature of vertically stacked dies/layers and high integration density
& Complicates side-channel analysis and reverse engineering
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Novel Challenges

Security and Trustworthiness

&5 3D chips: benefits on physical and design level for security

& Nature of vertically stacked dies/layers and high integration density
& Complicates side-channel analysis and reverse engineering

& Supports trusted monitors and trusted system integration
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Novel Challenges

Security and Trustworthiness

& 3D chips: benefits on physical and design level for security

& Nature of vertically stacked dies/layers and high integration density
& Complicates side-channel analysis and reverse engineering
& Supports trusted monitors and trusted system integration
& Supports concept of split manufacturing
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Novel Challenges

Security and Trustworthiness

3D chips: benefits on physical and design level for security

& Nature of vertically stacked dies/layers and high integration density
& Complicates side-channel analysis and reverse engineering
& Supports trusted monitors and trusted system integration
& Supports concept of split manufacturing
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Novel Challenges

Security and Trustworthiness

& 3D chips: benefits on physical and design level for security

& Nature of vertically stacked dies/layers and high integration density

& Higher performance and bandwidth: enable costly security primitives
& Memory protection, e.g., random eviction and heterogeneous latencies
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Novel Challenges

Security and Trustworthiness

&5 3D chips: benefits on physical and design level for security

& Nature of vertically stacked dies/layers and high integration density
& Higher performance and bandwidth: enable costly security primitives
& Heterogeneous components for security primitives, e.g., TSV-PUF

RO_EN RO OUT

T o0 eee o

2D RO

TSV 0
RO_EN

3D RO RO_OUT




Novel Challenges

Security and Trustworthiness

&5 3D chips: threats/risks on physical and design level for security

(& Malicious TSV coupling or manufacturing: denial of service, data
leakage, data injection

& TSV shielding and TSV testing

& 3D NoC with access control and decoupled, redundant
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Novel Challenges

Security and Trustworthiness

& 3D chips: threats/risks on physical and design level for security

£ Malicious TSV coupling or manufacturing: denial of service, data
leakage, data injection
{5 Malicious access to modules “buried too deep in stack” via testing
& Recent progress in design for secure testability, e.g., to protect IP
& OSAT shall access and test only encrypted dies
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Novel Challenges

Security and Trustworthiness

& 3D chips: threats/risks on physical and design level for security

£ Malicious TSV coupling or manufacturing: denial of service, data
leakage, data injection
{5 Malicious access to modules “buried too deep in stack” via testing
& Recent progress in design for secure testability, e.g., to protect IP
& OSAT shall access and test only encrypted dies
& Secure testing to be extended for 3D stacks
— Test access based on IEEE 1149.1

— Die wrapper register like IEEE 1500
— Internal debugging via IEEE P1687 DWR _‘i
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DWR
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QOutline

1. Motivation, Flavors, and Examples of 3D Chip Stacks
2. Classical Challenges — Aggravated but Solvable
3. Novel Design Challenges and Emerging Solutions

4. Summary Part 1 and Introduction Part 2
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Summary

Further Reading Material

See handout: J. Knechtel, ]. Lienig “"Physical Design Automation for
3D Chip Stacks — Challenges and Solutions,” Proc. ISPD’16, pp. 3-10,
April 2016 http://dx.doi.org/10.1145/2872334.2872335

H. Reiter, eda2asic and the Electronic System Design Alliance “"Multi-
die IC User Guide 2016.6. 1" http://www.esd-
alliance.org/initiatives/committees/SystemScaling/MultiDieICDesign
2016.6
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