
Towards Secure Composition of Integrated Circuits
and Electronic Systems: On the Role of EDA

Johann Knechtel1, Elif Bilge Kavun2, Francesco Regazzoni3, Annelie Heuser4, Anupam Chattopadhyay5,
Debdeep Mukhopadhyay6, Soumyajit Dey7, Yunsi Fei8, Yaacov Belenky9, Itamar Levi10, Tim Güneysu11,

Patrick Schaumont12, and Ilia Polian13

1johann@nyu.edu – NYU Abu Dhabi, UAE; 2e.kavun@sheffield.ac.uk – University of Sheffield, UK;
3regazzoni@alari.ch – ALaRI, University of Lugano, Switzerland;

4annelie.heuser@irisa.fr – Univ Rennes, Inria, CNRS, IRISA, France;
5anupam@ntu.edu.sg – NTU, Singapore; 6,7debdeep@cse.iitkgp.ac.in, soumya@cse.iitkgp.ac.in – IIT Kharagpur, India;

8yfei@ece.neu.edu – NEU, Boston, USA; 9yaacov.belenky@intel.com – Intel, Israel;
10itamar.levi@biu.ac.il – BIU, Ramat Gan, Israel; 11tim.gueneysu@rub.de – RUB & DFKI, Bochum & Bremen, Germany;

12schaum@vt.edu – VT, Blacksburg, USA; 13ilia.polian@informatik.uni-stuttgart.de – University of Stuttgart, Germany

Abstract—Modern electronic systems become evermore com-
plex, yet remain modular, with integrated circuits (ICs) acting as
versatile hardware components at their heart. Electronic design
automation (EDA) for ICs has focused traditionally on power,
performance, and area. However, given the rise of hardware-
centric security threats, we believe that EDA must also adopt
related notions like secure by design and secure composition
of hardware. Despite various promising studies, we argue that
some aspects still require more efforts, for example: effective
means for compilation of assumptions and constraints for security
schemes, all the way from the system level down to the “bare
metal”; modeling, evaluation, and consideration of security-
relevant metrics; or automated and holistic synthesis of various
countermeasures, without inducing negative cross-effects.

In this paper, we first introduce hardware security for the EDA
community. Next we review prior (academic) art for EDA-driven
security evaluation and implementation of countermeasures. We
then discuss strategies and challenges for advancing research and
development toward secure composition of circuits and systems.

I. INTRODUCTION

Electronic systems are at the heart of our modern societies
which are heavily reliant on ubiquitous information technology
(IT). Nowadays, however, an alarmingly large number of
security risks are associated with electronic systems. Ensuring
confidentiality, integrity, and availability—the three key pillars
for IT security—directly within the hardware of electronic
systems represents a wide-ranging task that is crucial, yet quite
challenging. The related field of hardware security has been
driven traditionally by the cryptography community, and right-
fully so; the formal security promises of any cryptographic
algorithm may fail relatively easily once the physical realities
of hardware come into play. For example, it is well known that
cryptographic algorithms leak sensitive information when sub-
jected to side-channel attacks [1] or fault-injection attacks [2].
While at least parts of the electronic design automation (EDA)
community have become aware of these and other threats over
the years, and also proposed some EDA measures to counter
them, we argue that more concerted efforts are required.

TABLE I
SECURITY THREATS FOR ICS AND RELATED ROLES OF EDA

Threat Vector Time of Attack Role of EDA

Side-channel attacks Runtime Evaluation, mitigation
at design time

Fault-injection attacks Runtime Evaluation, mitigation
at design time

Piracy of design Manufacturing; Mitigation
intellectual property (IP); in the field at design time

counterfeiting of ICs

Hardware Trojans Design; Mitigation, verification at

manufacturing design time; preparing
for testing, inspection

In this paper, we aim to educate the broader EDA com-
munity on the different security threats arising for integrated
circuits (ICs) throughout their life cycle, i.e., during design,
manufacturing, and at runtime. In Table I, we list the threats
covered in this paper and the roles we see for EDA in general.

We motivate in Sec. II, we review the prior art in some
detail in Sec. III, and we discuss strategies and challenges for
advancements in Sec. IV. Overall, we call for paradigms like
secure by design and secure composition of hardware, i.e., for
efforts to account holistically for security notions along with
traditional notions of design optimization.

II. BACKGROUND AND MOTIVATION

A. Security Threats and Overview on Countermeasures

Next, we introduce briefly the security aspects we cover in
this paper. This section is an overview and not comprehensive;
we discuss related prior art in Sec. III in more detail.

1) Side-Channel Attacks (SCAs): SCAs exploit information
leakage from measurable physical channels and sensitivities of
(i) the circuitry itself or (ii) the architecture. For example, con-
cerning (i), advanced encryption standard (AES) implementa-
tions are well-known to be vulnerable to power SCAs when
unprotected [1]; concerning (ii), modern microprocessors leak

© 2020 IEEE. This is the authors’ version of the work. It is posted here for your personal use. Not for redistribution.
The definitive Version of Record is published in Proc. Design, Automation & Test in Europe (DATE) 2020



information through timing behaviour of caches, also related
to speculative execution [3].

Most countermeasures apply some kind of “hiding” or
masking, i.e., diffusion of the information leakage, by var-
ious means taken across different levels, starting from the
system level and ranging down to gates/registers [4]. Formal
approaches to masking, e.g., [5], refer to splitting the com-
putation variables into sections or shares such that internal
computations are never performed jointly on all shares.

2) Fault-Injection Attacks (FIAs): FIAs induce faults to aid
in deducing sensitive information. This includes direct, inva-
sive fault injection, e.g., by laser light [6] or electromagnetic
waves [7], as well as indirect, architectural fault injection, e.g,.
by repetitive writing to particular memory locations [8].

Countermeasures can be separated into detection of FIAs at
runtime versus FIA mitigation at design time (e.g., [9], [10]).

3) Piracy of Design IP, Counterfeiting of ICs: Such attacks
related to outsourced IC supply chains can be carried out by
various adversaries, ranging from designers, foundry or test
facility employees, and even to end-users.

Popular countermeasures against IP piracy are logic locking,
split manufacturing, and camouflaging [11]. Both split man-
ufacturing and camouflaging alter the manufacturing process
to protect against untrusted foundries and malicious end-users,
respectively. In contrast, logic locking works at the design level
to protect against untrusted foundries and malicious end-users
(although the latter relies on tamper-proof memories, which
can become targets themselves). Popular countermeasures
against counterfeiting include watermarking and physically-
unclonable functions (PUFs) [12].

4) Hardware Trojans: Given that IC supply chains are
outsourced, adversaries at various entities could also introduce
malicious hardware modifications, known as Trojans.1 The
notion of Trojans is wide-ranging [13]—it describes malicious
modifications that are (i) working at the system level, register-
transfer level (RTL), gate/transistor level, or the physical level;
(ii) seeking to leak information, reduce the IC’s performance,
or disrupt the IC’s working altogether; (iii) are always on,
triggered internally, or triggered externally; etc.

Countermeasures can be classified into Trojan detection,
conducted pre-silicon and/or post-silicon, and Trojan mitiga-
tion. The former relies on testing, verification, and inspection,
whereas the latter includes security features to improve testa-
bility/inspection [13] or information-flow tracking [14], etc.

B. Classical EDA Flows and Security Fallacies

In Fig. 1, a classical EDA flow is shown in overview. Vari-
ous EDA tools as well as design components and technology
libraries are involved, which are all provided by potentially
malicious third parties. This presents clearly one of the threats
for secure composition of ICs. For example, Trojans could be

1Although it has been projected traditionally as the main threat scenario,
the likelihood of Trojans being introduced at fabrication time is arguably very
low. That is because any such endeavour, once detected, would fatally disrupt
the reputation and business of the related foundry. Therefore, foundries can be
expected to employ all organizational and technical means available to hinder
unauthorized modifications by malign employees.

Fig. 1. Classical EDA flow, without security considered explicitly.

introduced directly by adversarial designers, indirectly through
untrustworthy third-party IP components, or even through
“hacks” of EDA tools or the IT environment [13].

State-of-the-art EDA tools provide powerful solutions for
simulation, verification, and testing, and they are also well-
tailored to optimize any design for power, performance, and
area (PPA). However, these tools are neither tailored yet to
account for, e.g., information leakage exploited by SCAs, nor
do they offer to incorporate countermeasures in a way that
maintains optimization and security guarantees.

Motivational example: Here we show how classical EDA
tools can undermine security. We consider the notion of
private circuits [15] as an example, a scheme that guarantees
confidentiality in the face of SCAs in a controllable and quan-
tifiable manner. Without loss of generality, a bit a of sensitive
information can be encoded as a vector (a1, a2, a3), where
a = a1 ⊕ a2 ⊕ a3 and ⊕ denotes bitwise XOR. Any regular
operations are implemented in encoded form and incorporate
random bits ri,j , where 1 ≤ i, j ≤ 3. For example, the AND
operation c = a ∧ b on such vectors is computed as: c1 =
a1b1⊕ r1,2⊕ r1,3 and c2 = a2b2⊕ (r1,2⊕a1b2)⊕a2b1⊕ r2,3
and c3 = a3b3 ⊕ (r1,3 ⊕ a1b3)⊕ a3b1 ⊕ (r2,3 ⊕ a2b3)⊕ a3b2.

The security promise by private circuits is based on the fact
that all components of one such vector are never processed
at the same time. Thus, an adversary cannot learn it from
power measurements (or other side channels). Now, it is
important to note that the order of computation, as indicated
by parentheses, is critical for suppressing information leakage,
even though it is irrelevant for correctness (as ⊕ is commu-
tative). For the example of the AND operation, let us assume
the synthesis tool implements c3 such that the expression
a3b1 ⊕ a3b2 ⊕ a3b3 = a3(b) is derived first and the random
bits rij are added only later, then the computation will leak the
value of b (Fig. 2). Regular, security-unaware tools may take
such decisions easily, e.g., when it helps to improve timing.

Note that leakage can occur even when private circuits
are synthesized in a security-aware manner, e.g., then due to
delays and glitches for the random variables. An effective and
well-known, yet limited, approach for leakage evaluation is
test vector leakage assessment (TVLA) [16]; see Sec. III.

2



Insecure Netlist of Private Circuit

Fig. 2. Motivational example for the insecure nature of classical EDA tools.

C. Challenges and Tasks for Security-Centric EDA

As listed in Table I, we see potential for EDA tools to
evaluate and mitigate various threats already at design time.
Considering though the vastly different nature of these threats,
it may seem impossible to provide comprehensive security-
centric EDA flows. However, to make progress towards this
ultimate goal, we argue that the EDA community should
(continue to) focus on key challenges which are, among others:

• Evaluation and consideration of security-relevant metrics,
with varying level of detail for different EDA stages;

• Effective means for compilation of assumptions and con-
straints for security schemes, all the way from the system
level down to the “bare metal”;

• Automated and holistic synthesis of various countermea-
sures, without inducing negative cross-effects.

We believe that the community is actually well-positioned to
address these challenges. EDA tools are driven by metrics and
heuristics and also have to tackle trade-offs continuously while
step-wise refining the design quality—these principles can
certainly be extended towards secure composition of ICs [17].

For any security scheme, it is essential to first define the
threat model, which describes the adversary’s assets, capabil-
ities, constraints, and goals, along with the proposed counter-
measures. Depending on the type and time of attack, doing
so can become quite complex; e.g., for SCAs and FIAs at
runtime, many physical aspects come into play, like means of
fault injection, temperature, voltage, power-supply impedance,
glitches, etc. Even once threat models are defined properly—
and translated into specific metrics and countermeasures which
can be handled by EDA tools—they can still have significant
weak spots. For one, it is impossible to hinder an adversary
from taking further efforts going beyond the modeled means
of attack. For another, incorporating the threat model into the
EDA tools will be subject to inaccuracies, not only due to
limitations on computational cost when exploring the design
space of complex ICs with all regular components and various
security features, but also due to limitations of metrics and
evaluation techniques themselves.

It is understood that EDA tools cannot provide perfect
security but it is an essential task to formulate and explore

the practical bounds for security schemes when embedded in
hardware. EDA tools should assist the designer with automated
integration of security features and countermeasures but also
needs to formulate the related limitations and remaining risks
clearly, to enable effective risk management.

III. DISCUSSION OF PRIOR ART

Table II summarizes security schemes that could be (and
partially are already) supported by EDA tools, categorized into
design stages versus threat vectors.2 Some schemes are based
on a “red team versus blue team” approach, i.e., they leverage
the relevant attack(s) internally, with the objective to inform
the designer how to address remaining vulnerabilities or, more
challenging, to demonstrate the absence of vulnerabilities. For
example, to demonstrate whether an error-detecting scheme
can detect all faults means to search for other (types of) faults
that are possibly missed. A different approach is to quantify
threats through evaluation of metrics, but without considering
an explicit attack scenario. For example, countermeasures
against SCAs are often assessed by information leakage via
statistical or information-theoretical procedures.

In the following, we provide a brief overview and discussion
of prior art for each row of Table II.

A. Security-Driven High-Level Synthesis

High-level synthesis (HLS) allocates IP blocks and func-
tional units, binds tasks to these components, and schedules the
task execution. An HLS tool would ideally allocate IP blocks
automatically as needed for various security-related tasks: (i)
secure random number generators (RNGs) [41] for key gener-
ation or masking, (ii) PUFs for circuit identification, authen-
tication, and metering [19], [42], (iii) self-authentication logic
[20] or wrapper architectures [43] to complicate insertion of
Trojans, (iv) error-detecting or shielding architectures against
FIAs [10], [18], etc. Another simple countermeasure against
SCAs could be to instruct HLS to randomly flush/overwrite
registers holding critical data after their use.

While there are works on automated synthesis of masking
for software [44], EDA-centric approaches for hardware are
still in development. Towards this end, formalized security
requirements are an important input for security-centric HLS
tools. These can be specified in secure hardware languages
like Caisson [45] or SecVerilog [46]. Another language called
QIF-Verilog [47] provides the techniques of quantitative in-
formation flow (QIF) tracking [48] in the hardware domain.
In general, techniques for information-flow tracking developed
in the context of software engineering [49] can also be used
to validate the resilience of RTL code resulting from HLS
tools [14]. The method reported in [49] leverages approximate
model counting in order to handle large program state spaces,
a concept which is also useful in the context of information-
flow tracking for practical EDA use cases.

2There is a significant number of studies for most of the table’s entries, but
we can focus only on selected works within the page limits.

3



TABLE II
SECURITY SCHEMES SUITABLE FOR INCORPORATION INTO EDA TOOLS

Design Stage Threat Vectors
Side-Channel Attacks Fault-Injection Attacks IP Piracy and Counterfeiting Trojans

Information-flow tracking [14]; Error-detecting architectures [10]; Metering IP
High-level synthesis Integration of masking [5]; Infective countermeasures [18] (including PUFs) [19] Self-authentication [20]

Register flushing

Logic synthesis Gate-level protections [21]; Automatic fault analysis [22] Camouflaging [23]; Automatic insertion of
Identification of leaking gates Logic locking [24] security monitors [25]

Physical synthesis Low-level information leakage Embedding sensors [9], [26]; Split manufacturing [27]; Embedding sensors [28]
(place and route) analysis (TVLA [16], etc.) Shielding [29] Entropy primitives [30]

Functional Identification of architectural Validation of error-detection Correctness of locked logic; Proof-carrying
validation covert channels [31] properties [32] De-obfuscation attacks [33] hardware [34]

Timing and power Pre-silicon power/timing Detailed modeling of Validation of low-level Fingerprinting [35]
verification simulation [36], [37] fault injections [38] properties of PUFs

Testing (ATPG, Securing DFT against read-out DFX architecture to handle IP protection integrated Pattern generation for
DFT, BIST) (scan-chain attacks [39], etc.) malicious/natural failures into DFX infrastructure Trojan detection [40]

B. Security-Driven Logic Synthesis

Logic synthesis is the step of compiling the high-level RTL
into an actual netlist, mapping it to the technology of choice.
This can be combined with gate-level security schemes, e.g.,
to reduce information leakage exploited by SCAs following
the wave dynamic differential logic (WDDL) paradigm [21].
Such “hiding” schemes represent alternatives or complements
to formal masking approaches. Methods for automatic fault
analysis, some also suitable for logic synthesis, are reviewed
in [22]. Moreover, logic synthesis can be tasked to instantiate
security monitors to help detecting Trojans at runtime [25].

Concerning IP protection, two approaches are applicable
here, camouflaging and logic locking. Logic synthesis has
to employ camouflaging according to the scale desired by
the designer, where synthesis is constrained to the Boolean
functionalities covered by the multi-functional but obfuscated
primitives—this is similar to regular but constrained synthesis
and is well supported. For locking, however, there is a need
to support security requirements formulated at the behavioral
level. Currently, locking is implemented directly at the gate-
level netlist. Similar to the example for private circuits in
Sec. II-B, synthesis is unaware of the security notion for lock-
ing. Thus, among others, locking is prone to structural attacks
targeting at the synthesized (or layout-level) netlist [50], [51].

C. Security-Driven Physical Synthesis

Physical synthesis is the step of generating an optimized
design from the gate-level netlist, through means of place and
route (PnR), clock-tree design, timing closure, etc.

Forming the key step towards the “bare metal,” it is crucial
that physical synthesis considers security notions that are
primarily subject to physical phenomena. For example, an
important task here is to quantify the information that is leaked
through the various side-channels of an IC. The most rele-
vant approach for such evaluation is TVLA [16]. In general,
TVLA uses Welch’s t-test statistics to quantify the differences
between the means of two data sets describing some physical
phenomena. The validity of TVLA for evaluating SCA re-
silience is subject to the assumptions made in the threat model,
like the noise distribution assumed for the measurements

taken by the attacker. Information-theoretic procedures can
bound that error using fewer statistical assumptions, but they
require careful characterization of the side-channel probability
distribution, which is computationally costly (since Maxwell’s
equations are to be tackled). In any case, most of these metrics
and procedures are challenged by the fact that information
leakage is multi-dimensional and multi-variate.

Physical design could also be tailored to employ security
primitives like RNGs [41] or PUFs [19], [42], shields to protect
against FIAs [29], sensors to detect FIAs [9], [26], or Trojan
detection circuitry [28]. Since the entropy harnessed by on-
chip RNGs and PUFs comes from physical circuit structures,
layout-level optimization of their properties is required [30].

As for IP protection, split manufacturing is to be supported
at this stage. The security promise of split manufacturing—
foremost to hinder IP piracy, but also Trojan insertion, both
conducted by foundry adversaries—relies on providing a
“meaningless sea of gates with dangling wires” to the un-
trusted foundry (the higher metal layers are manufactured
subsequently by another, trusted facility). Classical EDA flows
work holistically on the IC stack, leaving layout-level hints for
adversaries, e.g., equipped with machine learning [52]. Thus,
it is essential for split manufacturing that physical synthesis
is tailored to dissolve such hints (yet optimize for PPA). This
can be achieved, e.g., by selective “pushing” of wires to the
higher metal layers [53] or by placement perturbation [54].

D. Security-Driven Functional Validation

Validation covers simulation and formal techniques, includ-
ing equivalence and property checking. Especially the latter
is helpful for analysis of security properties and proving their
effectiveness. For one, a recent study uses formal methods
to identify architectural vulnerabilities in advanced micropro-
cessors [31]. For another, when verifying an error-detection
architecture, i.e., when checking for fault coverage, formal
analysis developed for transient faults can play a role [32].

For IP protection, verification serves to check the correct-
ness of logic modifications introduced by locking or cam-
ouflaging. More importantly even, verification can be used
to mimic attackers leveraging satisfiability-based tools (i.e.,

4



SAT and SMT solvers), and to demonstrate the resilience of
protected ICs against such powerful attacks [33].

Finally, concerning Trojans, security properties can be em-
bedded directly in the HDL/RTL to obtain “proof-carrying
hardware” [34]. Such schemes should be integrated into
property-checker flows and tools.

E. Security-Driven Timing and Power Verification

Timing and power verification serves to achieve design
closure. One distinguishes between simulation of timing/power
artifacts and “vectorless” analytical approaches, e.g., proving
that IR-drop will not exceed a given limit. Simulation ap-
proaches are particularly useful for analysis of information
leakage through side channels; it is desirable to identify such
leakage (or demonstrate its absence) through pre-silicon sim-
ulations rather than belatedly measure the final, manufactured
ICs. Pre-silicon simulations may also point to the origin of
information leakage in the circuitry, thus enabling the designer
to fix the underlying problem.

Existing simulation tools work on different abstraction
levels and support different degrees of accuracy, from de-
tailed SPICE analysis to fast gate-level approaches. A critical
detail for simulation is timing and gate delays; it has been
reported that glitches (i.e., transient signals within a clock
cycle) influence information leakage [55]. Whether glitches
remain present in the actual IC, however, depends on physical-
synthesis results, manufacturing variability, and also ambi-
ent conditions. It seems an open question how accurate the
timing/power models used for simulation must be to obtain
reliable prediction about the expected information leakage.

Timing/power verification is also the stage to run detailed
analysis of fault injections using accurate electrical models
[38], or to verify the behavior of PUFs in terms of entropy,
reliability, and uniqueness. Simulation also serves well for
fingerprinting [35], a countermeasure against Trojans, which
is based on checking consistency of path delays.

F. Security-Driven Testing

Testability is crucial, yet contradictory to security to some
degree [56]. That is because test, diagnosis, and debug features
enable comprehensive access to IC internals, providing an
attacker the opportunity to read out sensitive information (e.g.,
via scan-based attacks [39]). As a consequence, emerging test
standards will also incorporate security measures [57].

More complex ICs incorporate a “design for X” (DFX)
infrastructure, which combines classical scan-based testing
with build-in self test (BIST) features for logic and memory,
transient-fault detection and re-configuration logic, circuitry
for yield management, and debug and diagnostic features [58].
To integrate FIA detection into the same DFX infrastructure
seems only logical. However, distinguishing between natural
and malicious faults is non-trivial [59], and the responses
should be different: fastest possible recovery and resumption
of regular operation upon a natural fault, but re-keying or
even discontinuation of service upon a tampering attempt.
Therefore, future security-aware DFX infrastructures should

enable such distinction. Besides, they may also manage IP
protection techniques, e.g., for key management for locking.

There is extensive prior art for detecting Trojans through
means of testing. This covers (i) functional tests that aim
at triggering Trojans [40] and (ii) parametric tests that aim
at detecting Trojans’ fingerprints through side-channels [60].
While such tests can be included into automatic test pattern
generation (ATPG) tools, their effectiveness in reliably iden-
tifying strategically hidden Trojans in large and complex ICs
remains to be proven.

IV. STRATEGIES AND CHALLENGES TOWARDS SECURE
COMPOSITION USING EDA TOOLS

Security of any system is subject to its weakest link, and
ICs form no exception here. We have covered, in overview, the
large variety of hardware-related threats and countermeasures,
along with some discussion of current limitations.

It is known that not all types or implementations of
countermeasures are composable, e.g., adding error-detecting
logic can deteriorate resilience against SCAs [61]. Thus, tools
for joint compilation of countermeasures and, even more
importantly, for verifying their effectiveness are required. Ide-
ally, once the security-enforcing designers have implemented
yet another countermeasure, they can re-run the envisioned
security-centric EDA flow which then covers all threats, also
seemingly unrelated ones, to hinder that any countermeasure
has become inadvertently compromised.

To become a reality, such security-centric EDA tools require
effective and efficient security metrics and evaluation tech-
niques. The whole EDA domain is metrics-driven, and EDA
tools are well positioned to balance between, e.g., a circuit’s
area and testability, all quantified by meaningful metrics.

While several security metrics and evaluation techniques
are known [12], as also outlined in this paper, the necessary
assumption of an intelligent and strategic attacker complicates
their definition and usage. For example, a transient fault
that leads to a critical system failure can be ignored during
reliability analysis in case it is extremely unlikely to occur.
When it comes to resistance against FIAs, however, the
attacker may put extra effort into injecting precisely this fault;
it cannot be ignored anymore. Having to account for such
“unlikely but possible” events poses a significant burden for
security analysis and on appropriate strategies to incorporate
such analysis into EDA tools. This also implies that one can
expect some security metrics to act more like step functions,
where certain efforts must be spent to reach a security level,
but spending more will not provide additional benefits. This
is fundamentally different from classical metrics like area or
power consumption and should be considered accordingly for
security-aware design space exploration.

V. CONCLUSION

EDA tools are traditionally a key enabler for complex
ICs and electronic systems. Nowadays, an increasing number
of applications becomes security-critical and ICs must offer
protection against hardware-oriented attacks, yet the support

5



by EDA tools is lacking for this matter. We outlined short- to
medium-term potentials for security-driven design methods to
be integrated into EDA tools. We also identified conceptual
challenges for secure composition of countermeasures against
various threat vectors and for security metrics.

ACKNOWLEDGEMENTS

This work originates from Dagstuhl Seminar 19301, Secure
Composition for Hardware Systems, July 21–26, 2019.

REFERENCES

[1] E. Brier et al., “Correlation Power Analysis with a Leakage Model,”
CHES, vol. 3156, pp. 16–29, 2004.

[2] A. Barenghi et al., “Fault Injection Attacks on Cryptographic Devices:
Theory, Practice, and Countermeasures,” Proceedings of the IEEE, vol.
100, no. 11, pp. 3056–3076, 2012.

[3] P. Kocher et al., “Spectre Attacks: Exploiting Speculative Execution,”
SP, vol. 1, pp. 19–37, 2019.

[4] D. Bellizia et al., “Secure Double Rate Registers as an RTL Counter-
measure Against Power Analysis Attacks,” TVLSI, vol. 26-7, 2018.

[5] H. Groß et al., “Domain-Oriented Masking: Compact Masked Hardware
Impl. with Arbitrary Protection Order,” in TIS@CCS. ACM, 2016.

[6] B. Selmke et al., “Attack on a DFA Protected AES by Simultaneous
Laser Fault Injections,” in FDTC, 2016, pp. 36–46.

[7] A. Dehbaoui et al., “Injection of transient faults using electromagnetic
pulses Practical results on a cryptographic system,” in ePrint-123, 2012.

[8] V. van der Veen et al., “Drammer: Deterministic Rowhammer Attacks
on Mobile Platforms,” in CCS, 2016, pp. 1675–1689.

[9] G. D. Natale et al., “Hidden-Delay-Fault Sensor for Test, Reliability and
Security,” in DATE. IEEE, 2019, pp. 316–319.

[10] B. Karp et al., “Security-oriented Code-based Architectures for Mitigat-
ing Fault Attacks,” in DCIS. IEEE, 2018, pp. 1–6.

[11] J. Knechtel et al., “Protect your chip design intellectual property: An
overview,” in COINS, 2019, pp. 211–216.

[12] M. Rostami et al., “A Primer on Hardware Security: Models, Methods,
and Metrics,” JProc, vol. 102, no. 8, pp. 1283–1295, 2014.

[13] S. Bhunia et al., Eds., The Hardware Trojan War: Attacks, Myths, and
Defenses. Springer, 2018.

[14] C. Pilato et al., “TaintHLS: High-Level Synthesis for Dynamic Infor-
mation Flow Tracking,” IEEE TCAD, vol. 38-5, p. 798, 2019.

[15] D. B. Roy et al., “From Theory to Practice of Private Circuit: A
Cautionary Note,” in ICCD, 2015, pp. 296–303.

[16] J. Cooper et al., “Test Vector Leakage Assessment (TVLA) Methodology
in Practice,” in International Cryptographic Module Conference, 2013.

[17] P. Ravi et al., “Security is an architectural design constraint,” MICPRO,
vol. 68, pp. 17 – 27, 2019.

[18] S. Patranabis et al., “Fault Tolerant Infective Countermeasure for AES,”
J. Hardware and Systems Security, vol. 1, no. 1, pp. 3–17, 2017.

[19] Y. Alkabani et al., “Active Hardware Metering for Intellectual Property
Protection and Security,” in USENIX Security Symposium, 2007.

[20] K. Xiao et al., “BISA: Built-in Self-authentication for Preventing
Hardware Trojan Insertion,” in HOST. IEEE, 2013, pp. 45–50.

[21] K. Tiri et al., “A Digital Design Flow for Secure Integrated Circuits,”
IEEE T.CAD of ICs and Systems, vol. 25, no. 7, pp. 1197–1208, 2006.

[22] J. Breier et al., Eds., Automated Methods in Cryptographic Fault
Analysis. Springer, 2019.

[23] J. Rajendran et al., “Security Analysis of Logic Obfuscation,” in DAC.
ACM, 2012, pp. 83–89.

[24] J. A. Roy et al., “EPIC: Ending Piracy of Integrated Circuits,” in DATE.
ACM, 2008, pp. 1069–1074.

[25] T. F. Wu et al., “TPAD: Hardware Trojan Prevention and Detection for
Trusted Integrated Circuits,” TCAD, vol. 35, no. 4, pp. 521–534, 2016.

[26] M. Khairallah et al., “DFARPA: Differential fault attack resistant phys-
ical design automation,” in DATE, 2018, pp. 1171–1174.

[27] C. McCants, “Trusted integrated chips (TIC) program,” IARPA, Tech.
Rep., 2016. [Online]. Available: https://www.ndia.org/-/media/sites/
ndia/meetings-and-events/divisions/systems-engineering/past-events/
trusted-micro/2016-august/mccants-carl.ashx

[28] X. Zhang et al., “Detection of Trojans Using A Combined Ring
Oscillator Network and Off-chip Transient Power Analysis,” JETC,
vol. 9, no. 3, pp. 25:1–25:20, 2013.

[29] H. Li et al., “Security Evaluation At Design Time Against Optical Fault
Injection Attacks,” IEE Proc.-Inf. Security, vol. 153-1, pp. 3–11, 2006.

[30] Y. Guo et al., “Variation Enhancement of Arbiter PUFs with Asymmetric
Layout,” in MWSCAS. IEEE, 2018, pp. 841–844.

[31] M. R. Fadiheh et al., “Processor Hardware Security Vulnerabilities and
their Detection by Unique Program Execution Checking,” in DATE.
IEEE, 2019, pp. 994–999.

[32] G. Fey et al., “Effective Robustness Analysis Using Bounded Model
Checking Techniques,” TCAD, vol. 30, no. 8, pp. 1239–1252, 2011.

[33] K. Z. Azar et al., “SMT Attack: Next Generation Attack on Obfuscated
Circuits with Capabilities and Performance Beyond the SAT Attacks,”
IACR TCHES, vol. 2019, no. 1, pp. 97–122, 2019.

[34] E. Love et al., “Proof-Carrying Hardware Intellectual Property: A
Pathway to Trusted Module Acquisition,” IEEE Trans. Information
Forensics and Security, vol. 7, no. 1, pp. 25–40, 2012.

[35] Y. Jin et al., “Hardware Trojan Detection Using Path Delay Fingerprint,”
in HOST. IEEE Computer Society, 2008, pp. 51–57.

[36] J. Jiang et al., “MIRID: Mixed-Mode IR-Drop Induced Delay Simula-
tor,” in Asian Test Symposium. IEEE ComSoc, 2013, pp. 177–182.

[37] M. T. He et al., “RTL-PSC: Automated power side-channel leakage
assessment at register-transfer level,” arXiv, 2019.

[38] J. Dutertre et al., “Laser Fault Injection at the CMOS 28 nm Technology
Node: an Analysis of the Fault Model,” in FDTC. IEEE ComSoc, 2018.

[39] B. Yang et al., “Secure Scan: A Design-for-test Architecture for Crypto
Chips,” in DAC. ACM, 2005, pp. 135–140.

[40] R. S. Chakraborty et al., “MERO: A Statistical Approach for Hardware
Trojan Detection,” in CHES, vol. 5747. Springer, 2009, pp. 396–410.

[41] W. Schindler, “Random Number Generators for Cryptographic Applica-
tions,” in Cryptographic Engineering. Springer, 2009, pp. 5–23.

[42] U. Rührmair et al., “PUFs At A Glance,” in DATE, 2014, pp. 1–6.
[43] A. Basak et al., “Security Assurance for System-on-Chip Designs With

Untrusted IPs,” IEEE TIFS, vol. 12, no. 7, pp. 1515–1528, 2017.
[44] H. Eldib et al., “Synthesis of Masking Countermeasures Against Side

Channel Attacks,” in CAV, vol. 8559. Springer, 2014, pp. 114–130.
[45] X. Li et al., “Caisson: A Hardware Description Language for Secure

Information Flow,” in ACM SIGPLAN PLDI, 2011, pp. 109–120.
[46] D. Zhang et al., “A Hardware Design Language for Timing-Sensitive

Information-Flow Security,” SIGPLAN, vol. 50-4, pp. 503–516, 2015.
[47] X. Guo et al., “QIF-Verilog: Quantitative Information-Flow based Hard-

ware Description Languages for Pre-Silicon Security Assessment,” in
HOST. IEEE, 2019, pp. 91–100.

[48] P. Mardziel et al., “Quantifying Information Flow for Dynamic Secrets,”
in IEEE SP, 2014, pp. 540–555.

[49] F. Biondi et al., “Scalable Approximation of Quantitative Information
Flow in Programs,” in Proc. of VMCAI Conference, 2018, pp. 71–93.

[50] P. Chakraborty et al., “SAIL: Machine Learning Guided Structural
Analysis Attack on Hardware Obfuscation,” in AHOST, 2018, pp. 56–61.

[51] F. Yang et al., “Stripped Functionality Logic Locking with Hamming
Distance Based Restore Unit (SFLL-hd) – Unlocked,” TIFS, 2019.

[52] H. Li et al., “Attacking Split Manufacturing from a Deep Learning
Perspective,” in DAC, 2019, pp. 135:1–135:6.

[53] S. Patnaik et al., “Concerted wire lifting: Enabling secure and cost-
effective split manufacturing,” in ASPDAC, 2018, pp. 251–258.

[54] A. Sengupta et al., “Rethinking Split Manufacturing: An Information-
theoretic Approach with Secure Layout Techniques,” in ICCAD. IEEE,
2017, pp. 329–326.

[55] T. Moos et al., “Glitch-Resistant Masking Revisited or Why Proofs in
the Robust Probing Model are Needed,” IACR TCHES, vol. 2019, no. 2,
pp. 256–292, 2019.

[56] I. Polian, “Hardware Security and Test: Friends or Enemies?” it -
Information Technology, vol. 56, no. 4, pp. 192–202, 2014.

[57] E. Valea et al., “A Survey on Security Threats and Countermeasures in
IEEE Test Standards,” IEEE Des. & Test, vol. 36-3, pp. 95–116, 2019.

[58] I. Parulkar et al., “DFX of a 3rd generation, 16-core/32-thread
ultrasparc- CMT microprocessor,” in ITC. IEEE, 2008, pp. 1–10.

[59] B. Karp et al., “Detection and Correction of Malicious and Natural Faults
in Cryptographic Modules,” in PROOFS, vol. 7, 2018, pp. 68–82.

[60] J. Aarestad et al., “Detecting Trojans Through Leakage Current Analysis
Using Multiple Supply Pad IDDQS,” IEEE Trans. Information Forensics
and Security, vol. 5, no. 4, pp. 893–904, 2010.

[61] F. Regazzoni et al., “Interaction Between Fault Attack Countermeasures
and the Resistance Against Power Analysis Attacks,” in Fault Analysis
in Cryptography, ser. Inf. Sec. and Crypt. Springer, 2012, pp. 257–272.

6

https://www.ndia.org/-/media/sites/ndia/meetings-and-events/divisions/systems-engineering/past-events/trusted-micro/2016-august/mccants-carl.ashx
https://www.ndia.org/-/media/sites/ndia/meetings-and-events/divisions/systems-engineering/past-events/trusted-micro/2016-august/mccants-carl.ashx
https://www.ndia.org/-/media/sites/ndia/meetings-and-events/divisions/systems-engineering/past-events/trusted-micro/2016-august/mccants-carl.ashx

