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Security Threats – Affecting Data and Circuits Itself 

Fujimoto et al., EMC 2014 

https://www.bleepingcomputer.com,  2019 
Tajik et al., CCS, 2017 

Yang et al., SP 2016 
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Motivation and Scope 

 

• Electronic design automation (EDA) focused traditionally on power, performance, area (PPA) 

 

• Due the rise of hardware-centric security threats, we argue that EDA must also adopt 
security notions 

– Secure by design 

– Secure composition of hardware 

 

• Objective and scope for today: 

– Introduction to hardware security for the EDA community 

– Discussion of security-centric EDA stages for evaluation, implementation 

– Challenges and strategies toward secure composition of circuits and systems 
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• Side channels: power consumption, timing behavior, electromagnetic emission 

– Information leakage due to physical reality 

– Statistical analysis on collected samples; various well-established and effective types of attacks 

 

 

 

 

 

 

 

 

• Countermeasures: masking, i.e., diffusion of information leakage 

Side-Channel Attacks 
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Fault-Injection Attacks 

• Fault injection to deduce sensitive information or interrupt circuit features 

– Direct, invasive fault injection, e.g., by laser light or electromagnetic waves 

– Indirect, architectural fault injection, e.g,. by repetitive writing to particular memory locations 

Pan et al., DATE, 2019 
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Fault-Injection Attacks 

• Countermeasures: mitigation, detection 

Homma et al., CHES, 2014 

Cryptographic Operation

Cryptographic Operation

=Input Output

Cryptographic Operation

Inverse of the
Cryptographic Operation

=

Input Output
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Piracy of Chip IP, Counterfeiting of ICs 

 

 

 

 

 

 

 

 

 

 

• Countermeasures: IP protection schemes, 
physically-unclonable functions (PUFs) 

Kerry Bernstein, DARPA, 2016 
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Hardware Trojans 

• Trojans are malicious modifications that are 

– Targeted at the system level, RTL, gate level, or transistor/physical level; 

– Introduced by untrustworthy 3rd party IP, adversarial designers, “hacking” of design tools, during 
packaging of ICs, or (less likely) during manufacturing; 

– Seeking to leak information, reduce the performance, or disrupt the IC; 

– Always on, triggered internally, or triggered externally; etc. 

• Countermeasures: detection (pre- and post-silicon), mitigation 

Yang et al., SP 2016 
Wu et al., TCAD 2016 
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Selected Security Threats and Roles of EDA 

Threat Vector Time of Attack Role of EDA 

• Side-channel attacks • Runtime • Evaluation 
• Mitigation at design time 

• Fault-injection attacks • Runtime • Evaluation 
• Mitigation at design time 

• Piracy of design intellectual 
property (IP) 

• Counterfeiting of ICs 

• Manufacturing 
• In the field 

 
• Mitigation at design time 

 
• Hardware Trojans 

 
• Design 
• Manufacturing 

• Mitigation at design time 
• Verification at design time 
• Preparing for testing, 

inspection 
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Generic EDA Flow 
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• Private circuits 

– Information can be encoded as vector, e.g., for bit a as (a1 , a2 , a3) 

– Separate computation of shares, incorporate random bits ri,j 

– E.g., c = a ∧ b is computed as: 

• c1 = a1b1 ⊕ r1,2 ⊕ r1,3 

• c2 = a2b2 ⊕ (r1,2 ⊕ a1b2 ) ⊕ a2b1 ⊕ r2,3 

• c3 = a3b3 ⊕ (r1,3 ⊕ a1b3 ) ⊕ a3b1 ⊕ 
(r2,3 ⊕ a2b3) ⊕ a3b2 

– Synthesis could compile c3 such that 
a3b1 ⊕ a3b2 ⊕ a3b3 = a3(b) is derived 
first and random bits ri,j are added later 
(as ⊕ is commutative) 

– Then, circuit will leak the value of b 

Generic EDA Flow: An Example for Security Fallacies 
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Selection of Security Schemes Promising for Integration with EDA Tools 

 
Design Stage 

Threat Vectors 

Side-Channel Attacks Fault-Injection Attacks IP Piracy and 
Counterfeiting 

Trojans 

High-Level Synthesis • Information-flow tracking 
• Integration of masking 
• Register flushing 

• Error-detecting 
architectures 

• Infective 
countermeasures 

 
• Metering IP (including 

PUFs) 

 
• Self-authentication 

Logic Synthesis • Gate-level protections 
• Identification of leaking 

gates 

• Automatic fault 
analysis 

• Camouflaging 
• Logic locking 

• Automatic insertion 
of security monitors 

Physical Synthesis (Place 
and Route) 

• Information leakage 
analysis (TVLA, etc.) 

• Embedding sensors 
• Shielding 

• Split manufacturing 
• Entropy primitives 

• Embedding sensors 

Functional Validation • Identification of 
architectural covert 
channels 

• Validation of error-
detection properties 

• Correctness of locked 
logic 

• De-obfuscation attacks 

• Proof-carrying 
hardware 

Timing and Power 
Verification 

• Pre-silicon power/timing 
simulation 

• Detailed modelling of 
fault injections 

• Validation of  low-level 
properties of PUFs 

• Fingerprinting 

Testing 
(ATPG, DFT, BIST) 

• Securing DFT against read-
out (scan-chain attacks, 
etc.) 

• DFX architecture to 
handle malicious/ 
natural failures 

• IP protection integrated 
into DFX infrastructure 

• Pattern generation 
for Trojan detection 
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Security-Driven High-Level Synthesis 

 

 

• Side-channel attack countermeasures 

– Randomly flush/overwrite registers after use 

– Information flow tracking via dedicated HDL 
like Caisson, SecVerilog, QIF-Verilog 

– Works on automated synthesis of masking for 
generic software exist, but for EDA still WIP 

 

• Evaluation, countermeasure implementation 
typically focused on later stages 

Arsath K F et al., HOST, 2020 
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Security-Driven Logic Synthesis 

• In general, instantiate security primitives or circuitry 

• Side-channel attack countermeasures 

– E.g., wave dynamic differential logic (WDDL) paradigm 

• IP protection: Camouflaging 

– Multi-functional, obfuscated primitives; well supported by synthesis 

 

Introduction  Hardware Security Security-Centric EDA Stages  Challenges and Strategies 

Rajendran et al., CCS, 2013 



16/27 

Security-Driven Logic Synthesis 

• IP protection: Logic locking 

– Similar to example of private circuits, synthesis is 
problematic (yet essential) 

– Transformations via re-synthesis to hide key value; 
transformations can be machine-learned 

– Structural traces for locking structures may remain; 
can be re-traced 
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Yang et al., 2019, TIFS 
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Security-Driven Physical Synthesis 

• Side-channel countermeasure: Re-design physical layout based on test vector leakage 
assessment (TVLA) or other evaluation schemes 

– Also requires power, timing verification stages 

– Modeling  assumptions versus attacker’s capabilities (e.g., noise distribution) 

• Similarly, works for fault-injection countermeasures 
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Security-Driven Physical Synthesis 

• Employ security primitives and account for their 
physical aspects 

– PUFs, RNGs, shields, sensors, etc. 

– Entropy essential for PUFs and RNGs which comes 
from physical circuit structures; synthesis is 
essential for proper implementation 

Introduction  Hardware Security Security-Centric EDA Stages  Challenges and Strategies 

Miao et al., TCAD, 2017 

Ngo et al., TC 2017 
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Security-Driven Physical Synthesis 

• IP protection: Split manufacturing 

– Benefit from latest technology, 
without giving away design IP 

– Practical; has been demonstrated in 2D ICs for 
28nm and older nodes, promising also for 3D ICs 
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McCants, IARPA, 2016 

Patnaik et al., ASPDAC, 2018 
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Security-Driven Physical Synthesis 

• IP protection: Split manufacturing 

– Regular synthesis works on FEOL, BEOL at once; 
information leakage via gate proximity, wires 

– Attacks become challenged for large circuits; 
also applies for ML 

 

• Countermeasures: Placement and routing perturbation 

– Can be well supported by synthesis 

– Altering routing more effective; 
shown to render seminal attacks futile 
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Security-Driven Functional Validation 

• Validation of security circuitry for error detection, logic locking, etc. 

• Internal red-team vs. blue-team evaluation by running functional attacks 

• Validation of information-flow tracking, proof-carrying hardware 
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Security-Driven Timing and Power Verification 

• Evaluation of side-channel, fault-injection vulnerability and countermeasures 

– Modeling  efforts (detailed SPICE to fast gate-level), accuracy, runtime versus attacker’s capabilities 
(e.g., noise distribution) versus effectiveness of countermeasure 

– Glitches influence information leakage; but may not remain present at runtime 

• Trojans: Fingerprinting, i.e., statistical sampling of “golden” devices subject to variations 
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Security-Driven Testing 

• Testing, dbg infrastructure 

– Can be misused, but also protected 

– Various countermeasures 

– Further aspects, e.g., fault-injection 
detection and runtime reconfiguration 
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Security-Driven Testing 

• Trojans 

– Functional tests: triggering Trojans, parametric tests: fingerprinting 

• Both can be integrated in ATPG 

– Runtime monitoring infrastructures 
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Challenges Towards Secure Composition Using EDA Tools 

 

• Security subject to “weakest link” – very complex problem to tackle all threats at once 

– But EDA is traditionally focused on multi-dimensional optimization problems; potential 

 

• Threat modeling is often done on high level, ignoring physical realities 

– Once threat models are defined properly, they have to be “translated” into specific metrics and 
countermeasures compatible with EDA stages 

– Even then, computational efforts can become impractical; modeling versus accuracy versus 
attackers’ capabilities 

 

• Not all types/implementations of countermeasures are composable 

– E.g., error-detecting logic can help side-channel attacks 
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Strategies Towards Secure Composition Using EDA Tools 

 

• Use of security-relevant metrics; varying level of detail for different EDA stages 

– Consider that metrics scale differently than PPA – e.g., a transient fault that’s extremely unlikely to 
occur may be ignored traditionally, but for fault-injection attacks, this very fault might be leveraged 

 

• Effective means for translation, compilation of assumptions, constraints for security 
schemes, all the way from system level down to “bare metal” 

 

• Automated, holistic synthesis of countermeasures, without inducing negative cross-effects 

 

• (Initial thoughts for further research efforts)  
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