DATE"® defs

SCHLOSS DAGSTUHL

Leibniz-Zentrum fir Informatik

Towards Secure Composition of Integrated Circuits
and Electronic Systems: On the Role of EDA

Johann Knechtel, Elif Bilge Kavun, Francesco Regazzoni, Annelie Heuser, Anupam Chattopadhyay,
Debdeep Mukhopadhyay, Soumyajit Dey, Yunsi Fei, Yaacov Belenky, Itamar Levi, Tim Giineysu,
Patrick Schaumont, and llia Polian

DATE 2020 - Originated at Dagstuhl Seminar 19301,
“Secure Composition for Hardware Systems,” July 21-26, 2019



Introduction

ATTACK

TAKE CONTROL STEAL INFORMATION

DISRUPT SERVICES

Controls for smart door locks and
lighting systems can be vulnerable.

Infotainment

systems offer
Door locks multiple ways
have been intoacar's
unlocked electronics.
remotely.

Malware-
infested

refrigerators
have sent
spam.

Personal-fitness

devices can tell
a hacker where
you are.

Pacemakers

can be

attacked

remotely.

High-capacity

insulin pumps
are vulnerable.

Hacked vehicle-
control systems
can allow remote
control of brakes.



Introduction

Valtage (V)
o
o s -

S
13

Security Threats — Affecting Data and Circuits Itself

Melasured, ( . i . 3 .
‘ .|| MELTDOWN
Iy LT ' e |
IETINNERANS | (@C/
APy (T
il |L s _—— SPECTRE
| ‘5.‘ L o __ Attacker Process

Time (ns) Time (ns)

6Aum : Secret

]

Real Fake AUIRERNS
H urrer
Victim Process : i
lnt'ele pentium™ Secret Dependent
pentlumo 5 i : Load

]

Load/Store === In-Flight Data

Speculative
Load




Introduction

Motivation and Scope

e Electronic design automation (EDA) focused traditionally on power, performance, area (PPA)

* Due the rise of hardware-centric security threats, we argue that EDA must also adopt
security notions
— Secure by design
— Secure composition of hardware

* Objective and scope for today:
— Introduction to hardware security for the EDA community
— Discussion of security-centric EDA stages for evaluation, implementation
— Challenges and strategies toward secure composition of circuits and systems



Hardware Security

Side-Channel Attacks

e Side channels: power consumption, timing behavior, electromagnetic emission
— Information leakage due to physical reality
— Statistical analysis on collected samples; various well-established and effective types of attacks
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Hardware Security

Fault-Injection Attacks

Fault injection to deduce sensitive information or interrupt circuit features

Direct, invasive fault injection, e.g., by laser light or electromagnetic waves

Indirect, architectural fault injection, e.g,. by repetitive writing to particular memory locations

Stage 1: Fault Injection

12 | 5 6 11 N 12 & 6 11 - = persists until refreshed
9 0o 10 13 Fault Injection 9 0 g 13
3 14 15 g ) L L5 P8
4 7 1 2 4 7 1 2
S-box S-box *
Stage 2: Encryption key k

collected

n plaintext ) \.S_bi» —® mm) 1 ciphertext m—) @ adversary

Stage 3: Fault Analysis

key k exposed!

Ciphertext Probability S-box* output Probability
10 @ k 0 \ 10 0 Input Probability
8@k 2/16 8 2/16 all 1/16
else 1/16 & ‘ else 1/16



Hardware Security

Fault-Injection Attacks

 Countermeasures: mitigation, detection
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Hardware Security

Piracy of Chip IP, Counterfeiting of ICs
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 Countermeasures: IP protection schemes,

physically-unclonable functions (PUFs)
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Hardware Security

Hardware Trojans

* Trojans are malicious modifications that are
— Targeted at the system level, RTL, gate level, or transistor/physical level;

— Introduced by untrustworthy 3" party IP, adversarial designers, “hacking” of design tools, during
packaging of ICs, or (less likely) during manufacturing;

— Seeking to leak information, reduce the performance, or disrupt the IC;
— Always on, triggered internally, or triggered externally; etc.

 Countermeasures: detection (pre- and post-silicon), mitigation
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Hardware Security Security-Centric EDA Stages

Selected Security Threats and Roles of EDA

Threat Vector Time of Attack Role of EDA

* Side-channel attacks e Runtime e Evaluation
* Mitigation at design time

* Fault-injection attacks * Runtime * Evaluation
* Mitigation at design time

* Piracy of design intellectual Manufacturing
property (IP) * Inthe field * Mitigation at design time
* Counterfeiting of ICs

* Mitigation at design time
* Hardware Trojans * Design * \Verification at design time
*  Manufacturing * Preparing for testing,
inspection



Security-Centric EDA Stages

Generic EDA Flow
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Security-Centric EDA Stages

Generic EDA Flow: An Example for Security Fallacies

Private circuits
Information can be encoded as vector, e.g., for bit a as (al, a2, a3)

Separate computation of shares, incorporate random bits ri,j

E.g.,c=a A bis computed as:

cl=alb1®Pr1,2Pr1,3
c2=a2b2 @ (r1,2 @ alb2 ) P a2bl H r2,3

c3=a3b3 P (r1,3 D alb3 ) P a3bl H
(r2,3 @ a2b3) D a3b2

Synthesis could compile ¢3 such that
a3bl @ a3b2 @ a3b3 =a3(b)is derived
first and random bits ri,j are added later
(as @ is commutative)

Then, circuit will leak the value of b

HDL code
with SCA countermeasures
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Security-Centric EDA Stages

Selection of Security Schemes Promising for Integration with EDA Tools

Design Stage

High-Level Synthesis

Logic Synthesis

Physical Synthesis (Place
and Route)

Functional Validation
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Verification

Testing
(ATPG, DFT, BIST)

Threat Vectors
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Error-detecting
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Automatic fault
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Embedding sensors
Shielding
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fault injections

DFX architecture to
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Metering IP (including
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Logic locking

Split manufacturing
Entropy primitives

Correctness of locked
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De-obfuscation attacks

Validation of low-level
properties of PUFs

IP protection integrated
into DFX infrastructure

Self-authentication

Automaticinsertion
of security monitors

Embedding sensors

Proof-carrying
hardware

Fingerprinting

Pattern generation
for Trojan detection



Security-Centric EDA Stages

Security-Driven High-Level Synthesis

* Side-channel attack countermeasures
— Randomly flush/overwrite registers after use

— Information flow tracking via dedicated HDL
like Caisson, SecVerilog, QIF-Verilog

— Works on automated synthesis of masking for
generic software exist, but for EDA still WIP

e Evaluation, countermeasure implementation
typically focused on later stages
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Security-Centric EDA Stages

Security-Driven Logic Synthesis

* Ingeneral, instantiate security primitives or circuitry
* Side-channel attack countermeasures
— E.g., wave dynamic differential logic (WDDL) paradigm

e |P protection: Camouflaging
— Multi-functional, obfuscated primitives; well supported by synthesis
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Security-Centric EDA Stages

Security-Driven Logic Synthesis

e |IP protection: Logic locking

— Similar to example of private circuits, synthesis is
problematic (yet essential)

— Transformations via re-synthesis to hide key value;
transformations can be machine-learned

— Structural traces for locking structures may remain;
can be re-traced
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Security-Centric EDA Stages

Security-Driven Physical Synthesis

Side-channel countermeasure: Re-design physical layout based on test vector leakage
assessment (TVLA) or other evaluation schemes

— Also requires power, timing verification stages
Modeling assumptions versus attacker’s capabilities (e.g., noise distribution)

e Similarly, works for fault-injection countermeasures
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Security-Centric EDA Stages

Security-Driven Physical Synthesis e \ — ‘
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Security-Centric EDA Stages

Security-Driven Physical Synthesis

e |P protection: Split manufacturing

— Benefit from latest technology,
without giving away design IP

— Practical; has been demonstrated in 2D ICs for
28nm and older nodes, promising also for 3D ICs

BEOL: made at
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M5 | top of FEOL
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Contacts sourced fab

Active
Layer
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IARPA multi-user test chip December 2015 fabricated jointly
between Samsung (Korea) and Samsung (Austin).
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MPW-1 300 mm Wafer
Global Foundries / IBM




Security-Centric EDA Stages

Security-Driven Physical Synthesis
M6
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Security-Centric EDA Stages

Security-Driven Functional Validation

* Validation of security circuitry for error detection, logic locking, etc.
* Internal red-team vs. blue-team evaluation by running functional attacks
e Validation of information-flow tracking, proof-carrying hardware
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Security-Centric EDA Stages

Security-Driven Timing and Power Verification

e Evaluation of side-channel, fault-injection vulnerability and countermeasures

— Modeling efforts (detailed SPICE to fast gate-level), accuracy, runtime versus attacker’s capabilities

(e.g., noise distribution) versus effectiveness of countermeasure

— Glitches influence information leakage; but may not remain present at runtime

* Trojans: Fingerprinting, i.e., statistical sampling of “golden” devices subject to variations
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Security-Centric EDA Stages

Security-Driven Testing

e Testing, dbg infrastructure
Can be misused, but also protected

Various countermeasures

Further aspects, e.g., fault-injection
detection and runtime reconfiguration
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Security-Centric EDA Stages

380 um

Security-Driven Testing

Trojans

— Functional tests: triggering Trojans, parametric tests: fingerprinting
* Both can be integrated in ATPG
— Runtime monitoring infrastructures
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Challenges and Strategies

Challenges Towards Secure Composition Using EDA Tools

e Security subject to “weakest link” — very complex problem to tackle all threats at once

— But EDA is traditionally focused on multi-dimensional optimization problems; potential

 Threat modeling is often done on high level, ignoring physical realities

— Once threat models are defined properly, they have to be “translated” into specific metrics and
countermeasures compatible with EDA stages

— Even then, computational efforts can become impractical; modeling versus accuracy versus
attackers’ capabilities

* Not all types/implementations of countermeasures are composable

— E.g., error-detecting logic can help side-channel attacks



Challenges and Strategies

Strategies Towards Secure Composition Using EDA Tools

Use of security-relevant metrics; varying level of detail for different EDA stages

— Consider that metrics scale differently than PPA — e.g., a transient fault that’s extremely unlikely to
occur may be ignored traditionally, but for fault-injection attacks, this very fault might be leveraged

e Effective means for translation, compilation of assumptions, constraints for security
schemes, all the way from system level down to “bare metal”

* Automated, holistic synthesis of countermeasures, without inducing negative cross-effects

e (Initial thoughts for further research efforts)
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