
IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, MONTH 202X 1

2.5D Root of Trust: Secure System-Level
Integration of Untrusted Chiplets

Mohammed Nabeel, Mohammed Ashraf, Satwik Patnaik, Graduate Student Member, IEEE ,
Vassos Soteriou, Senior Member, IEEE , Ozgur Sinanoglu, Senior Member, IEEE , and

Johann Knechtel, Member, IEEE

Abstract—Dedicated, after acceptance and publication, in memory of the late Vassos Soteriou. For the first time, we leverage
the 2.5D interposer technology to establish system-level security in the face of hardware- and software-centric adversaries. More
specifically, we integrate chiplets (i.e., third-party hard intellectual property of complex functionality, like microprocessors) using a
security-enforcing interposer. Such hardware organization provides a robust 2.5D root of trust for trustworthy, yet powerful and flexible,
computation systems. The security paradigms for our scheme, employed firmly by design and construction, are: 1) stringent physical
separation of trusted from untrusted components, and 2) runtime monitoring. The system-level activities of all untrusted commodity
chiplets are checked continuously against security policies via physically separated security features. Aside from the security promises,
the good economics of outsourced supply chains are still maintained; the system vendor is free to procure chiplets from the open
market, while only producing the interposer and assembling the 2.5D system oneself. We showcase our scheme using the Cortex-M0
core and the AHB-Lite bus by ARM, building a secure 64-core system with shared memories. We evaluate our scheme through
hardware simulation, considering different threat scenarios. Finally, we devise a physical-design flow for 2.5D systems, based on
commercial-grade design tools, to demonstrate and evaluate our 2.5D root of trust.

Index Terms—Hardware Security, 2.5D Integration, Active Interposer, Chiplets, Multi-Core System, Runtime Monitoring, Policies

F

1 INTRODUCTION

S ECURITY for computation systems has focused tradi-
tionally on software aspects, and it is understood that

related efforts have to remain ongoing. Nowadays, the
hardware itself has also become susceptible to misuse.
Due to the economics of integrated circuit (IC) design and
manufacturing, which dictates a production mode that is
distributed across many vendors, an adversary involved at
any step within the supply chain may, e.g., pirate the design
intellectual property (IP) [1], [2]. Malicious modifications,
also known as hardware Trojans, could also be introduced
during design, manufacturing or deployment, and can be
stealthy and severe, e.g., see [3]. Besides, even imprudent
decisions made by legitimate designers can give rise to crit-
ical vulnerabilities, e.g., as demonstrated by the ZombieLoad
attack [4]. These and other threats certainly impact the
prospects for secure use of computation systems negatively.

In this paper, we harness the opportunities offered by
state-of-the-art 2.5D technologies for advancing hardware

• M. Nabeel, M. Ashraf, O. Sinanoglu and J. Knechtel are with the Division
of Engineering, New York University Abu Dhabi, Abu Dhabi, 129188,
UAE. Emails: {mtn2, ma199, ozgursin, johann}@nyu.edu

• S. Patnaik is with the Department of Electrical and Computer Engi-
neering, Tandon School of Engineering, New York University (NYU),
Brooklyn, NY, 11201, USA. Email: sp4012@nyu.edu

• V. Soteriou is with the Department of Electrical Engineering, Computer
Engineering and Informatics, Cyprus University of Technology, Limassol,
Cyprus. E-mail: vassos.soteriou@cut.ac.cy

• Corresponding authors: Mohammed Nabeel, Ozgur Sinanoglu, and Jo-
hann Knechtel (e-mails: {mtn2, ozgursin, johann}@nyu.edu).

Copyright © 2020 IEEE. Personal use of this material is permitted. However,
permission to use this material for any other purposes must be obtained
from the IEEE by sending an email to pubs-permissions@ieee.org. DOI:
10.1109/TC.2020.3020777

2.5D RoT Backbone: Active Interposer

Fig. 1. An active interposer acts as backbone for the 2.5D root of
trust (RoT), which enables secure system-level integration of untrusted
chiplets. All system-level communication is “policed” by the interposer.

security. That is, we extend the scope for modern com-
putation systems by means of a robust, system-wide, and
hardware-enforced security scheme that is enabled by 2.5D
design and construction (Fig. 1). Next, we discuss the back-
ground and motivation for our work in more detail.

1.1 Hardware Security Features

There exist many hardware security features (HWSFs), seek-
ing to mitigate various software- and/or hardware-based
threats at runtime. They include enclaves for trusted exe-
cution, like the industrial ARM TrustZone and Intel SGX or
the academic MIT Sanctum (these and others are reviewed
in [5]), wrappers for monitoring and cross-checking of un-
trusted third-party intellectual property (IP) modules [6],
centralized IP infrastructures for secure system design [7],
verification of computation [8], secure task scheduling [9],
secure network-on-chip (NoC) architectures [10], etc. Be-
sides, there are also design-time mitigation schemes, e.g.,

2 IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, MONTH 202X

using high-level synthesis strategies for detection, collusion
prevention, and isolation of malicious IP [11].

Notwithstanding their good prospects, most, if not all,
HWSFs eventually suffer from tailored attacks, e.g., see [13]
which exploits a memory corruption vulnerability in the
enclave software of Intel SGX. In general, HWSFs arguably
form prime targets—strategic adversaries would first aim to
bypass or disable them so that further attacks can thereafter
remain “under the radar.” Thus, HWSFs become especially
vulnerable once adversaries can tamper with the outsourced
IC supply chain (Fig. 2). (For other security concerns related
to outsourced IC supply chains, see also, e.g., [1], [2], [11].)
We note that the above circumstance also imposes an impor-
tant practical challenge, namely how to implement ICs that
are high-end, competitive, and relatively cheap, yet trust-
worthy and secure. This is because trusted manufacturing
facilities (be they either in-house or on-shore and certified)
typically cannot offer the latest high-end technology nodes,
as doing so would be too costly.

To the best of our knowledge, none of the proposed HWSFs
in prior art can fully withstand malicious modifications. Once
HWSFs are permanently tampered with, even when such
malicious activity is subsequently detected, the resulting
loss of security guarantees cannot be restored—the chips
become untrustworthy and as such possibly even unusable.
We note that there are efforts to render hardware secure
in the direct presence of Trojans; such schemes typically
leverage some formalism like multi-party computation [14]
or verification and proofing [8]. While promising, such
schemes still require that at least some parts of the system re-
main trustworthy, i.e., that some parts are guaranteed to be
free of any malicious modifications. Moreover, such schemes
are less applicable to general-purpose, high-performance
computation systems, as the underlying formalism requires
extensive system- and circuit-level support, which naturally
also tends to impose considerable overheads.

1.2 2.5D and 3D Integration
The umbrella of 2.5D and 3D integration technologies collec-
tively embrace the notion of “building skyscrapers and city
clusters of electronics” [15]. There exist two main drivers for
2.5D and 3D integration: 1) the CMOS scalability bottleneck,
which becomes more exacerbated for advanced nodes by
issues like routability, pitch scaling, and process variations;
2) the need to advance heterogeneous and system-level
integration. Both drivers are also known as “More Moore”
and “More than Moore,” respectively. Next, we provide a
brief overview on the related technologies.

Native 3D integration means to vertically stack and in-
terconnect multiple chips or active layers. This approach can
be further classified by the underlying technology, with the
main ones being: 1) through-silicon via (TSV)-based 3D ICs,
2) face-to-face (F2F) 3D ICs, 3) monolithic 3D (M3D) ICs [15].
Various studies, prototypes, and commercial products have
shown that native 3D integration can indeed offer significant
benefits over conventional 2D ICs, e.g., see [16], [17].

2.5D integration, also known as the interposer technol-
ogy, facilitates system-level integration of 2D chips side-
by-side. An interposer serves as an integration carrier and
accommodates an underlying system-level interconnect fab-
ric to provide inter-chip communication [18], [19], [20],

TABLE 1
Selected Works Leveraging 2.5D/3D Integration for Hardware Security

Reference Style Security Scope; Means Trusted Asset

[27] TSV Runtime monitoring; Whole 3D ICsplit manufacturing (SM)
[28] 2.5D IP protection; SM Passive interposer
[29] 2.5D Trojan prevention; SM Passive interposer
[30] M3D IP protection; camouflaging Whole 3D IC

[31] F2F IP protection, Trojan prevention; Only BEOLSM, camouflaging
[32], TSV Side-channel mitigation; Whole 3D IC[33] 3D integration by itself

Ours 2.5D
Security by construction,

Active interposerruntime monitoring;
stringent physical separation

[21], thereby resembling a modern version of a printed
circuit board. Building an advanced electronic system using
an interposer is considered less complex than native 3D
integration [18], [19]. In fact, interposer-based systems are
already established in the market, e.g., with the AMD Fiji
GPU system [22] or Xilinx’s Virtex-7 FPGAs [23].

Besides classical passive interposer, comprising only
passive components and wiring, a more promising option
are active interposer which additionally incorporate logic.
Active interposers have been successfully demonstrated,
e.g., see [20], [24], [25]. Active interposers are preferably
implemented using mature technology nodes, i.e., for com-
mercial cost savings, yield, and, even more importantly
for our work, ease of access to an established and trusted
facility. Regarding manufacturing and integration cost, we
note that both sides have been argued for, i.e., interposers
are cheaper than 3D ICs [18] versus interposers are more
costly [26]. However, once system-level cost are considered,
the interposer technology remains promising, also because
active interposers improve testability [20], [24], [25] and,
thereby, allow to better manage yield of the final system.

Remarkably, the trend toward 2.5D and 3D integration
can serve well to advance various notions of hardware
security. Still, one has to account carefully for related lim-
itations. For example, Valamehr et al. [27] propose a runtime
monitor to be 3D-stacked on top of a commodity processor,
along with dedicated HWSFs that allow for tapping and
rerouting of sensitive signals. However, all these HWSFs
rely on introspective interfaces within the commodity pro-
cessor. Therefore, when subjected to an untrusted supply
chain, that scheme could fail entirely once these interfaces
in the commodity processor are tampered with. The authors
themselves acknowledge this significant limitation in [27].

We provide a high-level overview on ours and selected
prior works in Table 1, and we discuss the motivation and
contributions of our work in more detail in Sec. 1.4.

1.3 Chiplets: System-Level IP Integration

Concurrently, there exist efforts for driving the notion of IP
reuse toward the system level. Under these efforts, not only
IP modules are to be reused at the chip level, but rather en-
tire chiplets at the system level. Chiplets are relatively small
chips encapsulating certain levels of complex functionality,
like a microprocessor, as hard physical IP. The potential ben-
efits of using chiplets are lower design and manufacturing
costs, improved yield through separating technologies, and

NABEEL et al.: 2.5D ROOT OF TRUST: SECURE SYSTEM-LEVEL INTEGRATION OF UNTRUSTED CHIPLETS 3

Designer/Integrator

Design Specification

Netlist Physical Design

High-End Fab:
Outsourced,

Untrusted

3rd Party IP

Specification of
Hardware Security
Features (HWSF)

Physical
Layout

Established Fab:
In-House or On-
Shore, Trusted

IC1: Competitive,
Malicious?, HWSF OK?

IC2: Less Competitive,
Secure, HWSF OK

Fig. 2. IC supply chain with focus on hardware security features (HWSFs). Green and red boxes represent trusted and untrusted entities and
assets, respectively. Implementing a trustworthy and competitive IC requires a trusted and high-end fabrication process, two aspects that conflict
with each other, as also indicated in [1], [12]. Few, if any, of the outsourced high-end facilities may be considered trustworthy, whereas maintaining
an advanced, trusted facility on-shore or in-house is too costly in practice.

greater design flexibility. As such, the economic benefits,
especially for small-volume development of heterogeneous
and large-scale systems, are becoming enormously promis-
ing. It is only logical that the 2.5D interposer technology is
at the heart of these efforts.

A prominent initiative for chiplets integration is
DARPA’s Common Heterogeneous Integration and Intellectual
Property Reuse Strategies (CHIPS) [34]. The main objectives
for CHIPS are: 1) realize a modular design process and
manufacturing flow, and 2) establish standards for physical
interfaces. Ultimately, the goal is to achieve “plug-and-play
integration” of large-scale and heterogeneous systems, as
opposed to the traditional, monolithic flow for 2D ICs. In
general, chiplets integration has been well-received by both
the academia (e.g., see [19], [21], [35]) and the industry, with
relevant products and technologies already in the market,
e.g., see the AMD Fiji system [22] and Intel’s Embedded Multi-
Die Interconnect Bridge (EMIB) [36].

1.4 Motivation and Contributions
In this paper, we harness the opportunities offered by state-
of-the-art 2.5D technologies for advancing hardware secu-
rity. More specifically, we propose the assembly of: 1) po-
tentially untrusted commodity chiplets and memories, and
2) physically separated, entrusted communication interfaces
and HWSFs residing in an active interposer. We refer to
the resulting system in general and the security-enforcing
interposer in particular as 2.5D root of trust (RoT) (Fig. 1).

From a commercial point of view, we note that the
system vendor has to design, produce, and sell such 2.5D
RoT systems. Here, the good economics of chiplets reuse
are still maintained; that vendor has to manufacture only a
fraction of the overall system, namely the security-enforcing
interposer (with the help of some established and trusted
fabrication facilities) and would then integrate the high-end
but untrusted chiplets on top of that interposer (with the
help of in-house or certified on-shore packaging facilities).
Therefore, the final system establishes security and can offer
good performance at a reasonable cost—the crux illustrated
in Fig. 2 can thus be resolved.

At this point, one might wonder about using a passive
interposer for an alternative, potentially less costly imple-
mentation of an 2.5D RoT, but we argue that doing so
would entail two key limitations. First, scalability would
be compromised. This is because all HWSFs would have to
be implemented within one or multiple, dedicated security
chiplet(s), which would then become the “bottleneck” for
system-level communication through the interposer. In fact,
optimizing interposer interconnects is an area of research by
itself, where active interposers are considered promising as

well [35], [37]. Second, the need for trustworthy manufactur-
ing of an interposer and some security chiplet(s) might well
undermine the good economics of the scheme. In short, we
advocate for an active interposer for our proposed 2.5D RoT.

This paper makes the following contributions:

• We propose a novel 2.5D root of trust concept that,
for the first time, establishes stringent physical sep-
aration at the system level, between 1) commodity
chiplets and 2) HWSFs residing in an active inter-
poser. In addition to ruling out common threat scenarios
directly by construction, the purpose of this concept is
to enable continuous runtime monitoring of the system-
level communication of all commodity chiplets.

• Following the 2.5D RoT concept, we showcase a
secure multi-core architecture with a system-level
interconnect fabric and shared memories. We imple-
ment our scheme using the Cortex-M0 core and the
AHB-Lite bus system, both by ARM. We develop ded-
icated HWSFs for memory access and data control
that form an integral part of our scheme. We release
the license-free parts of our proof-of-concept (PoC)
64-core implementation to the community [38].

• We develop an end-to-end physical-design flow for
our 2.5D RoT, based on commercial tools. Our flow
serves to design the active interposer and supports a
flexible design mode for chiplets procured as soft or
hard IP. Using this novel flow, we elaborate on the
layout costs of our scheme in detail.

• We evaluate our scheme against various relevant
attack scenarios. We implement related security-
enforcing policies and demonstrate them in action
against malicious runtime behavior, using a commer-
cial hardware simulation workflow.

2 THREAT MODEL AND CONCEPT

Our concept does not require any trust assurance concerning the
design and manufacturing of commodity chiplets. In fact, we
even assume a priori that chiplets do run malicious code
and/or incorporate Trojans.

Crucially, such threats cannot undermine or compromise
the system-level security of our scheme. This is due to
the fact that our 2.5D RoT scheme imposes physically and
inevitably that any untrusted component has to depend on
the security-enforcing interposer for system-level commu-
nication, whereas the trustworthiness and robust operation
of that interposer are not subject to those untrusted compo-
nents. We note that this is in contrast to most prior art where
HWSFs are embedded monolithically in the same chip and,

4 IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, MONTH 202X

Fig. 3. 2.5D RoT design and manufacturing stages (green), threat
sources (red), and runtime monitoring (turquoise). It is imperative that
the active interposer is designed and manufactured by trusted parties.

thus, remain subject to the trustworthiness—or rather lack
thereof—of all the related design and manufacturing stages.

Our threat model and concept are illustrated in Fig. 3,
with details for both discussed next.

2.1 Security Threats and Assumptions

When seeking to securely integrate various components
at the system level, different threats are to be considered,
which concern the system-level communication and all in-
volved components [6]. More specifically, in our work, a
malicious chiplet may exercise the following attacks:

1) Passive reading, also known as snooping, i.e., a
chiplet illicitly reads or gathers data that is meant
for/authorized to other chiplets;

2) Masquerading, also known as spoofing, i.e., a chiplet
disguises or poses itself as another one, to illicitly
control services or request data from other chiplets;

3) Modifying, i.e., a chiplet maliciously changes the
data exchanged legally between other chiplets;

4) Diverting, i.e., a chiplet maliciously diverts the data
exchanged legally between two chiplets to a third,
unauthorized chiplet; and/or

5) Man-in-the-middle, i.e., a chiplet “hijacks” the com-
munication between two chiplets—this attack is
closely related to all four above.

As we focus on a multi-core architecture with shared mem-
ories, we also have to consider another threat:

6) Malicious accesses and modifications of shared-
memory-resident data.

We assume that any of these six threats can be intro-
duced by: a) untrusted components/chiplets—either unin-
tentionally via “design bugs” or intentionally via Trojans—
or b) malicious software running on the cores.

We assume that any attack is exercised through system-
level communication across chiplets. Therefore, any adver-
sarial activities conducted within chiplets, such as covert
channels across cores (e.g., [39]), side-channel- or fault-
driven attacks across cores and their caches/buffers (e.g.,
[4], [40]), or fault injection on privileged hardware inter-
faces (e.g., [41]) are all considered out of scope for this
work. Furthermore, we assume a trusted runtime environ-
ment. Thus, any threats like side-channel or physical fault-
injection attacks conducted by malicious end-users (e.g.,
[42]) are considered out of scope as well.

2.5D RoT Backbone: Active Interposer

Interconnect Fabric
with HWSFs

Interfaces
for Chiplets

Fig. 4. Our scheme prevents common threats like snooping by construc-
tion. System-level communication must utilize the 2.5D RoT backbone
and, thus, cannot be tampered with by other chiplets (red crosses). This
is because the interposer’s interfaces, which each chiplet is physically
attached to, enforce that any communication request (yellow warning
sign) is passed to and controlled by the HWSFs residing in the active
interposer. Only approved communication (green tick) is passed on.

Finally, we assume that the design and fabrication of
commodity chiplets is outsourced and, hence, untrusted,
whereas the design and manufacturing of the 2.5D RoT
and the system-level assembly must all be carried out in
a trusted environment. This also means that, in this work,
we do not seek to detect or prevent Trojans within chiplets
(recall that we rather assume a priori that Trojans are present
in the untrusted chiplets). Given that related techniques
(e.g., [43], [44]) are orthogonal to our efforts, such techniques
could still be leveraged, to render the final system even more
robust to begin with.

We note that, among other scenarios, DARPA’s CHIPS
and DARPA’s Secure Processing Architecture by Design
(SPADE) programs both match well with said assumptions.
This is because government agencies seeking to build small
numbers of large-scale, heterogeneous systems in a cost-
efficient manner are advised to utilize chiplets which, when
obtained from the open market, are potentially malicious.
To ensure secure computation nevertheless, within a trusted
runtime environment readily enforceable by the agencies,
schemes like ours become essential.

2.2 Security Concept and Working Principles
Our scheme is the first, to our best knowledge, that rules
out the above threats 1)–5) by design and construction. As
Fig. 4 illustrates, this kind of built-in security occurs as
the system-level interconnect fabric with all its interfaces
and HWSFs are physically separated from the untrusted
components. Therefore, components/chiplets remain com-
pletely unaware of and isolated from any communication
not directly addressed to or created by them. For example,
regarding spoofing, we realize a hard-coded assignment of
component identifiers (IDs) directly via the interconnect
interfaces which are residing exclusively in the 2.5D RoT.
Thus, a malicious component cannot masquerade itself as
another in the first place.

Furthermore, we utilize the notion of security policies for
runtime monitoring against malicious access or modifica-
tion of the system-level shared memory. To do so, we devise
HWSFs that allows us to enforce a fully-controlled memory

NABEEL et al.: 2.5D ROOT OF TRUST: SECURE SYSTEM-LEVEL INTEGRATION OF UNTRUSTED CHIPLETS 5

Shared
Mem-0

Shared
Mem-M

Secure
Interface

(SI)

AHB-Lite

ARM
Cortex-M0
"PROC-0"

ARM
Cortex-M0

PROC-1

ARM
Cortex-M0

PROC-N

Shared Register
Space (SRS)

Control
Mem

Trusted
Configuration

Unit (TCU)

BI BI

BI BI BIBI

BI BIBI BI

BI

Fig. 5. Block diagram for the proposed ISEA architecture, where components shown in green are security-critical and implemented exclusively in the
2.5D RoT. Components shown in red constitute untrusted commodity components, implemented in various chiplets. Note that all the bus interfaces
(BIs) are also implemented in the 2.5D RoT. Among other considerations, this serves to ensure that master IDs for any transaction emanating from
some core cannot be tampered with by any of the other cores. Note that “PROC-0” is a trustworthy core which is separate from all the cores in the
commodity chiplets; it is implemented entirely in the 2.5D RoT and reserved for scheduling and other management tasks such as compilation and
updating of security policies residing in the PRSs (policy register spaces). For the optional memory-security features (residing in TRANSMONs, not
illustrated separately here), the related control memory is to be provided as a separate, trusted memory chiplet.

access scheme. We apply stringent principles as follows,
with related technical details provided in Sec. 3.

First, any memory access not explicitly allowed for, via
some policy, is denied by default. Second, the continuous
“policing” of memory access incurs uniform latency, inde-
pendent of whether access is allowed or denied, and any
denied access is responded to with a generic error message.
These principles in conjunction ensure that an adversary
cannot infer whether the requested region is protected or
not used at all, which may serve well to hinder any related
side-channel inference. Third, to protect against faults and
malicious data modifications within memories themselves,
we advocate for optional memory-security features like
error correction codes (ECCs). Here, the actual data and the
results of the security features are to be stored in physically
separate locations and cross-checked upon reading.

In short, common threats are ruled out by construction,
malicious memory accesses are blocked, and erroneous data
is rejected; all these security principles are enabled directly
at the 2.5D RoT. For any such adversarial case, the overall
system may experience a (temporary) loss of functionality
or data, but its integrity and trustworthiness remain intact, an
outcome which constitutes the main focus of this work.

3 ARCHITECTURE OF 2.5D ROOT OF TRUST

Here we describe the architecture of our 2.5D RoT, called
Interposer-based Security-Enforcing Architecture, or ISEA for
short. The key paradigms of ISEA are: 1) to physically
separate commodity components (chiplets in our case) from
the HWSFs and 2) to monitor any memory-related, system-
level communication at runtime. In more colloquial terms,
one can memorize the term ISEA as “I see ya,” which reflects
upon the idea of continuous system-level monitoring.

The novelty and enabler for ISEA is the security-
enforcing active interposer, which serves as integration
carrier and as “physical barrier” for any communication-
centric security fallacies to propagate through the system.
Toward that end, the interposer hosts the system-level inter-
connect fabric along with all proposed HWSFs. Therefore,
any communication emanating from untrusted chiplets is
inevitably handled and controlled by the interposer. More

specifically, in this work, we focus on shared-memory transac-
tions initiated by cores residing within chiplets. The legality
of any such transaction is verified using various kinds of
security policies; details and examples for such policies are
provided further below and in Sec. 5.2.

3.1 System Implementation

3.1.1 Overview
Figure 5 depicts the block diagram for the proposed ISEA
architecture. Key to ISEA are Transaction Monitors (TRANS-
MONs) which administer the various policies; the function-
alities and implementation of TRANSMONs and all other
HWSFs are explained in detail further below.

In this paper, without loss of generality, we consider
the ARM Cortex-M0 core for the commodity chiplets. For
the system-level interconnect fabric, we leverage the ARM
Advanced High Performance Bus Lite (AHB-Lite). AHB-Lite
facilitates communication among bus-attached master com-
ponents (cores in our case) that initiate transactions and bus-
attached slave components (system-level shared memories
in our case) that respond to these requests. AHB-Lite trans-
fers data values, addresses, and control info; it is managed
by components such as arbiters, decoders, multiplexers, etc.,
all of which collectively implement the AMBA protocol
(Advanced Microcontroller Bus Architecture). We choose AHB-
Lite as it is technology-independent, widely used in the
industry, and encourages modular design, all while offering
high performance. Note that AMBA provides a secondary
bus which functions as a slave to AHB-Lite, called the
Advanced Peripheral Bus (APB), used for lower-bandwidth
peripheral devices such as I/O ports. While APB could also
be incorporated into ISEA, here we focus on AHB-Lite.

We release the license-free parts of our PoC implemen-
tation to the community [38]. We exhibit only a particular
instance of ISEA here; our scheme can be easily retro-
fitted to secure other systems, with different chiplets, cores,
and/or interconnects. This is because the key principles of
our scheme are agnostic to these implementation aspects.

We note that Cortex-M0 does not provide a cross-
communication interface; hence, direct M0-to-M0 commu-
nication is not possible, thereby also excluding such direct

6 IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, MONTH 202X

message-passing for this PoC implementation of ISEA. Still,
ISEA could be extended toward direct message-passing;
TRANSMONs would be incorporated directly in-between
the components to be monitored. This approach would
also be applicable for, e.g., traditional system-on-chip (SoC)
designs where IP cores may be connected via direct links.
Besides, modern architectures may also contain hardware
accelerators which can use integrated memories and/or
external, shared memories. For the latter, the accelerators
have to act as a bus master, like all other cores, to access
those shared memories. Thus, ISEA can also be used to
monitor transactions by other components, like accelerators,
not just regular cores. Finally, ISEA could also be extended
toward other types of system-level fabrics, like NoCs.

We emphasize again that it is essential for ISEA that
the system-level interconnect fabric, its interfaces, and all
proposed HWSFs are implemented exclusively in the active
interposer, thereby constituting the 2.5D RoT by design
and construction. For example, all communication requests
passed onto the AHB-Lite bus system are associated with
a master ID, whose assignment is handled by the bus-
interface ports the chiplets are physically attached to—for
ISEA, these ports are implemented in the trusted interposer,
not within the chiplet. Thus, concerning spoofing, by con-
struction there is no attack surface that could be leveraged
by some Trojan or malicious software running within the
chiplets and seeking to alter the master IDs. This and other
scenarios are also illustrated in Fig. 10, Sec. 5.2.

3.1.2 Our Hardware Security Features

ISEA constitutes the following HWSFs:

1) TRANSMONs, along with their Policy Register
Spaces (PRSs) to store the various policies;

2) a Shared Register Space (SRS);
3) an ARM Cortex-M0 core called “PROC-0”; and
4) the Secure Interface (SI).

The purpose of these features and their components is
explained next.

1) A TRANSMON controls all transactions related to
its attached memory chiplet, based on the policies stored
in its PRS. A TRANSMON itself comprises three or four
components: a) the Address Protection Unit (APU), b) the Data
Protection Unit (DPU), c) the Slave Access Filter (SAF), and,
optionally, d) a memory-security feature.

All components establish security collectively, with their
functionality elaborated in Sec. 3.2. In a nutshell, the APU
protects against undefined and/or unpermitted memory ac-
cesses, the DPU protects against illegal data modification or
leakage of restricted data into the system’s shared memory
space, the SAF serves to forward or reject requests which are
approved or rejected, respectively, and the memory-security
feature serves to detect faults and malicious modifications
within the memories themselves.

2) The SRS can be used for secure data sharing, e.g., for
semaphores. Although the SRS is implemented in the inter-
poser, a TRANSMON and its related PRS are still required,
to realize access control and runtime monitoring.

3) The interposer-embedded (and thus fully trustwor-
thy) PROC-0 serves for scheduling and controlling the

 AHB-Lite to TRANSMON

MUX
Address
Range

Checker

Access
Right

Checker

Master ID
Checker

Master ID
Checker

Address
Range

Checker
Write Data

Value
Checker

Comparator DPU

Comparator APU

Memory-Security Feature

Slave Access Filter

APUMID
APUADDR

APUMASK
APUPERM

APUMID
APUADDR

APUMASK
APUPERM

DPUMID
DPUADDR

DPUDATA
DPUAMASK

DPUMID
DPUADDR

DPUDATA
DPUAMASK

DPUDMASK DPUDMASK

APU PRS

DPU PRS

PRS

 Data, Address

Data, Address

Address

Data, Address

Response

TRANSMON to Memory Controller

Error
Response

Error Response

Data

Fig. 6. Block diagram for the TRANSMON’s micro-architecture. See also
Sec. 3.2 for technical details as well as Figs. 7, 8 for examples of APU,
DPU policies in action, respectively.

distributed computation, with commodity cores in the un-
trusted chiplets being allocated and interrupted by PROC-
0 at runtime as needed. PROC-0 will further serve for
mapping the system-level shared memory spaces, and for
compiling and updating the application-specific sets of poli-
cies residing in the PRSs. It is important to note that PROC-
0 does not constitute a “bottleneck” as it is not involved in
each and every AHB-Lite transaction, but it is only used in
exercising this kind of system-level management.

4) An external Trusted Configuration Unit (TCU) is
responsible for loading the application(s) and initial data
onto the system, and for retrieving the final results from the
system. All these tasks are performed using the SI, which
has privileged access to the AHB-Lite. Recall that we assume
a trusted runtime environment; attacks misusing the TCU or
SI in the field are thus out of scope. In any case, access to
the TCU or SI can by protected by cryptographic primitives.

3.2 Transaction Monitor (TRANSMON)

Key to ISEA’s operation are TRANSMONs, with their micro-
architecture illustrated in Fig. 6. Note that we choose to
place an individual TRANSMON in-between every memory
slave and the AHB-Lite bus interface (Fig. 5). While another
option would be to place TRANSMONs in-between all the
core masters and their respective bus interfaces, our design
decision offers two important benefits. First, a TRANSMON
connected to a master would require additional address
bits decoding and checking (for the base address), which is
already covered by AHB-Lite itself, whereas a TRANSMON
connected to a slave only requires decoding and checking
for the offset address. Second, a TRANSMON connected
to a slave enables us to keep track of the security policies
relevant to only that slave, thereby helping with efficiency.

3.2.1 TRANSMON Design: Overview, Working Principles
As described, a TRANSMON comprises an APU, a DPU,
an SAF, optionally a memory-security feature, and some
glue logic. The APU and DPU each have access to their
own PRS. For efficiency, every PRS is implemented using
flip-flops. Each APU PRS entry defines one APU policy
concerning some particular region in the system’s shared
memory space, physically allocated in the memory slave

NABEEL et al.: 2.5D ROOT OF TRUST: SECURE SYSTEM-LEVEL INTEGRATION OF UNTRUSTED CHIPLETS 7

connected to that TRANSMON; each DPU PRS entry defines
one DPU policy concerning some particular data. Both APU
and DPU policies are discussed in more detail below and
examples are illustrated in Fig. 7 and Fig. 8.

TRANSMONs block all read or write requests that
are violating any of their APU/DPU policies. By default,
TRANSMONs also block requests that cannot be matched
to any policy, protecting the system against all such “stray
requests.” Policy verification also involves the checking of
master/slave IDs. In this context, as we implement the in-
terconnect fabric and all its interfaces physically exclusively
in the active interposer, recall that there cannot, a priori, be any
spoofing of IDs, snooping, modifying, or diverting of data, or man-
in-the-middle attacks. In case a request is blocked, the related
TRANSMON passes an error message to the master which
initiated the transaction and an interrupt to the trusted
PROC-0. The memory access itself is then dropped by the
SAF—it is thus guaranteed to never reach the memory.

As indicated, the trusted PROC-0 within ISEA serves for
mapping the system-level shared memory spaces, and for
compiling and updating the application-specific sets of poli-
cies for each TRANSMON (more specifically, for its PRS).
For different applications running on the system, depending
on the scheduling, policies can also be devised for protection
of independent data sets of multiple applications running
in parallel. Once a particular application run is finalized,
before dropping the related policies, PROC-0 should also
clear the related memory regions, to avoid any posterior
leakage of sensitive data. Moreover, the trusted end-user is
free to implement software-level analysis and management
of all blocked requests. Such management schemes may also
decide whether masters which repetitively trigger requests
to be blocked should be isolated completely from the system
(by updating the policies accordingly), in order to mitigate
potential denial-of-service attacks. In any case, software
implementation for such “bootstrapping” and system-level
management procedures are scope for future work; in this
work, we focus on the ISEA architecture, the implementa-
tion and physical design of all its HWSFs, and on a security
analysis based on functional hardware simulation runs.

3.2.2 TRANSMON Design: Address Protection Unit (APU)
The APU forms an integral part of the TRANSMON; it
serves to check all read or write memory requests. As such,
full access control over all shared-memory ranges is exer-
cised. We design and implement the APU such that policy
checking is acting during the address phase of the AHB-Lite
protocol, thereby avoiding additional cycle delays.

Recall that each APU makes use of its own PRS to hold
the polices related to its physically assigned memory slave.
As Fig. 6 shows, an APU policy comprises four parameters:

• APUMID, which identifies the master allowed to
initiate the particular memory request described by
this policy;

• APUADDR, a 32-bit memory address;
• APUMASK, a 32-bit address mask; and
• APUPERM, the access permission, i.e., whether read-

only, write-only, or read-write.

An example for an APU policy is illustrated in Fig. 7, and
the related simulation is provided in Sec. 5.2.

 AHB-Lite to TRANSMON

MUX
Address
Range

Checker

Access
Right

Checker

Master ID
Checker

Master ID
Checker

Address
Range

Checker
Write Data

Value
Checker

Comparator DPU

Comparator APU

Memory-Security Feature

Slave Access Filter

0000_0002
4002_006c

0000_006c
0000_0003

0000_0002
4002_0074

0000_0f8b
0000_0003

DPUMID
DPUADDR

DPUDATA
DPUAMASK

DPUMID
DPUADDR

DPUDATA
DPUAMASK

DPUDMASK DPUDMASK

APU PRS

DPU PRS

PRS

 Data, Address

Data Address
0002 4002_0070

Response

TRANSMON to Memory Controller

Access denied

X

Access denied

Data

Fig. 7. APU policies in action in the TRANSMON. Essentially, the core
with ID 0x2 tries to access a memory region outside of the allowed
ranges defined in the two policies. Therefore, the access is blocked by
the SAF, Slave Access Filter, from passing to the memory controller, and
an error message is returned. See also Sec. 5.2 for more details.

3.2.3 TRANSMON Design: Data Protection Unit (DPU)
The DPU forms another integral part of the TRANSMON,
and its function is to provide data-level protection. This is
achieved by blocking: 1) over-writing of sensitive data in the
event of unauthorized writes to specific memory locations,
or 2) writing out particular data of sensitive nature. The
latter serves to protect soft assets, e.g., private cryptographic
keys, from leaking inadvertently into the system’s shared
memory, e.g., by malicious “shadow writes” [6].

A write transaction is blocked when the DPU PRS con-
tains a relevant policy that disables writing of particular,
restricted data to a specified address range. Since DPU
policy checks can only work during the data phase of the
AHB-Lite protocol, we have to keep the data, address, and
control signals all registered until the check is completed;
this registering is done within the SAF. Hence, the DPU in-
curs one additional cycle delay in all transactions related to
write-restricted data, but all other transactions not covered
by DPU policies are not delayed.

As with the APU, recall that a DPU makes use of its own
PRS. Figure 6 shows the five paramters of a DPU policy:

• DPUMID, which identifies the master whose write
transaction is to be verified against this policy;

• DPUADDR, a 32-bit memory address, which des-
ignates the address where the write permission is
restricted;

• DPUDATA, a 32-bit, write-restricted data value;
• DPUDMASK, a 32-bit data mask; and
• DPUAMASK, a 32-bit address mask.

An example for a DPU policy is illustrated in Fig. 8, and the
related simulation is provided in Sec. 5.2.

3.2.4 TRANSMON Design: Memory-Security Feature (Op-
tional)
To protect against faults or malicious modifications within
the shared system-level memories themselves, schemes like
ECC, cyclic redundancy check (CRC), data mirroring, or a
combination of these can be implemented. For example, an
ECC implementation based on the well-known Hamming
code would require four extra bits per memory byte, trans-
lating to 50% memory cost, and could only serve to detect

8 IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, MONTH 202X

 AHB-Lite to TRANSMON

MUX
Address
Range

Checker

Access
Right

Checker

Master ID
Checker

Master ID
Checker

Address
Range

Checker
Write Data

Value
Checker

Comparator DPU

Comparator APU

Memory-Security Feature

Slave Access Filter

APUMID
APUADDR

APUMASK
APUPERM

APUMID
APUADDR

APUMASK
APUPERM

DPUMID
DPUADDR

DPUDATA
DPUAMASK

0000_0002
2000_fffc

0bad_beef
0000_0000

DPUDMASK 0fff_0fff

APU PRS

DPU PRS

PRS

 Data, Address

 Data Address
0bad_beef 2001_ffe8Response

Data

TRANSMON to Memory Controller

Access
Denied

X

Access
Denied

Fig. 8. A DPU policy in action in the TRANSMON. Essentially, the
core with ID 0x2 tries to write out a sensitive software asset, e.g., a
private cryptographic key, with the value of 0xBAD_BEEF, to a restricted
memory region. The access is blocked by the DPU from passing to the
memory controller, and an error message is returned. See also Sec. 5.2
for more details.

at most two corrupted bits per byte. The advantage of ECC,
however, is that it can be calculated during computation
time without any latency overhead. A CRC implementation
is more suitable when the memory data to protect is not sup-
posed to change, e.g., for a firmware/software image. Also,
CRC can be implemented with little additional circuitry.
Still, the CRC computation needs to be run for chunks of
data intermittently; this may halt some regular computation
and can thus impact the overall throughput. In data mirror-
ing, the data is simply copied into another (trusted) memory,
which would naturally induce an overhead of 100%.

We envision some memory-security scheme as follows:
1) the TRANSMON computes an ECC for any write-out that
is allowed; 2) the ECC result is stored in some separate and
trusted control memory, whereas the actual data is stored
in the shared-memory chiplet attached to the TRANSMON;
3) during read-out, the TRANSMON validates the data
using the stored ECC result. If that check fails and cannot
be corrected via the ECC, the data is rejected and the related
memory region is marked as tainted and not used further.

Since address handling is covered by the AHB-Lite pro-
tocol, one may implement this scheme such that ECC results
are fetched in parallel, without inducing additional delays
for read-out transactions. We note that ECC results have to
be stored in a trusted, separate memory chiplet. Finally, nei-
ther the above nor other memory-security features can pro-
tect against erroneous data arising from hardware/software
failures or malicious activities. Such risks can only be mit-
igated at the system level, e.g., by redundant computation
and majority voting on results [12], [45]. Note that a multi-
core architecture like ours can be readily tailored for such
needs, but related efforts are scope for future work.

4 PHYSICAL DESIGN

Next, we elaborate on our end-to-end physical-design flow,
which is devised for our 2.5D RoT, but can also be applied
for any other active 2.5D system. The flow is illustrated in
Fig. 9, and some highlights are discussed next. Note that the
flow is leveraging commercial tools, libraries, and technolo-
gies for all key design steps such as placement and routing

ISEA Netlist

Design Partitioning &
Floorplanning

Individual Chiplets & Interposer

Timing Budgeting for Chiplets

SDC for Individual Chiplets

Chiplet and Interposer Generation

Microbump Location

User-Defined
Constraints

SynthesisISEA RTL

Implement Individual Chiplets

Layout Implementation

Place & Route Interposer

Netlists, SPEFs

Wrapper Netlist

System-Level Power
& Performance

Front End Implementation

Fig. 9. Our end-to-end physical-design flow based on commercial tools.
After synthesis of ISEA, the chiplets and interposer are floorplanned.
Next, all components are implemented, along with microbumps plan-
ning. If chiplets are given as hard IPs, only the interposer implementa-
tion is required (dashed box).

or handling of timing constraints; see also Sec. 5.1 for more
details on the setup. For the interested reader/designer, we
would also provide access to our flow upon request.

First, for the front-end implementation, the whole ISEA
register-transfer level (RTL) design is synthesized to obtain
a full-system netlist. Chiplets provided as soft IP are to be
synthesized here as well.

4.1 Chiplets and Interposer Generation

The full-system netlist is then partitioned into banks, which
simply represent the logic and memory chiplets. Our flow
provides flexibility to the designer when choosing the num-
ber of logic/memory banks as needed for the chiplets or-
ganization. Based on the full-system netlist, we derive the
timing budgets and obtain separate timing constraints (SDC
files) for the individual chiplets and the active interposer.

Next, we generate the full-system floorplan. Relevant pa-
rameters are to be provided by the designer, such as utiliza-
tion for individual chiplets and their aspect ratio, and they
are used toward floorplanning of the related core/memory
banks. Also, the floorplans of memory banks capture the
placement of memory modules within each bank. The
designer is also required to provide the arrangement of
chiplets over the active interposer. Finally, the interposer die
outline is derived from the full-system floorplan.

All the floorplan data is kept in Tool Command Language
(TCL) format, which eases the use of a regular 2D imple-
mentation flow while designing the chiplets and the active
interposer. We emphasize that our flow is flexible with
respect to accommodating chiplets that are either designed
in-house or, what is more practical, procured as physical
hard IP from commercial vendors. For such hard IP, the
design steps are more straightforward and essentially cover
only the chiplets arrangement over the interposer and the
design of the active interposer itself. When procuring such
hard IP, it is easy to see that the designer has no freedom
for any intra-chiplet optimization. Still, our flow allows the
designer to explore different chiplet arrangements, which

NABEEL et al.: 2.5D ROOT OF TRUST: SECURE SYSTEM-LEVEL INTEGRATION OF UNTRUSTED CHIPLETS 9

eases the system-level design space exploration along with
an investigation of timing and power consumption.

4.2 Layout Implementation
For chiplets obtained as soft IP, the related netlists have
to proceed through a standard 2D implementation flow,
to obtain the individually placed-and-routed chiplet lay-
outs. During this step, we also derive the locations for
microbumps, which serve the physical connection between
chiplets and the interposer. Those microbumps are initially
placed around the vicinity of drivers/sinks, while further
on-track legalization is performed to avoid routability issues
and maximize the utilization of routing resources for the
chiplets. Thereafter, the microbump locations of all chiplets
are used to define the microbump locations for the inter-
poser. Next, the RC parasitics for each chiplet are generated
as SPEF files from their post-routed layouts. Along with the
final netlist, these SPEF files are used later on for sign-off
analysis, i.e., to evaluate power consumption and timing.

Once the 2D implementation of all chiplets is
completed—which is skipped in case chiplets are obtained
as hard IP—the placement and routing of the active inter-
poser follow. First, the interposer netlist is imported, which
describes the AHB-Lite components, the HWSFs of ISEA,
and the pre-defined interposer microbump locations. Sec-
ond, a 2D implementation of the active interposer follows.
We note that we do not engage in any cross-optimization
between chiplets and interposer, which is essential for the
scenario of chiplets obtained as hard IP. Third, the RC
parasitics for the active interposer design are extracted and
exported along with the final netlist, and the GDSII is
streamed out. Finally, the RC parasitics for the microbumps
are modeled into the SPEF file of a wrapper netlist.

To evaluate the system-level power consumption and
timing of ISEA, including all computing and memory
chiplets, all individual netlists and their SPEF files are used
along the wrapper netlist with its own SPEF file.

5 EXPERIMENTAL EVALUATION

5.1 Setup
The RTL code for the complete system, including the cores,
AHB-Lite bus, TRANSMONs, etc., has been realized using
Verilog. We release the license-free parts of the RTL [38].
Synthesis was performed via Synopsys DC and layout gener-
ation via Cadence Innovus v.17.10. Verification and simulation
runs have been carried out via Synopsys VCS. The ARM IAR
suite has been used to compile C code to run on ISEA.

We implement ISEA as 64-core ARM Cortex-M0 multi-
chiplet system for a PoC. As baseline, the 64 cores are orga-
nized into four computing chiplets, each holding 16 cores.
For another configuration, to study the impact of system
organization on layout costs, we reorganize the 64 cores into
eight chiplets, each holding eight cores. Concerning security
policies, our baseline configuration supports 16 APU and 16
DPU policies for each TRANSMON. To study the impact of
policies being supported by TRANSMONs on layout costs,
we also consider configurations with 32, 64, and 128 APU
and DPU policies being supported by each TRANSMON.

For both the computing and shared-memory chiplets, we
leverage the commercial 65nm GlobalFoundries technology

Shared
Mem-0

Shared
Mem-4

AHB-Lite

ARM
Cortex-M0
"PROC-0"

ARM
Cortex-M0
PROC-1

BI BI

BI BI

BI BI

ARM
Cortex-M0
PROC-1

ARM
Cortex-M0
PROC-1

BI

ARM
Cortex-M0
PROC-2

TRANS-
MON

Fig. 10. Various scenarios for system-level communication as handled
within ISEA. Red crosses mean that the related threats are prevented,
whereas a green check means that the transaction is approved.

and ARM standard cell and memory libraries, represent-
ing the advanced but untrusted facility. We employ four
shared-memory chiplets with 1 MB SRAM each, build up
from 16 memories at 64 kB. For the active interposer, we
use the Synopsys SAED 90nm technology, representing the
older but trusted facility. For brevity, we also refer to both
technologies as 65nm and 90nm, respectively. Note that
the 90nm technology does not provide memory modules;
thus, we have to refrain from implementing any memory-
security feature for this PoC, as we cannot provision for a
separate, trusted memory chiplet required for such features.
For both technologies, we use a supply voltage of 1.08 V,
and we consider their respective slow corners. Note that
doing so allows for heterogeneous 2.5D integration without
the need for level shifters. In reality, the advanced but
untrusted facility versus the older but trusted facility may
support technology nodes that are further apart, but we
were constrained in choices by the libraries available to us.
Microbumps connecting the interposer and chiplets have a
width of 5µm and a pitch of 10µm. We utilize 7 metal layers
for both the 90nm and the 65nm technology.

5.2 Security Analysis

We study various scenarios for securing computation using
ISEA. First, we illustrate how critical threats (i.e., snoop-
ing, spoofing, modifying, diverting, and man-in-the-middle
attacks) are ruled out by ISEA in the first place (Fig. 10).
More specifically, there is an approved transaction between
PROC-2 and the shared memory with slave ID 0 (repre-
sented as blue arrow and green check in the TRANSMON
of the memory). At the same time, PROC-1 seeks to snoop
on that communication. This threat is blocked physically,
directly by the BI (bus interface) of PROC-1, as the BI itself
delegates only data originating from/destined to PROC-
1. Next, PROC-1 tries to illicitly act as man-in-the-middle
between PROC-2 and the shared memory with slave ID
4 (represented as dashed, dark-red arrow). This threat is
blocked directly at the BI as well—the BI hard-codes the
master ID 1 into any outgoing request, thereby preventing
PROC-1 from masquerading its ID. Finally, PROC-1 also
tries to access some data in the shared memory with slave
ID 0 (orange arrow). However, this particular request is
not approved by any policy and, thus, rejected. PROC-0 is
informed about this blocked request as well (black arrow).

10 IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, MONTH 202X

Fig. 11. Demonstration of ISEA at hardware simulation level, using Synopsys VCS. Left: malicious manipulation of data is blocked by an APU policy.
Right: unpermitted write-out of a secret key 0XBAD_BEEF is blocked by a DPU policy. Each blocking is receipted by the error message hresp_m.
AHB-Lite signals are described in Table 2.

Next, we explore various scenarios for runtime monitor-
ing against malicious access or modification of the system-
level shared memory. These scenarios serve to show-case
the working of ISEA in some detail, based on hardware
simulation using Synopsys VCS along with C code compiled
for the Cortex-M0 cores using ARM IAR. AHB-Lite signals
relevant for understanding of these simulations are listed
in Table 2. Aside from the particular scenarios considered,
the number of policies can increase and their interaction
can become more complex in practice, depending on the
application(s) running on ISEA and the resulting security
requirements. We also note again that a full system-level
software stack and related simulation efforts, also consider-
ing the orchestration and joint working of PROC-0 and the
TCU, is scope for future work.

5.2.1 Protection of Memory Ranges

Here, ISEA is tasked exemplarily with executing a fast
Fourier transformation (FFT). The FFT is an essential build-
ing block for many signal processing applications, and it
can be parallelized straightforwardly. As indicated in Sec. 3,
task scheduling is handled by the trusted control proces-
sor PROC-0, which also arranges the input data within
the system’s shared memory space. The FFT computations
within each core is started upon receiving an interrupt from
PROC-0, and once the processing is done for all cores, the
final results are gathered by PROC-0. Toward that end,
we implement custom interrupt handler for the cores, to
perform computation as controlled by PROC-0.

The policies are compiled such that the intermediate FFT
results calculated by one core cannot be modified by other,
maliciously acting cores. That is, we protect the shared-
memory regions assigned to each core via APU policies. For
example, the core with ID 0x2 has access to the address
range 0x4002_0000 to 0x4002_006C and the range from

0x4002_0074 to 0x4002_0FFF, but not to other addresses such
as 0x4002_0070 (i.e., where the core with ID 0x1 stores its
result). Note that the address ranges are derived by the APU
in an efficient manner, i.e., without need for complex com-
parator logic, using simple bit-wise operations. For example
for the related simulation in Fig. 11(left), the start address
0x4002_0000 is APUADDR[1] AND NOT(APUMASK[1]) and
the end address 0x4002_006C is APUADDR[1] OR APU-
MASK[1]; similarly, the start address 0x4002_0074 is APU-
ADDR[2] AND NOT(APUMASK[2]) and the end address
0x4002_0FFF is APUADDR[2] OR APUMASK[2].

As shown in the waveform in Fig. 11(left), the core with
ID 0x2 tries to access the address 0x4002_0070 to write out
the data 0x0000_0002. Note that for AHB-Lite in general,
the address phase comes first and the data phase one cycle
after. The transaction is blocked by the APU, and the data
in the memory remain protected and as is, indicated by the
fact that the memory-controller signals are not reflecting the
requested write out. At the same time, the error message
hresp_m is returned. Finally, note that this particular example
is the same as in the conceptional Fig. 7.

5.2.2 Protection of Private Assets
Here, a malicious core tries to write out some soft asset, e.g.,
a private cryptographic key. The DPU covers this kind of
threat; the related DPU policy concerns the actual data.

For Fig. 11(right), a DPU policy is set to track a write
transaction by the core with ID 0x2 to the restricted mem-
ory region between addresses 0x2000_0000 to 0x2FFF_FFFF,
concerning the sensitive data 0x0BAD_BEEF. Note that the
DPU derives address ranges like the APU; the start address
is DPUADDR AND NOT(DPUAMASK) and the end address
is DPUADDR OR DPUAMASK. Also, the sensitive data is
derived similarly, as DPUDATA AND NOT(DPUMASK).

The simulation waveform in Fig. 11(right) shows an
attempt to write out the restricted data value to address

NABEEL et al.: 2.5D ROOT OF TRUST: SECURE SYSTEM-LEVEL INTEGRATION OF UNTRUSTED CHIPLETS 11

TABLE 2
Selected Signals for AHB-Lite

Signal Description
HCLK Bus clock; timing of all signals is related to the rising edge of HCLK.

HMASTER Master ID; a unique ID assigned to each master attached to the bus.
HSEL Slave select; indicates that the current transaction is intended for the

selected slave.
HADDR System address; identifies the address as related to the slave.

HWDATA Write data; used to transfer data from the master to the bus slaves
during write operations and vice versa for read operations.

HWRITE Transfer direction; HIGH indicates a write transfer, whereas LOW
indicates a read transfer.

HREADY Transfer status; HIGH indicates that a transfer has finished on the
bus; to extend the transaction, this signal is to be driven LOW.

HRESP Transfer response; provides feedback on the status of the transfer;
used as receipt for security approval/rejection in our work.

0x2001_FFE8, which is blocked. Here as well, the error mes-
sage hresp_m is returned. Note that subsequently another,
unrelated read transaction is approved, which can be seen
by the hready_m signal being turned on during the related
data phase. Finally, note that this particular example is the
same as in the conceptional Fig. 8.

5.2.3 Protection of Shared Assets
Here, we assume that two or more cores require a semaphore
for software-based program and data control. Semaphores
can be stored in the SRS, the shared register space, which
is part of the 2.5D RoT, hence trustworthy by itself (Sec. 3).
Consider a maliciously acting core tries to over-write the
semaphore to be able to access/execute data/program re-
gions otherwise not accessible. Here, a DPU policy is needed
to monitor the actual data access to the semaphore, whereas
a generic APU policy would not suffice.

Figure 12 shows how such a malicious transaction is
blocked. Here gpcfg39_reg is considered as a semaphore
register. For the core with ID 0x1, to obtain the ownership
of this semaphore, it has to write 0x0000_0001 to the above
register, but can do so only while the semaphore register
value is 0x0000_0000, i.e., while the semaphore is available.
For the core with ID 0x2, it has to write 0x0000_0010 to
obtain the semaphore, and so on. Naturally, one core should
not be able to obtain the semaphore when it is already used
by any other core—a DPU policy is compiled to implement
this restriction. In the simulation, the policy is set for the
core with ID 0x02 to prevent any malicious writing of “0”
to the last bit (DPUDATA AND NOT(DPUMASK)) of the
semaphore register. The waveform shows such an attempt
to clear that last bit, which is blocked, along with the error
message hresp_m being returned. Note that the waveform
shows subsequently another, unrelated read transaction ini-
tiated by the core with ID 0x01, which is approved.

5.3 Layout Analysis
Using our 2.5D design flow, we investigate the physical lay-
outs of various ISEA configurations. In Fig. 13, we provide
snapshots for the baseline 64-core 2.5D version of ISEA.
We note that the details discussed below are based on our
commercial-grade implementation setup (Sec. 5.1).

5.3.1 2D Implementation, ISEA in General
First, we analyze the impact of our security-enforcing fea-
tures on layout costs. To do so, we compare the baseline

Fig. 12. Demonstration of ISEA at hardware simulation level, using
Synopsys VCS. Malicious over-writing of a semaphore in gpcfg39_reg is
blocked by a DPU policy. The blocking is receipted by the error message
hresp_m. AHB-Lite signals are described in Table 2.

ISEA multi-core design to a corresponding but non-secure
design, both implemented via a regular 2D IC flow using
the GlobalFoundries 65nm technology. For the non-secure
design, we maintain all Cortex-M0 cores, memories, AHB-
Lite components, and glue logic, but we drop all HWSFs
such as TRANSMONs, PRSs, etc. We note that, from a
conceptional point of view, using the Synopsys SAED 90nm
technology would be more apt, as this technology was des-
ignated as the trusted node. Then, the corresponding secure
2D implementation would represent the system as imple-
mented exclusively using the trusted technology. However,
given that the 90nm technology does not provide memory
modules, we have to resort to the 65nm technology. For this
reason, we also refrain from directly comparing the secure
2D implementation with the secure 2.5D system later on.

Table 3 provides the results for the 2D implementation.
For the secure design, we observe a 5% reduction in crit-
ical delay and a 13.86% increase in power consumption.
Note that we achieve a competitive critical delay for the
secure design by breaking longer paths using pipelining.
An increase in standard-cell area (2.48%), instance count
(29.57%), buffer count (18.46%), wirelength (31.49%), and
total capacitance (35.44%) are all expected, due to the pro-
posed HWSFs (including all registers required for storage
of policies, etc.) and due to pipelining. The die outline
remains as is, however; no additional silicon cost occurs.
These results provide the range of costs to be expected for
ISEA, that is at least for this particular PoC implementation.

5.3.2 2.5D Implementation
Table 4 provides the physical-design results for the 2.5D
baseline implementations. As indicated, computing and
memory chiplets are implemented using the 65nm technol-
ogy and the active interposer using the 90nm technology,
respectively. Here we also compare a secure design with a

12 IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, MONTH 202X

Fig. 13. Layout snapshots for the 64 multi-core, multi-chiplet baseline version of ISEA, obtained using our 2.5D design flow. For visual clarity,
the power-distribution networks are not shown for the routing snapshots. Left: floorplan of ISEA. Four ARM chiplets in the middle and four shared-
memory chiplets around; inset: interposer microbump locations. Center: One ARM Cortex-M0 chiplet, with 16 cores. Logic and microbump locations
(top), routing (bottom). Right: ISEA implementation in the active interposer. TRANSMON and other HWSFs in white, regular AHB-Lite components
in grey. Placement regions are constrained, for cost-efficient interposers, e.g., using Intel’s EMIB technology; inset: interposer routing.

TABLE 3
2D Implementation Results for Non-Secure Versus Secure Designs,

Both in GlobalFoundries 65nm

Metrics Non-Secure (2D) Secure (2D)
Critical Delay (ns) 9.79 9.29

Power Consumption (mW) 239.5 272.7
Standard-Cell Area (µm2) 24,127,403 24,725,036

Total Die Area (µm2) 31,996,800 31,996,800
Total Instance Count 600,729 778,393
Total Buffer Count 132,477 156,929

Total Wirelength (m) 28.9 38.2
Total Capacitance (nF) 7.9 10.7

TABLE 4
2.5D Implementation Results for Non-Secure Versus Secure Designs,

Chiplets in GlobalFoundries 65nm, Interposer in Synopsys SAED 90nm

Metrics Non-Secure (2.5D) Secure (2.5D)
Critical Delay (ns) 9.72 9.83

Power Consumption (mW) 266.4 300.9
Standard-Cell Area (µm2) 24,588,292 26,844,473

Total Die Area (µm2) 33,641,866 33,641,866
Interposer Die Area (µm2) 6,237,600 6,237,600

Total Instance Count 569,574 745,693
Interposer Instance Count 69,742 249,085

Total Buffer Count 141,151 169,344
Total Wirelength (m) 30.5 40.5

Total Capacitance (nF) 7.92 10.89

non-secure design; both contain the same set of computing
and memory chiplets, and both hold all AHB-Lite compo-
nents in the active interposer, whereas the secure design
further holds the proposed HWSFs in the interposer.

For the secure design, we observe an overhead of
1.13% for critical delay, 12.95% for power consumption, and
32.79% for wirelength, respectively. The standard-cell area is
increased by 9.18%, while instance count and buffer counts
are increased by 30.92% and 19.97%, respectively. As before,
these costs are attributed to the HWSFs (including all PRS
registers, etc.), but here the costs are further impacted by

the migration to 2.5D and by the heterogeneous technology
setup. More specifically, due to the migration to 2.5D, all
the system-level interconnects are now passing through
the active interposer, with all chiplets connected to this
fabric through microbumps. Thus, timing closure for the
interposer is subject to the multiple chiplets, which requires
more effort. More importantly even, recall that the active
interposer is implemented in the older 90nm technology.
Therefore, higher costs are naturally to be expected, espe-
cially for all the HWSFs residing in the interposer. As with
the 2D designs, there is no impact on the die areas for the
2.5D designs. In fact, the size of the interposer is dominated
by the size and arrangement of the chiplets mounted on top
of it, not by the standard-cell area of the additional logic
incurred for the HWSFs within the interposer.

We emphasize again that we refrain from any cross-
optimization between chiplets and the active interposer,
to account for the practical assumption of hard-IP chiplets
obtained as commodity components from the open market.
Moreover, we note that our flow allows the designer to
constrain the active area of the interposer (Fig. 13(right))
and the placement of microbumps (Fig. 13(left)). Doing so
enables the final vendor to manufacture only a small CMOS
chip for the interposer, instead of the whole outline, which
naturally helps save commercial cost. Such a small chip
could be supported by Intel’s EMIB technology [36].

We note that the results above are all subject to the ISEA
PoC baseline configuration, i.e., 64 cores are organized into
four computing chiplets, each holding 16 cores, and 16 APU
and 16 DPU policies are supported by each TRANSMON. To
understand the scaling of layout costs incurred by the pro-
posed HWSFs, we next conduct the following experiments:

1) We explore the impact for the number of policies
being supported, by re-implementing the active in-
terposer for 32, 64, and 128 APU and DPU policies
being supported by each TRANSMON;

NABEEL et al.: 2.5D ROOT OF TRUST: SECURE SYSTEM-LEVEL INTEGRATION OF UNTRUSTED CHIPLETS 13

Non-Secure 16 Policies 32 Policies 64 Policies 128 Policies
0%

35%

70%

105%

140%

175%

210%

245%

280%

315%

350%

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

200%

»» Standard-Cell Area »» Power »» Critical Delay
«« Instances «« Wirelength «« Capacitance
«« Interposer Die Area

Fig. 14. Scaling of layout costs for the 2.5D RoT, for varying numbers
of APU and DPU policies being supported by each TRANSMON. The
legend indicates by “««” or “»»” the assignment of each metric to the
left or the right y-axis, respectively. Each metric is normalized to its
respective value obtained for the non-secure 2.5D design.

2) We explore the impact of the system-level orga-
nization, by rearranging the 64 cores into eight
computing chiplets with eight cores each and re-
implementing the whole system.

The results for 1) are illustrated in Fig. 14. We note that
layout costs are scaling up as expected. More specifically, for
each doubling of the number of policies being supported,
most metrics are approximately doubled in cost as well
(considering their respective baseline cost for the initial con-
figuration supporting 16 policies). However, critical delays
increase only linear—this indicates that the physical designs
are well optimized in terms of performance/timing paths.

The results for 2) are as follows: the standard-cell area
is increased by 0.99%, interposer die area by 47.35%, power
by 2.13%, critical delay by -10.15% (i.e., reduced by 10.15%),
total instance count is increased by 6.24%, total wirelength
by 9.41%, and total capacitance by 6.24%, respectively. Given
the reorganization of cores into double the number of com-
puting chiplets, such costs are expected. More specifically,
on the one hand, having to accomodate double the comput-
ing chiplets imposes a larger outline for the interposer. This
is because the chiplets are not halved in size, as microbumps
are dominating their outlines, and not the logic within. Due
to the larger interposer die outline, we also observe larger
total wirelength, along with more instances (required for
buffering), higher capacitance, and marginally higher power
consumption. On the other hand, the critical delay can be
improved, thanks to some critical paths becoming shorter
within the smaller computing chiplets, as well as due to the
rearrangment of chiplets on top of the active interposer.

In short, these two experiments show reasonable costs,
manifesting the practicality of our architecture for different
configurations. We also like to argue that, for other systems
beyond our Cortex-M0 PoC implementation, e.g., when
using RISC-V cores instead, the layout costs might be better
amortized over the respectively larger system.

Finally, we reiterate the fact that prior art is conception-
ally different from ours. Prior art embedded their HWSFs
monolithically within 2D ICs, whereas the risks related
to adversaries in the IC supply chain have been largely
overlooked. For the few studies considering HWSFs along

with 2.5D/3D integration for protection at runtime (Table 1),
recall that their security promises are most often still subject
to the design and manufacturing of the whole chip and the
trust—or rather lack thereof—into the related facilities, e.g.,
as it is the self-declared case with [27]. Therefore, we argue
that a comparative study of ours with prior art is neither
meaningful nor practical and, hence, not provided here.

6 CONCLUSIONS AND FUTURE WORK

We demonstrated a hardware security concept that provides
a stringent physical separation, directly at the system level,
between untrusted commodity components and trusted
security-enforcing components. Our concept is in notable
contrast to prior art where HWSFs are embedded monolith-
ically in the same 2D IC as all other untrusted components
and, thus, become inevitably subject to the trustworthiness
of the design and manufacturing stages of that 2D IC.

For the first time, our architecture, dubbed ISEA, uses an
active interposer as physically separate 2.5D root of trust,
encompassing all proposed HWSFs and the system-level
interconnect fabric. ISEA is based on stringent policy-based
verification of every bus transaction, and serves to protect
the system from various software- or hardware-emanating
attacks. We provide the license-free parts of our proof-of-
concept implementation, which is based on the Cortex-M0
core and the AHB-Lite bus system by ARM, in [38].

Our work establishes trustworthy computation in the
face of untrusted commodity components integrated into
a larger system, while maintaining the good economics of
outsourced supply chains. In fact, the security-enforcing
vendor only has to focus on the HWSFs and can integrate
commodity chiplets as needed, while the system-level se-
curity remains intact even in the presence of any malicious
behavior introduced by such chiplets. We believe that ISEA
empowers secure computation by construction, while main-
taining scalability and flexibility for various systems.

ISEA was tested at hardware simulation level under
various threat scenarios and conceptionally demonstrated
to offer robust security from malicious activities. Next, using
our proposed, commercial-grade 2.5D physical-design flow,
we explored the practical scenario of integrating hard-IP
chiplets on an active interposer, with different technology
nodes used for chiplets and the interposer.

For future work, we plan to extend ISEA for other system
implementations, in particular with RISC-V cores. We also
plan for system-level software implementation and simula-
tion of ISEA, e.g., using gem5. We also plan to leverage our
scheme for multi-party computation which, by definition,
requires a root of trust for system-spanning security. More-
over, we plan to apply and study the notions of redundant
computation and majority voting for critical applications.

In the longer term, we envision a holistic 2.5D root of
trust, where we see the active interposer being augmented
with side-channel sensors, e.g., to track power consumption
of individual chiplets. As such, we would seek to track
malicious activities which are more stealthy and refrain
from targeting directly at system-level memory data.

14 IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, MONTH 202X

ACKNOWLEDGMENTS

This work was supported in part by the Center for Cyber
Security at NYU New York/Abu Dhabi (NYU/NYUAD)
and by the NYUAD REF scheme under grant RE218. The
work of S. Patnaik was supported by the Global Ph.D.
Fellowship at NYU/NYUAD.

REFERENCES

[1] S. Bhunia, S. Ray, and S. Sur-Kolay, Eds., Fundamentals of IP and
SoC Security. Springer, 2017.

[2] J. Knechtel, S. Patnaik, and O. Sinanoglu, “Protect your chip
design intellectual property: An overview,” in Proc. Conf. Omni-
Layer Intell. Sys., 2019, pp. 211–216.

[3] K. Yang, M. Hicks, Q. Dong, T. Austin, and D. Sylvester, “A2:
Analog malicious hardware,” in Proc. Symp. Sec. Priv., 2016, pp.
18–37.

[4] M. Schwarz et al., “ZombieLoad: Cross-privilege-boundary data
sampling,” in Proc. Comp. Comm. Sec., 2019, pp. 753–768.

[5] P. Maene, J. Götzfried, R. de Clercq, T. Müller, F. Freiling, and
I. Verbauwhede, “Hardware-based trusted computing architec-
tures for isolation and attestation,” Trans. Comp., vol. 67, no. 3,
pp. 361–374, 2018.

[6] A. Basak, S. Bhunia, T. Tkacik, and S. Ray, “Security assurance for
system-on-chip designs with untrusted IPs,” Trans. Inf. Forens. Sec.,
vol. 12, no. 7, pp. 1515–1528, 2017.

[7] X. Wang, Y. Zheng, A. Basak, and S. Bhunia, “IIPS: Infrastructure
IP for secure SoC design,” Trans. Comp., vol. 64, no. 8, pp. 2226–
2238, 2015.

[8] R. S. Wahby, M. Howald, S. Garg, and M. Walfish, “Verifiable
ASICs,” Proc. Symp. Sec. Priv., pp. 759–778, 2016.

[9] C. Liu, J. Rajendran, C. Yang, and R. Karri, “Shielding heteroge-
neous MPSoCs from untrustworthy 3PIPs through security-driven
task scheduling,” Trans. Emerg. Top. Comp., vol. 2, no. 4, pp. 461–
472, 2014.

[10] L. Fiorin, G. Palermo, S. Lukovic, V. Catalano, and C. Silvano,
“Secure memory accesses on networks-on-chip,” Trans. Comp.,
vol. 57, no. 9, pp. 1216–1229, 2008.

[11] J. J. Rajendran, O. Sinanoglu, and R. Karri, “Building trustwor-
thy systems using untrusted components: A high-level synthesis
approach,” Trans. VLSI Syst., vol. 24, no. 9, pp. 2946–2959, 2016.

[12] V. Mavroudis, A. Cerulli, P. Svenda, D. Cvrcek, D. Klinec, and
G. Danezis, “A touch of evil: High-assurance cryptographic hard-
ware from untrusted components,” in Proc. Comp. Comm. Sec.,
2017, pp. 1583–1600.

[13] J. Lee et al., “Hacking in darkness: Return-oriented programming
against secure enclaves,” in Proc. USENIX Sec. Symp., 2017, pp.
523–539.

[14] O. Bronchain, L. Dassy, S. Faust, and F.-X. Standaert, “Implement-
ing Trojan-resilient hardware from (mostly) untrusted components
designed by colluding manufacturers,” in Proc. Attacks Sol. Hardw.
Secur., 2018, pp. 1–10.

[15] J. Knechtel, O. Sinanoglu, I. A. M. Elfadel, J. Lienig, and C. C. N.
Sze, “Large-scale 3D chips: Challenges and solutions for design
automation, testing, and trustworthy integration,” Trans. Sys. LSI
Des. Method., vol. 10, pp. 45–62, 2017.

[16] M. M. Sabry Aly et al., “The N3XT approach to energy-efficient
abundant-data computing,” Proc. IEEE, vol. 107, no. 1, pp. 19–48,
2019.

[17] W. Gomes et al., “Lakefield and mobility compute: A 3D stacked
10nm and 22FFL hybrid processor system in 12×12mm2, 1mm
package-on-package,” in Proc. Int. Sol.-St. Circ. Conf., 2020, pp.
144–146.

[18] J. H. Lau, “The most cost-effective integrator (TSV interposer) for
3D IC integration system-in-package (SiP),” in Proc. InterPACK,
2011.

[19] D. Stow, Y. Xie, T. Siddiqua, and G. H. Loh, “Cost-effective design
of scalable high-performance systems using active and passive
interposers,” in Proc. Int. Conf. Comp.-Aided Des., 2017, pp. 728–
735.

[20] P. Vivet et al., “A 220GOPS 96-core processor with 6 chiplets
3D-stacked on an active interposer offering 0.6ns/mm latency,
3Tb/s/mm2 inter-chiplet interconnects and 156mW/mm2 @ 82%-
peak-efficiency DC-DC converters,” in Proc. Int. Sol.-St. Circ. Conf.,
2020, pp. 46–48.

[21] J. Kim et al., “Architecture, chip, and package co-design flow for
2.5D IC design enabling heterogeneous IP reuse,” in Proc. Des.
Autom. Conf., 2019, pp. 1–6.

[22] C. C. Lee et al., “An overview of the development of a GPU with
integrated HBM on silicon interposer,” in Proc. Elec. Compon. Tech.
Conf., 2016.

[23] P. Dorsey, “Xilinx stacked silicon interconnect technology
delivers breakthrough FPGA capacity, bandwidth, and power
efficiency,” Xilinc, Inc., Tech. Rep., 2010. [Online]. Available: https:
//www.xilinx.com/support/documentation/white_papers/
wp380_Stacked_Silicon_Interconnect_Technology.pdf

[24] S. Takaya et al., “A 100GB/s wide I/O with 4096b TSVs through
an active silicon interposer with in-place waveform capturing,” in
Proc. Int. Sol.-St. Circ. Conf., 2013, pp. 434–435.

[25] G. Hellings et al., “Active-lite interposer for 2.5 & 3D integration,”
in Proc. Symp. VLSI Circ., 2015, pp. T222–T223.

[26] D. Velenis, M. Detalle, E. J. Marinissen, and E. Beyne, “Si inter-
poser build-up options and impact on 3D system cost,” in Proc.
3D Sys. Integ. Conf., 2013, pp. 1–5.

[27] J. Valamehr et al., “A 3-D split manufacturing approach to trust-
worthy system development,” Trans. Comp.-Aided Des. Integ. Circ.
Sys., vol. 32, no. 4, pp. 611–615, 2013.

[28] Y. Xie, C. Bao, and A. Srivastava, “Security-aware 2.5D integrated
circuit design flow against hardware IP piracy,” Computer, vol. 50,
no. 5, pp. 62–71, 2017.

[29] F. Imeson, A. Emtenan, S. Garg, and M. V. Tripunitara, “Securing
computer hardware using 3D integrated circuit (IC) technology
and split manufacturing for obfuscation,” in Proc. USENIX Sec.
Symp., 2013, pp. 495–510.

[30] C. Yan, J. Dofe, S. Kontak, Q. Yu, and E. Salman, “Hardware-
efficient logic camouflaging for monolithic 3D ICs,” Trans. Circ.
Sys., vol. 65, no. 6, pp. 799–803, 2018.

[31] S. Patnaik, M. Ashraf, O. Sinanoglu, and J. Knechtel, “A modern
approach to IP protection and trojan prevention: Split manufac-
turing for 3D ICs and obfuscation of vertical interconnects,” Trans.
Emerg. Top. Comp., vol. Early Access, 2019.

[32] J. Knechtel and O. Sinanoglu, “On mitigation of side-channel
attacks in 3D ICs: Decorrelating thermal patterns from power and
activity,” in Proc. Des. Autom. Conf., 2017, pp. 12:1–12:6.

[33] C. Bao and A. Srivastava, “Reducing timing side-channel informa-
tion leakage using 3D integration,” Trans. Dependable Sec. Comp.,
vol. 16, no. 4, pp. 665–678, 2019.

[34] D. S. Green. (2016) Common heterogeneous integra-
tion and IP reuse strategies (CHIPS). DARPA. [On-
line]. Available: https://www.darpa.mil/program/common-
heterogeneous-integration-and-ip-reuse-strategies

[35] J. Yin et al., “Modular routing design for chiplet-based systems,”
in Proc. Int. Symp. Comp. Archit., 2018, pp. 726–738.

[36] (2019, July) Intel unveils new tools in its
advanced chip packaging toolbox. Intel. [On-
line]. Available: https://newsroom.intel.com/news/intel-
unveils-new-tools-advanced-chip-packaging-toolbox/

[37] I. Akgun, J. Zhan, Y. Wang, and Y. Xie, “Scalable memory fabric
for silicon interposer-based multi-core systems,” in Proc. Int. Conf.
Comp. Des., 2016, pp. 33–40.

[38] (2020) The HDL framework for our 2.5D root of trust. DfX
NYUAD. [Online]. Available: https://github.com/DfX-NYUAD/
2.5D_ROT

[39] R. J. Masti, D. Rai, A. Ranganathan, C. Müller, L. Thiele, and
S. Capkun, “Thermal covert channels on multi-core platforms,”
in Proc. USENIX Sec. Symp., 2015, pp. 865–880.

[40] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and coun-
termeasures: the case of AES,” in Cryptographers’ Track at the RSA
Conference. Springer, 2006, pp. 1–20.

[41] K. Murdock, D. Oswald, F. D. Garcia, J. Van Bulck, D. Gruss, and
F. Piessens, “Plundervolt: Software-based fault injection attacks
against Intel SGX,” in Proc. Symp. Sec. Priv., 2020.

[42] E. Brier, C. Clavier, and F. Olivier, “Correlation power analysis
with a leakage model,” Proc. Cryptogr. Hardw. Embed. Sys., vol.
3156, pp. 16–29, 2004.

[43] Y. Lyu and P. Mishra, “Efficient test generation for Trojan detection
using side channel analysis,” in Proc. Des. Autom. Test Europe, pp.
408–413.

[44] R. S. Chakraborty, F. Wolff, S. Paul, C. Papachristou, and S. Bhunia,
“MERO: A statistical approach for hardware Trojan detection,” in
Proc. Cryptogr. Hardw. Embed. Sys., 2009, pp. 396–410.

NABEEL et al.: 2.5D ROOT OF TRUST: SECURE SYSTEM-LEVEL INTEGRATION OF UNTRUSTED CHIPLETS 15

[45] A. Nguyen-Tuong, D. Evans, J. C. Knight, B. Cox, and J. W.
Davidson, “Security through redundant data diversity,” in Proc.
Int. Conf. Depend. Sys. Networks, 2008, pp. 187–196.

Mohammed Nabeel is a Chip Design Engineer
from India. He received his Bachelors degree in
electrical and electronics engineering from Na-
tional Institute of Technology–Calicut, India.

Mr. Nabeel is currently working as a Research
Engineer at Center for Cyber Security at New
York University Abu Dhabi (CCS-NYUAD). Apart
from working on research in the field of hardware
security, he also focuses on implementing and
prototyping the research ideas in Chip. He has
around 12 years of industry experience in chip

design – specialized in Micro architecture, protocol know-how, RTL
design, Synthesis, Static Timing Analysis and post silicon bring up.
Prior to joining CCS-NYUAD, he worked at Texas Instruments, where he
worked on chips targeted for IoT and Automotive and prior to that was
with Qualcomm, where he worked on chips targeted for mobile phones
and data cards. He has around 10 conference and journal papers and 1
issued US patent.

Mohammed Ashraf received the bachelor’s de-
gree in electronics and telecommunication engi-
neering from the College of Engineering Trivan-
drum, Thiruvananthapuram, India, in 2005.

He is a Senior Physical Design Engineer from
India. He carries an experience of ten years
in the VLSI industry. He has worked with vari-
ous multinational companies like NVIDIA Graph-
ics, Santa Clara, CA, USA, Advanced Micro
Devices, Santa Clara, and Wipro Technologies,
Bengaluru, India. He worked also with Dubai

Circuit Design, Dubai Silicon Oasis, Dubai, United Arab Emirates. He is
currently a Research Engineer with the Center for Cyber Security, New
York University Abu Dhabi, United Arab Emirates. His work focus on the
Physical Design/Implementation of the ARM Cortex M0 processor and
its four secure variants.

Satwik Patnaik (Graduate Student Member,
IEEE) received the B.E. degree in electronics
and telecommunications from the University of
Pune, India, and the M.Tech. degree in computer
science and engineering with a specialization in
VLSI design from the Indian Institute of Infor-
mation Technology and Management, Gwalior,
India. He is currently pursuing the Ph.D. de-
gree with the Department of Electrical and Com-
puter Engineering, Tandon School of Engineer-
ing, New York University, Brooklyn, NY, USA.

He is also a Global Ph.D. Fellow with New York University Abu Dhabi,
United Arab Emirates. His current research interests include hardware
security, trust and reliability issues for CMOS and emerging devices with
particular focus on low-power VLSI Design.

Mr. Patnaik received the Bronze Medal in the Graduate Category at
the ACM/SIGDA Student Research Competition held at ICCAD 2018,
and the Best Paper Award at the Applied Research Competition held in
Conjunction With Cyber Security Awareness Week, in 2017.

Vassos Soteriou (Senior Member, IEEE) re-
ceived the B.S. and Ph.D. degrees in electrical
engineering from Rice University, Houston, TX,
in 2001, and Princeton University, Princeton, NJ,
in 2006, respectively. He is currently an Asso-
ciate Professor at the Department of Electrical
Engineering, Computer Engineering and Infor-
matics at the Cyprus University of Technology.
He is a recipient of a Best Paper Award at the
2004 IEEE International Conference on Com-
puter Design. His research interests lie in high-

performance computing, multicore computer architectures, and on-chip
networks.

Ozgur Sinanoglu (Senior Member, IEEE) re-
ceived the first B.S. degree in electrical and elec-
tronics engineering and the second B.S. degree
in computer engineering from Boğaziçi Univer-
sity, Istanbul, Turkey, in 1999, and the M.S. and
Ph.D. degrees in computer science and engi-
neering from the University of California at San
Diego, CA, USA, in 2001 and 2004, respectively.

He is a Professor of electrical and computer
engineering with New York University Abu Dhabi
(NYU Abu Dhabi), United Arab Emirates. He has

industry experience with TI, Dallas, TX, USA, IBM, Armonk, NY, USA,
and Qualcomm, San Diego, CA, USA. He has been with NYU Abu Dhabi
since 2010, where he is the Director of the Design-for-Excellence Lab.
His recent research in hardware security and trust is being funded by
U.S. National Science Foundation, U.S. Department of Defense, Semi-
conductor Research Corporation, Intel Corp, and Mubadala Technology.
His research interests include design-for-test, design-for-security, and
design-for-trust for VLSI circuits, where he has more than 180 confer-
ence and journal papers, and 20 issued and pending U.S. Patents. He
has given more than a dozen tutorials on hardware security and trust in
leading CAD and test conferences, such as DAC, DATE, ITC, VTS, ETS,
ICCD, and ISQED.

Prof. Sinanoglu won the IBM Ph.D. Fellowship Award Twice during
his Ph.D. He is also the recipient of the Best Paper Awards at IEEE
VLSI Test Symposium 2011 and the ACM Conference on Computer
and Communication Security 2013. He was a (Guest) Associate Editor
for the IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SE-
CURITY, the IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF
INTEGRATED CIRCUITS AND SYSTEMS, the ACM Journal on Emerging
Technologies in Computing Systems, the IEEE TRANSACTIONS ON
EMERGING TOPICS IN COMPUTING, Microelectronics Journal (Else-
vier), the Journal of Electronic Testing: Theory and Applications, and
IET Computers and Digital Techniques journals. He is serving as the
Track/Topic Chair or Technical Program Committee Member in about 15
conferences.

Johann Knechtel (Member, IEEE) received the
M.Sc. degree in Information Systems Engineer-
ing (Dipl.-Ing.) in 2010 and the Ph.D. degree
in Computer Engineering (Dr.-Ing., summa cum
laude) in 2014, both from TU Dresden, Germany.
He is a Research Scientist with New York Uni-
versity Abu Dhabi, United Arab Emirates. From
2015 to 2016, he was a Postdoctoral Researcher
with the Masdar Institute of Science and Tech-
nology, Abu Dhabi; from 2010 to 2014, he was a
Ph.D. Scholar and Member with the DFG Grad-

uate School on “Nano- and Biotechnologies for Packaging of Electronic
Systems” hosted at TU Dresden; in 2012, he was a Research Assistant
with the Chinese University of Hong Kong, Hong Kong; and in 2010,
he was a Visiting Research Student with the University of Michigan
at Ann Arbor, MI, USA. His research interests cover VLSI physical
design automation, with particular focus on emerging technologies and
hardware security. He has (co-)authored around 50 publications.

