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Hardware Security Basics

ATTACK
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Hardware Security Basics

Hardware Itself Also at Risk
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Hardware Security Basics

A Note on Trojans

 Unlikely inserted by foundries — fatal business consequences

e  More likely:
— Untrustworthy 3rd party IP
— Adversarial designers, hacking of design environment
— Distribution and deployment; see also Snowden papers or “Big Hack”

4 Servers inside data
centers operated by
dozens of companies.
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(CMOS) Countermeasures Against Attacks on Hardware

 |P protection
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Hardware Security Basics

(CMOS) Countermeasures Against Attacks on Hardware

IP protection: logic locking, camouflaging, split manufacturing

Trojan defense: detection, mitigation
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Hardware Security Basics

(CMOS) Countermeasures Against Attacks on Hardware

e |P protection: logic locking, camouflaging, split manufacturing
 Trojan defense: detection, mitigation

e Physically-unclonable functions (PUFs): fingerprinting, challenge-response authentication
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(CMOS) Countermeasures Against Runtime Attacks

 Masking against side-channel attacks
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(CMOS) Countermeasures Against Runtime Attacks

Masking against side-channel attacks Front side a
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Beyond-CMOS Technologies for Hardware Security
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Spintronics

Basics of Spintronics

 Besides electronic charge, spin of electrons is leveraged for computation and memory

e Switching process is non-volatile, magnetoelectric, and subject to phenomena like spin-
transfer torque (STT)

 Implemented typically as stack of heavy metals, ferromagnets, or oxide structures — can be
made compatible with CMOS

A I Heavy metal
T<y " Metal
X - I Free magnet
Inputs ,. et ! Insulator

9, Out | I Fixed magnet |
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Spintronics

Basics of Spintronics

 In comparison to CMOQOS, spintronic devices can offer lower power consumption, built-in
memory functionality, built-in reconfigurability, and better scalability

 Notable efforts by Intel, UC Berkeley, and Berkeley Lab

e Reconfigurable logic, probabilistic computing, and in-memory computing
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Spintronics for Hardware Security

Randomness, Process Polymorphic Behaviour, Resilience Against Reverse Resilience Against Separation of Trusted and
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Spintronics

Spintronics for Hardware Security

e Dynamic camouflaging as novel paradigm for IP protection
e Polymorphic switching, non-CMOS switching mechanism to mitigate side-channel leakage
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Memristors

Basics of Memristors

e Memory resistor, another fundamental circuit element
e Retain an internal resistive state according to the history of voltage or current applied
e For some, nonlinear response (pinched hysteresis loops)

e R&D considering various materials and arrangements like titanium dioxide — can be made
compatible with CMOS
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Memristors

Basics of Memristors

* In-memory computing, neuromorphic computing, and reconfigurable logic
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Memristors for Hardware Security
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Memristors

Memristors for Hardware Security

e Nonlinear variations for PUFs

e Secure key management, e.g., for locking b
e |P protection via by polymorphic behavior 7 \ s
and separation of components w | ] o ed
Row selection N
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CNT-FETs

Basics of Carbon Nanotube Transistors

e Carbon nanotubes (CNTs): one or more rolled-up layers of graphene, the planar
arrangement of single-layer carbon atoms in 2D honeycomb-like structures

e Either metallic conductors or semiconductors, depending on structure

e Qutstanding electrical, physical, and thermal properties
— Due to the strong bonds between C atoms
— Individual metallic CNTs can hold current densities more than 1,000 times greater than copper

e Used forinterconnects and transistors

CNT
i diameter:
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' lithographic

High-k gate CNT pitch

dielectric



CNT-FETs

Basics of Carbon Nanotube Transistors
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Carbon Nanotubes for Hardware Security
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CNT-FETs

Carbon Nanotubes for Hardware Security

e Manufacturing variability for PUFs and TRNGs

 |P protection by reconfigurablity
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NW-FETs

Basics of Nanowire Transistors

e Nano-scaled and semiconductive wires as transistor channel

e Somewhat similar to CNT-FETs, but allow for finer control of desired properties (whereas
CNT-FETs offer better performance) 2
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e Sensing applications, flexible electronics,
and reconfigurable logic
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Nanowire Transistors for Hardware Security
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NW-FETs

Nanowire Transistors for Hardware Security

e Controllable ambipolarity and polymorphic behavior for IP protection
e Plasmonic interaction for tagging
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2.5D, 3D

Basics of 3D and 2.5D Integration

e Shorter, vertical interconnects: power consumption, delay, bandwidth — “More Moore”

e Separate dies: heterogeneous and larger systems, yield — “More than Moore”
TSV-based 3D IC
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2.5D, 3D

Basics of 3D and 2.5D Integration
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2.5D, 3D

Conclusion

3D and 2.5D Integration for Hardware Security
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2.5D, 3D

3D and 2.5D for Split Manufacturing

e Physical separation into trusted and untrusted parts

e More flexible: system-level splitting into multiple dies
e More practical: FEOL and BEOL processing uninterrupted (except for monolithic 3D)

TSV-based 3D IC
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2.5D, 3D

3D and 2.5D for Split Manufacturing, Camouflaging

e Split manufacturing of 3D NoC: flexible, generic, obfuscation of system-level interconnects
e Camouflaging of monolithic 3D cells: superior layout cost compared to 2D camouflaging
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2.5D, 3D

3D and 2.5D for Split Manufacturing & Camouflaging

Only trusted BEOL and resilient BEOL materials required
Thwarts both malicious foundries and end-user

Reasonable layout cost
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2.5D, 3D

3D and 2.5D for Runtime Security: Monitoring
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3D and 2.5D for Runtime Security: Monitoring

i . TSV + WLCSP = Nearly Undetectable Implant
e Physical separation

e Still, beware 3rd parties involved
for integration

Unmodified

3-D Control
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implant
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3D and 2.5D for Runtime Security: Monitoring

e Physical separation and dedicated hardware for root of trust

Runtime monitoring
of system-level
communication

Nabeel et al., TC, 2020
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2.5D, 3D

3D and 2.5D for Runtime Security: Monitoring

Physical separation and dedicated hardware for root of trust
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2.5D, 3D

3D and 2.5D for Runtime Security: Physical Protection
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2.5D, 3D

3D and 2.5D for Runtime Security: Physical Protection

e Physical enclosure, “cage all around”
e Could also block side-channel emissions and hinder fault injection
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Conclusion

Notes on Challenges for Beyond-CMOS Hardware Security

e Establish closer links between communities
e Joint (re-)definition of security metrics
Jranslation” especially for technology-specific aspects, e.g., PUFs
 Joint reconsideration of threat models
e Technology exploration hand in hand with development of security schemes
e Most technologies are CMOS compatible/hybrid — identification of “weakest link in chain”
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Hardware Security for and beyond CIVIOS Technology
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