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Abstract—Split manufacturing of integrated circuits means
to delegate the front-end-of-line (FEOL) and back-end-of-line
(BEOL) parts to different foundries, in order to prevent overpro-
duction, intellectual property (IP) piracy, or targeted insertion
of hardware Trojans (i.e., threats arising from adversaries in
the FEOL foundry). This paper challenges the security promise
of split manufacturing by formulating various layout-level place-
ment and routing hints as vector-based and image-based features
that enable a sophisticated deep neural network (DNN), which
can infer the missing BEOL connections with high accuracy.
Compared with the network-flow attack [2], we achieve on aver-
age 1.21× and 1.12× of their correct connection rate (CCR; the
higher, the better) when splitting after M1 and M3, respectively,
with less than 1% of their runtime (across the same set of ISCAS-
85 and ITC-99 benchmarks). Compared with [3], ours reduces
the candidate list (the smaller, the better) by 47% with only 1%
loss of accuracy, and we further achieve an average CCR of 2.2×
of that of [3]. Aside from these superior results, we propose a ran-
domized, routing-blockage-centric defense strategy to escalate
the resilience against our and other attacks. Our defense strategy,
which can be integrated into any commercial design flow, leads
on average to 22.78 pp (percentage points) degradation in CCR
when compared with unprotected layouts, while inducing only
3.3% and 3.2% overheads on power and timing, respectively,
within the same die outlines (i.e., zero area cost). The source
code of our heterogeneous feature extraction is available at
https://github.com/cuhk-eda/split-extract, and the source code of
our DNN is available at https://github.com/cuhk-eda/split-attack.

Index Terms—Split manufacturing, Hardware security, IP
protection, Routing perturbation, Deep learning, Feature extrac-
tion, Very Large Scale Integration (VLSI)
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HARDWARE becomes as vulnerable as software with the
widespread globalization of design, synthesis, fabrica-

tion, and distribution of integrated circuits (ICs). Fabless de-
sign houses rely on offshore foundries for cost-effective access
to advanced technology nodes, which enables various attack
avenues on intellectual property (IP) for those outsourced
foundries [4]. For example, malicious suppliers with complete
knowledge of the exposed GDSII layouts can steal the designs
and the underlying IP [5]. Attackers may also counterfeit
defective ICs [6] or modify designs maliciously [7].

The IARPA agency advocated split manufacturing to safe-
guard chip designs from potentially malicious foundries [8].
An untrusted, high-end foundry fabricates the FEOL (i.e.,
the device layer and a few lower metal layers), whereas
a trusted facility, which is low-end and possibly even in-
house, integrates the BEOL (i.e., the higher metal layers) on
top of the FEOL, all without noticeable impact on circuit
performance [8], [9]. The untrusted foundries cannot get
control of the full design while the fabless design houses can
still benefit from access to the latest technology node.

However, splitting physical-design layouts as-is into FEOL
and BEOL parts may fall short in terms of security. Tradi-
tional, security-oblivious design tools tend to place intercon-
nected components close to each other in the FEOL layers
and further wire them up through the BEOL layers using
short paths [10], [11]. While delivering effective designs in
terms of power, performance, and area, such an approach
leads to some information leakage for the scenario of split
manufacturing, where the structural information gathered from
the FEOL layers can be utilized to infer the missing BEOL
connections. This concept is known as proximity attack [12]
and selected prior art for attacks and defense strategies is
reviewed in Sec. II-A.

We believe (and demonstrate) that deep learning (DL)
is a good match for attacking split manufacturing. Among
other applications, DL has been used to increase the ef-
fectiveness and efficiency in gaming [13], object recog-
nition [14], routability prediction [15], and design-for-
manufacturability [16]. However, we caution that DL would
have to handle a large variety of data for attacking split man-
ufacturing. More specifically, vector-based data are ranging,
e.g., from signed gate displacements to unsigned wirelengths
and from integral pin counts to floating-point pin capacitances.
Additionally, layout images can be used to encode routing
segments and their directions as well as congestions. Such
image-based data naturally constitute rich information that
can be useful for an advanced attack. A limitation of current
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neural network architectures is that they can only handle either
vector- or image-based features, but not both types together.
Accordingly, one challenge for our work is to combine vector-
based and image-based features in a unified framework. An-
other limitation is that traditional two-class classifiers would
only predict each possible BEOL connection’s probability but
not represent the physical-design reality that each sink pin
is assigned to exactly one driver/source. Accordingly, when
selecting the source with the largest predicted connection
probability, traditional classifiers can be easily misled by
outlying negative samples’ predictions.

In this paper, we leverage DL to learn the characteristics
of IC layouts thoroughly, exemplarily synthesized using the
NanGate 45 nm Open Cell Library [17]. To the best of our
knowledge, this is the first DL-based attack on split man-
ufacturing that provides better results than the state-of-the-
art, non-learning-based attacks [2]. Our methods also resolve
the imbalance problem encountered by another learning-based
attack [3], which has to use the same number of negative and
positive samples. The primary contributions of our work are
summarized as follows:
• We leverage deep learning (DL) for attacking split man-

ufacturing. Using TensorFlow 2.1, we design and train
a sophisticated deep neural network (DNN) architecture,
which can predict the missing BEOL connections for an
unknown FEOL layout with high accuracy.

• Our neural network makes use of vector-based and
image-based layout features simultaneously. The feature
structure is compatible with a wide range of designs
while saving memory consumption and runtime.

• The proposed softmax regression loss allows our attack to
directly and effectively select the most probable BEOL
connection among the relevant candidates without suf-
fering from an imbalance between positive and negative
samples (as traditional classifiers would do).

• We further propose a randomized, routing-blockage-
centric defense strategy which can be easily integrated
into commercial design flows. The notion of this defense
strategy is to prevent attackers from learning it, which we
demonstrate, and we also demonstrate that it is effective
against non-learning-based attacks.

The rest of the paper is organized as follows. Section II re-
views selected prior art, outlines the threat model and provides
the problem formulation. Section III describes our features
for the DL attack. In Sec. IV, we illustrate the architecture
and configuration of the proposed DNN, followed by the
obfuscation strategy described in Sec. V. The effectiveness of
both attack and defense are verified in Sec. VI. Section VII
concludes the paper.

II. PRELIMINARIES

A. Prior Art and Limitations

Rajendran et al. [12] demonstrated the first naı̈ve proximity
attack, where they leveraged the fact that interconnected
modules are typically placed closed to each other and non-
formation of combinational loops. The attack performed rea-
sonably well for hierarchical designs with a few nets between

the modules but showed limited success for flat designs and
large layouts. Wang et al. [2] proposed an enhanced proximity
attack based on a network-flow model. While constructing a
flow graph, they set the weighted sum of the proximity on
preferred and non-preferred routing directions as the edge
cost and adopt the driver capacitance as the edge capacity.
However, the network-flow formulation is relaxed to the
naı̈ve proximity attack once cell libraries have loose capac-
itance constraints. The attack also performs iterative edge
removal when combinational loops occurred during recovery
of the BEOL connections; this iterative work mode causes
significant runtime. Zeng et al. [3] analyzed the security
of split manufacturing on industrial designs with random-
forest classifiers. However, their classifiers do not predict
the BEOL connections directly, but generate only a list of
candidates, which is often of considerable size. For instance,
when attacking layouts split after metal layer 4 (M4 for short),
their most successful classifier provides, on average several
hundreds or even thousands of candidates for each broken
connection; it can become practically impossible to retrieve
all correct connections among those candidates. Additional
details for prior work can be found in [4].

According to the various attack methods, several defense
algorithms were proposed to escalate the security of split
designs. Most defenses are focused on creating more candi-
dates in the neighborhood of broken connections to complicate
the proximity attack. Sengupta et al. [18] colored cells by
connection or by type and placed cells with the same color
into the same fence, seeking to decorrelate placement and
connectivity. Magaña et al. [19] first added artificial routing
blockages to the designated split layer after global routing and
then performed global routing again, to make the routing tools
elevate more wires over the split layer. However, their scheme
can control the length/size of blockages only at the lower-left
corner of each routing-grid bin, limiting the solution space for
routing perturbation. Wang et al. [2] developed a security-
driven placement-perturbation algorithm by obfuscating the
cell placement based on the layer assignment after global
routing. However, their placement perturbation caused large
wirelength overheads.

B. Threat Model
Consistent with prior art [2], [3], we assume that the

attacker has access to the full design information of the FEOL
layers. Hence, the attacker can identify the gates and pins, the
related FEOL routing, and the resulting but incomplete netlist.
The attacker also knows the maximum load capacitances
(from the cell library) and can estimate an upper bound for the
delay. Further, consistent with most prior works, we assume
that the attack occurs while chips are being fabricated. We
acknowledge [20], where an oracle was leveraged to assist the
attack on split manufacturing, but here we adopt the classical,
stronger threat model where the chip is not available yet.
Hence, oracle access is not available for the attacker. Finally,
the attacker has a database of layouts generated similarly to
the one under attack.

An attacker’s objective in the untrusted FEOL foundry
is to decipher the missing BEOL interconnects solely from
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Fig. 1 Terms for learning on split manufacturing layouts.
Examples of virtual pin pairs (VPPs) are shown by dashed
arrows pointing from sink fragments to source fragments.

the available FEOL information. The corresponding goal is
to reconstruct the design and ultimately pirate the chip IP,
overproduce the chip, or insert targeted hardware Trojans.

C. Terminology and Problem Formulation

Split layer refers to the top-most FEOL layer, while virtual
pins are vias manufactured to connect the FEOL with the
BEOL [3]. During split manufacturing, fragments are con-
nected parts of FEOL wires, holding at least one virtual pin
in the split layer. There are two different types of fragments,
as shown in Fig. 1:
• Source fragment: a driver/source along with fragments

which are routed up until and within the split layer;
• Sink fragment: a fragment routed within the split layer

and down towards sink pin(s). For multi-fanout nets, the
sink pins may be routed together in the FEOL as one
sink fragment or separately as several sink fragments.

Given are a set of m sink fragments, each of which has
c1, c2, . . . , cm sink pins, and a set of source fragments; all
is easy to extract from the FEOL layout. Virtual pin pairs
(VPPs) are mappings between virtual pins in sink fragments
and virtual pins in source fragments. A VPP that is truly
connected in the BEOL is called a positive VPP, whereas one
that is not connected is called a negative VPP. The connection
prediction problem is to select a VPP for each sink fragment
maximizing the correct connection rate (CCR) which is the
rate of sink pins that are successfully restored [2]:

CCR =

∑m
i=1 cixi∑m
i=1 ci

, (1)

where xi = 1 (0) when a positive (negative) VPP is selected
for the i-th sink fragment. Note that sink pins which do not
belong to any sink fragment are excluded from consideration
by definition, as this part of the design is already fully exposed
in the FEOL. Accordingly, CCR serves well as a measure for
attack effectiveness, but not so much for IP protection.

III. FEATURE EXTRACTION

The BEOL part is only available at training time, where
the true connectivity is extracted to label VPPs as positive or
negative ones. The FEOL part is available for both training
and testing/attacking phases. Hence, all features have to
be extracted from the FEOL part. We propose two feature
categories for our DL attack, namely vector-based and image-
based features. The source code of our feature extraction

is available at https://github.com/cuhk-eda/split-extract. We
explain how to integrate these heterogeneous features into a
unified DNN architecture in Sec. IV.

A. Vector-based Features

1) Distances for VPPs: These features are inspired by the
working essence of design tools, where gates to be connected
are typically placed closer to each other and related wires
are typically routed along the shortest available path [10],
[11]. Still, by the virtues of (a) being able to learn on various
layouts and (b) the joint working of these and all other features
proposed in this work, any deviation patterns from this essence
can be captured as well. This is because all features have been
devised to represent a physical layout in reasonable detail
while remaining agnostic to particular design characteristics.

Following routing principles, the distances for VPPs arising
along the preferred and non-preferred routing directions are
considered separately. To mitigate scaling issues across dif-
ferent layouts used for the same model, instead of measuring
distances by database unit, distances are normalized by the
pitch of the metal tracks in the split layer. All distances are
also duplicated and normalized separately by encoding in the
ratios of the chip width or height, respectively. Therefore,
designs based on different technology nodes and exhibiting
different floorplan shapes and dimensions are made compati-
ble with joint training as well as testing/attack.

2) Number of Sink Pins and Load Capacitance: These
features track the number and total load of sink pins for each
VPP. As we are handling split or incomplete layouts, the load
capacitances can only be defined by two bounds, namely by
• an upper bound: maximum capacitance of the driver, as

derived from the cell library (which is available to the
attacker);

• a lower bound: capacitance of the sink pins connected
within the sink fragment, plus wire capacitances of the
two related source and sink fragments.

3) FEOL Layer Wirelengths and Vias: These features
capture the wirelength contribution in each FEOL metal layer
individually. Contributions are tracked separately for the two
fragments of a VPP. Within each layer, all wire paths of a
fragment are summed up. The number of vias in each FEOL
cut layer is also considered.

4) Driver Delay: For each VPP, we track the driver delay
based on the underlying timing paths. Note that timing paths
obtained from split layouts can only provide lower bounds
for delays, as the paths may be incomplete. Thus, this feature
tends to become more meaningful for higher split layers when
more of the paths are already completed in the FEOL.

B. Image-based Features

For each virtual pin, we represent the routing in the vicinity
as gray-scale layout images. To be able to capture routing
detours, we consider three different scales with the same
image shape but different precisions, as shown in Fig. 2.

There are two properties of the routed wires which will be
encoded in the layout images of a virtual pin: the nets they

https://github.com/cuhk-eda/split-extract


4 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Feature
Image 1

Feature
Image 2

Feature
Image 3
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Fig. 3 Layout image representation.

belong to and the layers they are routed within. Let m be the
number of metal layers in the FEOL. The total number of bits
in a pixel to represent the layout information is 2m, and we
call these bits layer bits. The 2m layer bits are needed because
wires of the same fragment as the virtual pin and wires from
all other fragments are to be represented by different layer
bits; the first m most-significant bits represent the routed wires
of the virtual pin’s fragment while the remaining m least-
significant bits represent the wires of other fragments. Since
wires closer to the BEOL carry more information about the
missing connection, those in higher metal layers are encoded
in more significant bits while those in lower metal layers are
encoded in less significant bits. Vias connecting two layers
are represented in both layer bits. More specifically, a ‘1’ is
assigned to the b-th bit with b = m, . . ., 2m− 1 in a pixel if
the virtual pin’s fragment is routed in metal layer b−m+ 1
in that region. Similarly, a ‘1’ is assigned to the b-th bit with
b = 0, . . . ,m−1 in a pixel if there is some wire or via arising
from other fragments in metal layer b+ 1 of that region.

Fig. 3 shows an example with parts of the image data for a
layout split after M3, i.e., wires in three different FEOL layers.
Routed wires in the six consecutive regions bounded by the
dashed lines are encoded into 2 × 3 pixels. Note that here
we only show the values of the sixth, fifth, and fourth layer
bits at the corner of each region, which together represent an
exemplary virtual pin’s fragment.

This image-based feature extraction for large designs with,
e.g., more than a million fragments, will be time-consuming.
Considering a fragment f , note that constructing a layout
image of fragments other than f means to check which of
all these other fragments hold wires in the nearby regions.
Also note that the information carried by a layout image
of fragment f and the image of fragments other than f is
equivalent to the information carried by the layout image of
f and the layout image of all fragments. Hence, to manage the
computational efforts, we let the m least-significant bits rep-

resent the wires of all fragments instead of other fragments,
i.e., a ‘1’ is assigned to the b-th layer bit when the b + m-
th bit is ‘1’ where b = 0, . . . ,m − 1. Thus, to construct the
image-based features efficiently, we construct a large layout
image for all nets covering the whole die area at the beginning.
Thereafter, when generating a layout image centering any
particular net, we only need to crop that large layout image
to save most of the computational efforts incurred otherwise.
Besides, for feature extraction using t threads, t large layout
images can be constructed simultaneously and in parallel and
then merged together.

IV. DEEP LEARNING FRAMEWORK

In this section, we first describe our strategy of VPP sample
selection for data cleaning. We then elaborate on the DNN
architecture and discuss our proposed SoftMax regression loss
and its advantages. The source code of our DNN is available
at https://github.com/cuhk-eda/split-attack.

A. Sample Selection

Due to an underlying tendency towards imbalanced datasets
and long inference runtime, it is not practical to consider all
possible VPPs, mainly because the correct connections are
very few among all possible ones, which leads to a biased
or inaccurate ML model. For N nets, even in the simplest
scenario where (a) each FEOL wiring fragment holds only
one virtual pin in the split layer and (b) each net is split into
exactly one source and one sink fragment, the sampling size
is already N2, whereas only 1

N samples are true positives.
Thus, based on three criteria discussed next, we select

the n most relevant candidate VPPs for each sink fragment,
irrespective of the number of sink pins in the fragment.

The first is the direction criterion. We apply a looser
criterion than [2] to avoid neglecting some positive VPPs,
based on our observation that wires with non-preferred routing
direction are relatively common in congested designs. For a
VPP (p, q), where p is a virtual pin located at (xp, yp) and q
is a virtual pin located at (xq, yq), if there is a wire segment
between p and (x′p, y

′
p), and q satisfies{

(xq − xp)(x
′
p − xp) ≤ 0, y′p = yp,

(yq − yp)(y
′
p − yp) ≤ 0, x′p = xp,

(2)

we then say the virtual pin p does not rule out virtual pin q,
meaning that the two related fragments might be connected
in the BEOL. Our direction criterion is that a VPP is not
considered as a candidate if and only if the above condition
is not met individually for both of the virtual pins. In other
words, a VPP is only disregarded if we find that neither the
source fragment might be connected to the sink fragment
nor vice versa. As indicated, this is a rather loose criterion,
and particularly helpful to avoid neglecting some positive
VPPs where parts of the related fragments are routed along
non-preferred directions. Note that in case multiple virtual
pins are present within a fragment, the condition is to be
evaluated separately for each virtual pin. Also note that the
final outcome of the direction criterion is independent of the
order between virtual pins p and q; the criterion is symmetric.

https://github.com/cuhk-eda/split-attack


LI et al.: DEEP LEARNING ANALYSIS FOR SPLIT MANUFACTURED LAYOUTS WITH ROUTING PERTURBATION 5

Metal 3
Via 3 (Source)

C
D

A

B Via 3 (Sink)

Fig. 4 Examples for the direction criterion. Except VPP
(B,C), all other VPPs are considered as candidates.

TABLE I Direction Criterion for VPPs in Fig. 4

Virtual Pin p A A B B
Virtual Pin q C D C D

p does not rule out q 3 3 7 3
q does not rule out p 7 3 7 3

Direction Criterion 3 3 7 3

For illustration of this criterion, the exemplary VPPs
in Fig. 4 are evaluated in TABLE I. For example, the wire
of the source fragment connecting to the virtual pin C is
pointing from right to left, while the virtual pin A of the sink
fragment resides further to the right of C, so the condition
in Equation (2) is not met and we cannot say that the source
fragment might be connected to the sink fragment. For the
counterpart evaluation, required to decide on the criterion,
note that the wire of the sink fragmenting connecting to A
is pointing upward, while the virtual pin C is on the same
height as A (i.e., C is just not below A), and the condition
is met. Therefore, the direction criterion is fulfilled, and VPP
(A,C) is still considered as a candidate.

The second criterion is relevance. If the sink and source
fragments have multiple virtual pins, only the VPP(s) with
the shortest distance apart in the routing direction orthogonal
to the preferred direction of the split layer is (are) considered
as candidate(s). This is because metal stacks exhibit an
alternating order for routing preferences and net wirelengths
are restricted to meet timing closure. For example, consider
the preferred routing direction in the split layer is horizontal,
then the preferred direction for the next layer above the split
layer—which is the first layer of the BEOL—is vertical. We
assume that the first layer of the BEOL plays a significant
role for the remaining wiring and, thus, the shortest distances
in its preferred direction are leveraged in this criterion.

The third criterion is distance itself. If the number of VPPs
remaining after considering the relevance criterion is still
greater than n, the VPPs with shorter distance in the preferred
direction of the first BEOL layer have a higher priority to be
selected. Furthermore, if multiple VPPs are tied, the distance
in the non-preferred routing direction is considered as a tie-
breaker for the selection.

B. Model Architecture

For a batch of n VPPs selected for a sink fragment, the
input data for the neural network include the vector-based
features of n selected VPPs, the image-based features of
n source fragments in the related VPPs, and the image-
based features of the sink fragment itself. The output data
are scores for every VPPs in the batch. To handle vector-
and image-based features in the same network, the proposed
neural network illustrated in Fig. 5 first extracts underlying

shared network
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n⇥ 256
<latexit sha1_base64="WoQCfWa7esBSxwhQxitkctQLoRU=">AAAB9XicbVDJSgNBEK2JW4zbqEcvjYngKcwEXI4BLzlGMAskMfR0OkmTnp6hu0YJIf/hRVARr979DG9+iHc7y0ETHxQ83quiql4QS2HQ876c1Mrq2vpGejOztb2zu+fuH1RNlGjGKyySka4H1HApFK+gQMnrseY0DCSvBYOriV+749qISN3gMOatkPaU6ApG0Uq3OUWaKEJuSOHsPNd2s17em4IsE39OskX3++MJAMpt97PZiVgScoVMUmMavhdja0Q1Cib5ONNMDI8pG9Aeb1iqqN3UGk2vHpMTq3RIN9K2FJKp+ntiRENjhmFgO0OKfbPoTcT/vEaC3cvWSKg4Qa7YbFE3kQQjMomAdITmDOXQEsq0sLcS1qeaMrRBZWwI/uLLy6RayPte3r/2s8USzJCGIziGU/DhAopQgjJUgIGGB3iGF+feeXRenbdZa8qZzxzCHzjvP+Hqk7k=</latexit><latexit sha1_base64="aiPDLyEN5jM4LwpiTO1KsjteS7I=">AAAB9XicbVDLTgJBEOz1ifhCPXqZCCaeyC6JjyOJF46YyCOBlcwOszBhdnYz06shhP/w4kFjvPov3vwbB9iDgpV0UqnqTndXkEhh0HW/nbX1jc2t7dxOfndv/+CwcHTcNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbmd+65FrI2J1j+OE+xEdKBEKRtFKDyVFuigibkjl8qrUKxTdsjsHWSVeRoqQod4rfHX7MUsjrpBJakzHcxP0J1SjYJJP893U8ISyER3wjqWK2k3+ZH71lJxbpU/CWNtSSObq74kJjYwZR4HtjCgOzbI3E//zOimGN/5EqCRFrthiUZhKgjGZRUD6QnOGcmwJZVrYWwkbUk0Z2qDyNgRv+eVV0qyUPbfs3XnFai2LIwencAYX4ME1VKEGdWgAAw3P8ApvzpPz4rw7H4vWNSebOYE/cD5/AFhBkRo=</latexit>

n⇥ 256
<latexit sha1_base64="WoQCfWa7esBSxwhQxitkctQLoRU=">AAAB9XicbVDJSgNBEK2JW4zbqEcvjYngKcwEXI4BLzlGMAskMfR0OkmTnp6hu0YJIf/hRVARr979DG9+iHc7y0ETHxQ83quiql4QS2HQ876c1Mrq2vpGejOztb2zu+fuH1RNlGjGKyySka4H1HApFK+gQMnrseY0DCSvBYOriV+749qISN3gMOatkPaU6ApG0Uq3OUWaKEJuSOHsPNd2s17em4IsE39OskX3++MJAMpt97PZiVgScoVMUmMavhdja0Q1Cib5ONNMDI8pG9Aeb1iqqN3UGk2vHpMTq3RIN9K2FJKp+ntiRENjhmFgO0OKfbPoTcT/vEaC3cvWSKg4Qa7YbFE3kQQjMomAdITmDOXQEsq0sLcS1qeaMrRBZWwI/uLLy6RayPte3r/2s8USzJCGIziGU/DhAopQgjJUgIGGB3iGF+feeXRenbdZa8qZzxzCHzjvP+Hqk7k=</latexit><latexit sha1_base64="aiPDLyEN5jM4LwpiTO1KsjteS7I=">AAAB9XicbVDLTgJBEOz1ifhCPXqZCCaeyC6JjyOJF46YyCOBlcwOszBhdnYz06shhP/w4kFjvPov3vwbB9iDgpV0UqnqTndXkEhh0HW/nbX1jc2t7dxOfndv/+CwcHTcNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbmd+65FrI2J1j+OE+xEdKBEKRtFKDyVFuigibkjl8qrUKxTdsjsHWSVeRoqQod4rfHX7MUsjrpBJakzHcxP0J1SjYJJP893U8ISyER3wjqWK2k3+ZH71lJxbpU/CWNtSSObq74kJjYwZR4HtjCgOzbI3E//zOimGN/5EqCRFrthiUZhKgjGZRUD6QnOGcmwJZVrYWwkbUk0Z2qDyNgRv+eVV0qyUPbfs3XnFai2LIwencAYX4ME1VKEGdWgAAw3P8ApvzpPz4rw7H4vWNSebOYE/cD5/AFhBkRo=</latexit>

input vector features input source images input sink image
3⇥3 conv1, 16

<latexit sha1_base64="tfjEIXPZIFjsm5dT4+YOy4UbzHs=">AAAB/XicbVDLSgMxFM34rPU1PnZugq3gQsqkBXVZcNNlBfuAdiiZNNOGZpIhyRTqUPwVNy4Ucet/uPNvTNtZaOuBC4dz7uXee4KYM20879tZW9/Y3NrO7eR39/YPDt2j46aWiSK0QSSXqh1gTTkTtGGY4bQdK4qjgNNWMLqb+a0xVZpJ8WAmMfUjPBAsZAQbK/Xc00qxa1hEdbECiRRjdAXRdc8teCVvDrhKUEYKIEO95351+5IkERWGcKx1B3mx8VOsDCOcTvPdRNMYkxEe0I6lAtuFfjq/fgovrNKHoVS2hIFz9fdEiiOtJ1FgOyNshnrZm4n/eZ3EhLd+ykScGCrIYlGYcGgknEUB+0xRYvjEEkwUs7dCMsQKE2MDy9sQ0PLLq6RZLiGvhO7LhWotiyMHzsA5uAQI3IAqqIE6aAACHsEzeAVvzpPz4rw7H4vWNSebOQF/4Hz+AJUak10=</latexit><latexit sha1_base64="tfjEIXPZIFjsm5dT4+YOy4UbzHs=">AAAB/XicbVDLSgMxFM34rPU1PnZugq3gQsqkBXVZcNNlBfuAdiiZNNOGZpIhyRTqUPwVNy4Ucet/uPNvTNtZaOuBC4dz7uXee4KYM20879tZW9/Y3NrO7eR39/YPDt2j46aWiSK0QSSXqh1gTTkTtGGY4bQdK4qjgNNWMLqb+a0xVZpJ8WAmMfUjPBAsZAQbK/Xc00qxa1hEdbECiRRjdAXRdc8teCVvDrhKUEYKIEO95351+5IkERWGcKx1B3mx8VOsDCOcTvPdRNMYkxEe0I6lAtuFfjq/fgovrNKHoVS2hIFz9fdEiiOtJ1FgOyNshnrZm4n/eZ3EhLd+ykScGCrIYlGYcGgknEUB+0xRYvjEEkwUs7dCMsQKE2MDy9sQ0PLLq6RZLiGvhO7LhWotiyMHzsA5uAQI3IAqqIE6aAACHsEzeAVvzpPz4rw7H4vWNSebOQF/4Hz+AJUak10=</latexit>

3⇥3 conv1, 16
<latexit sha1_base64="tfjEIXPZIFjsm5dT4+YOy4UbzHs=">AAAB/XicbVDLSgMxFM34rPU1PnZugq3gQsqkBXVZcNNlBfuAdiiZNNOGZpIhyRTqUPwVNy4Ucet/uPNvTNtZaOuBC4dz7uXee4KYM20879tZW9/Y3NrO7eR39/YPDt2j46aWiSK0QSSXqh1gTTkTtGGY4bQdK4qjgNNWMLqb+a0xVZpJ8WAmMfUjPBAsZAQbK/Xc00qxa1hEdbECiRRjdAXRdc8teCVvDrhKUEYKIEO95351+5IkERWGcKx1B3mx8VOsDCOcTvPdRNMYkxEe0I6lAtuFfjq/fgovrNKHoVS2hIFz9fdEiiOtJ1FgOyNshnrZm4n/eZ3EhLd+ykScGCrIYlGYcGgknEUB+0xRYvjEEkwUs7dCMsQKE2MDy9sQ0PLLq6RZLiGvhO7LhWotiyMHzsA5uAQI3IAqqIE6aAACHsEzeAVvzpPz4rw7H4vWNSebOQF/4Hz+AJUak10=</latexit><latexit sha1_base64="tfjEIXPZIFjsm5dT4+YOy4UbzHs=">AAAB/XicbVDLSgMxFM34rPU1PnZugq3gQsqkBXVZcNNlBfuAdiiZNNOGZpIhyRTqUPwVNy4Ucet/uPNvTNtZaOuBC4dz7uXee4KYM20879tZW9/Y3NrO7eR39/YPDt2j46aWiSK0QSSXqh1gTTkTtGGY4bQdK4qjgNNWMLqb+a0xVZpJ8WAmMfUjPBAsZAQbK/Xc00qxa1hEdbECiRRjdAXRdc8teCVvDrhKUEYKIEO95351+5IkERWGcKx1B3mx8VOsDCOcTvPdRNMYkxEe0I6lAtuFfjq/fgovrNKHoVS2hIFz9fdEiiOtJ1FgOyNshnrZm4n/eZ3EhLd+ykScGCrIYlGYcGgknEUB+0xRYvjEEkwUs7dCMsQKE2MDy9sQ0PLLq6RZLiGvhO7LhWotiyMHzsA5uAQI3IAqqIE6aAACHsEzeAVvzpPz4rw7H4vWNSebOQF/4Hz+AJUak10=</latexit>

3⇥3 conv1, 16
<latexit sha1_base64="udtssngwAbmAIOu+zZJP20vz22A=">AAAB/XicbVDJSgNBEK1xjXEbl5uXxiTgQcK0AfUY8JJjBLNAMoSeTidp0tMzdPcEYgh69ye8eFDEq//hzb+xsxw08UHB470qquoFseDaeN63s7K6tr6xmdpKb+/s7u27B4dVHSWKsgqNRKTqAdFMcMkqhhvB6rFiJAwEqwX9m4lfGzCleSTvzDBmfki6knc4JcZKLfe4kG0aHjKdLSAayQE+R/iy5Wa8vDcFWiZ4TjLFTO7pEQDKLfer2Y5oEjJpqCBaN7AXG39ElOFUsHG6mWgWE9onXdawVBK70B9Nrx+jnFXaqBMpW9Kgqfp7YkRCrYdhYDtDYnp60ZuI/3mNxHSu/RGXcWKYpLNFnUQgE6FJFKjNFaNGDC0hVHF7K6I9ogg1NrC0DQEvvrxMqhd57OXxLc4USzBDCk7gFM4AwxUUoQRlqACFe3iGV3hzHpwX5935mLWuOPOZI/gD5/MHtK6U7w==</latexit><latexit sha1_base64="GUyFz4sSL+u1pQZZkeP8P+FPU2Q=">AAAB/XicbVDLSgMxFM3UV62v8bFzE2wFF1ImFtRlwU2XFewD2qFk0kwbmkmGJFOoQ/FX3LhQxK3/4c6/MW1noa0HLhzOuZd77wlizrTxvG8nt7a+sbmV3y7s7O7tH7iHR00tE0Vog0guVTvAmnImaMMww2k7VhRHAaetYHQ381tjqjST4sFMYupHeCBYyAg2Vuq5J5VS17CI6lIFEinG6BKi655b9MreHHCVoIwUQYZ6z/3q9iVJIioM4VjrDvJi46dYGUY4nRa6iaYxJiM8oB1LBbYL/XR+/RSeW6UPQ6lsCQPn6u+JFEdaT6LAdkbYDPWyNxP/8zqJCW/9lIk4MVSQxaIw4dBIOIsC9pmixPCJJZgoZm+FZIgVJsYGVrAhoOWXV0nzqoy8MrpHxWotiyMPTsEZuAAI3IAqqIE6aAACHsEzeAVvzpPz4rw7H4vWnJPNHIM/cD5/AJTKk1w=</latexit>

3⇥3 conv1, 16
<latexit sha1_base64="udtssngwAbmAIOu+zZJP20vz22A=">AAAB/XicbVDJSgNBEK1xjXEbl5uXxiTgQcK0AfUY8JJjBLNAMoSeTidp0tMzdPcEYgh69ye8eFDEq//hzb+xsxw08UHB470qquoFseDaeN63s7K6tr6xmdpKb+/s7u27B4dVHSWKsgqNRKTqAdFMcMkqhhvB6rFiJAwEqwX9m4lfGzCleSTvzDBmfki6knc4JcZKLfe4kG0aHjKdLSAayQE+R/iy5Wa8vDcFWiZ4TjLFTO7pEQDKLfer2Y5oEjJpqCBaN7AXG39ElOFUsHG6mWgWE9onXdawVBK70B9Nrx+jnFXaqBMpW9Kgqfp7YkRCrYdhYDtDYnp60ZuI/3mNxHSu/RGXcWKYpLNFnUQgE6FJFKjNFaNGDC0hVHF7K6I9ogg1NrC0DQEvvrxMqhd57OXxLc4USzBDCk7gFM4AwxUUoQRlqACFe3iGV3hzHpwX5935mLWuOPOZI/gD5/MHtK6U7w==</latexit><latexit sha1_base64="GUyFz4sSL+u1pQZZkeP8P+FPU2Q=">AAAB/XicbVDLSgMxFM3UV62v8bFzE2wFF1ImFtRlwU2XFewD2qFk0kwbmkmGJFOoQ/FX3LhQxK3/4c6/MW1noa0HLhzOuZd77wlizrTxvG8nt7a+sbmV3y7s7O7tH7iHR00tE0Vog0guVTvAmnImaMMww2k7VhRHAaetYHQ381tjqjST4sFMYupHeCBYyAg2Vuq5J5VS17CI6lIFEinG6BKi655b9MreHHCVoIwUQYZ6z/3q9iVJIioM4VjrDvJi46dYGUY4nRa6iaYxJiM8oB1LBbYL/XR+/RSeW6UPQ6lsCQPn6u+JFEdaT6LAdkbYDPWyNxP/8zqJCW/9lIk4MVSQxaIw4dBIOIsC9pmixPCJJZgoZm+FZIgVJsYGVrAhoOWXV0nzqoy8MrpHxWotiyMPTsEZuAAI3IAqqIE6aAACHsEzeAVvzpPz4rw7H4vWnJPNHIM/cD5/AJTKk1w=</latexit>

3⇥3 conv1, 16
<latexit sha1_base64="udtssngwAbmAIOu+zZJP20vz22A=">AAAB/XicbVDJSgNBEK1xjXEbl5uXxiTgQcK0AfUY8JJjBLNAMoSeTidp0tMzdPcEYgh69ye8eFDEq//hzb+xsxw08UHB470qquoFseDaeN63s7K6tr6xmdpKb+/s7u27B4dVHSWKsgqNRKTqAdFMcMkqhhvB6rFiJAwEqwX9m4lfGzCleSTvzDBmfki6knc4JcZKLfe4kG0aHjKdLSAayQE+R/iy5Wa8vDcFWiZ4TjLFTO7pEQDKLfer2Y5oEjJpqCBaN7AXG39ElOFUsHG6mWgWE9onXdawVBK70B9Nrx+jnFXaqBMpW9Kgqfp7YkRCrYdhYDtDYnp60ZuI/3mNxHSu/RGXcWKYpLNFnUQgE6FJFKjNFaNGDC0hVHF7K6I9ogg1NrC0DQEvvrxMqhd57OXxLc4USzBDCk7gFM4AwxUUoQRlqACFe3iGV3hzHpwX5935mLWuOPOZI/gD5/MHtK6U7w==</latexit><latexit sha1_base64="GUyFz4sSL+u1pQZZkeP8P+FPU2Q=">AAAB/XicbVDLSgMxFM3UV62v8bFzE2wFF1ImFtRlwU2XFewD2qFk0kwbmkmGJFOoQ/FX3LhQxK3/4c6/MW1noa0HLhzOuZd77wlizrTxvG8nt7a+sbmV3y7s7O7tH7iHR00tE0Vog0guVTvAmnImaMMww2k7VhRHAaetYHQ381tjqjST4sFMYupHeCBYyAg2Vuq5J5VS17CI6lIFEinG6BKi655b9MreHHCVoIwUQYZ6z/3q9iVJIioM4VjrDvJi46dYGUY4nRa6iaYxJiM8oB1LBbYL/XR+/RSeW6UPQ6lsCQPn6u+JFEdaT6LAdkbYDPWyNxP/8zqJCW/9lIk4MVSQxaIw4dBIOIsC9pmixPCJJZgoZm+FZIgVJsYGVrAhoOWXV0nzqoy8MrpHxWotiyMPTsEZuAAI3IAqqIE6aAACHsEzeAVvzpPz4rw7H4vWnJPNHIM/cD5/AJTKk1w=</latexit>

3⇥3 conv1, 16
<latexit sha1_base64="udtssngwAbmAIOu+zZJP20vz22A=">AAAB/XicbVDJSgNBEK1xjXEbl5uXxiTgQcK0AfUY8JJjBLNAMoSeTidp0tMzdPcEYgh69ye8eFDEq//hzb+xsxw08UHB470qquoFseDaeN63s7K6tr6xmdpKb+/s7u27B4dVHSWKsgqNRKTqAdFMcMkqhhvB6rFiJAwEqwX9m4lfGzCleSTvzDBmfki6knc4JcZKLfe4kG0aHjKdLSAayQE+R/iy5Wa8vDcFWiZ4TjLFTO7pEQDKLfer2Y5oEjJpqCBaN7AXG39ElOFUsHG6mWgWE9onXdawVBK70B9Nrx+jnFXaqBMpW9Kgqfp7YkRCrYdhYDtDYnp60ZuI/3mNxHSu/RGXcWKYpLNFnUQgE6FJFKjNFaNGDC0hVHF7K6I9ogg1NrC0DQEvvrxMqhd57OXxLc4USzBDCk7gFM4AwxUUoQRlqACFe3iGV3hzHpwX5935mLWuOPOZI/gD5/MHtK6U7w==</latexit><latexit sha1_base64="GUyFz4sSL+u1pQZZkeP8P+FPU2Q=">AAAB/XicbVDLSgMxFM3UV62v8bFzE2wFF1ImFtRlwU2XFewD2qFk0kwbmkmGJFOoQ/FX3LhQxK3/4c6/MW1noa0HLhzOuZd77wlizrTxvG8nt7a+sbmV3y7s7O7tH7iHR00tE0Vog0guVTvAmnImaMMww2k7VhRHAaetYHQ381tjqjST4sFMYupHeCBYyAg2Vuq5J5VS17CI6lIFEinG6BKi655b9MreHHCVoIwUQYZ6z/3q9iVJIioM4VjrDvJi46dYGUY4nRa6iaYxJiM8oB1LBbYL/XR+/RSeW6UPQ6lsCQPn6u+JFEdaT6LAdkbYDPWyNxP/8zqJCW/9lIk4MVSQxaIw4dBIOIsC9pmixPCJJZgoZm+FZIgVJsYGVrAhoOWXV0nzqoy8MrpHxWotiyMPTsEZuAAI3IAqqIE6aAACHsEzeAVvzpPz4rw7H4vWnJPNHIM/cD5/AJTKk1w=</latexit>

3⇥3 conv2, 32, /3
<latexit sha1_base64="PFa1Sb9hXQtQOOqGoUgMKgQjeQA=">AAACAXicbVC7SgNBFL0bXzG+Vm0Em8FESCFxN1toGbBJGcE8IFnC7GSSDJmdXWZmAzHExl+xsVDE1r+ws/RPnDwKTTxw4XDOvdx7TxBzprTjfFmptfWNza30dmZnd2//wD48qqkokYRWScQj2QiwopwJWtVMc9qIJcVhwGk9GNxM/fqQSsUicadHMfVD3BOsywjWRmrbJ16upVlIVc5DJBLD4gXyTF16bTvrFJwZ0CpxFyRbyt9/lwCg0rY/W52IJCEVmnCsVNN1Yu2PsdSMcDrJtBJFY0wGuEebhgpslvrj2QcTdG6UDupG0pTQaKb+nhjjUKlRGJjOEOu+Wvam4n9eM9Hda3/MRJxoKsh8UTfhSEdoGgfqMEmJ5iNDMJHM3IpIH0tMtAktY0Jwl19eJbViwXUK7q2bLZVhjjScwhnkwYUrKEEZKlAFAg/wBC/waj1az9ab9T5vTVmLmWP4A+vjB//MljQ=</latexit><latexit sha1_base64="5jVvqao/CqLTfA1XbyMSbH2pu3U=">AAACAXicbVDLSsNAFL3xWesr6kZwM9gKLqQmzUKXBTddVrAPaEOZTCft0MkkzEwKJdSNv+LGhSJu/Qt3/o3Tx0JbD1w4nHMv994TJJwp7Tjf1tr6xubWdm4nv7u3f3BoHx03VJxKQusk5rFsBVhRzgSta6Y5bSWS4ijgtBkM76Z+c0SlYrF40OOE+hHuCxYygrWRuvapV+xoFlFV9BCJxah8hTxT117XLjglZwa0StwFKcACta791enFJI2o0IRjpdquk2g/w1Izwukk30kVTTAZ4j5tGyqwWepnsw8m6MIoPRTG0pTQaKb+nshwpNQ4CkxnhPVALXtT8T+vnerw1s+YSFJNBZkvClOOdIymcaAek5RoPjYEE8nMrYgMsMREm9DyJgR3+eVV0iiXXKfk3ruFSnURRw7O4BwuwYUbqEAValAHAo/wDK/wZj1ZL9a79TFvXbMWMyfwB9bnD0hZlDE=</latexit>

3⇥3 conv2, 32, /3
<latexit sha1_base64="PFa1Sb9hXQtQOOqGoUgMKgQjeQA=">AAACAXicbVC7SgNBFL0bXzG+Vm0Em8FESCFxN1toGbBJGcE8IFnC7GSSDJmdXWZmAzHExl+xsVDE1r+ws/RPnDwKTTxw4XDOvdx7TxBzprTjfFmptfWNza30dmZnd2//wD48qqkokYRWScQj2QiwopwJWtVMc9qIJcVhwGk9GNxM/fqQSsUicadHMfVD3BOsywjWRmrbJ16upVlIVc5DJBLD4gXyTF16bTvrFJwZ0CpxFyRbyt9/lwCg0rY/W52IJCEVmnCsVNN1Yu2PsdSMcDrJtBJFY0wGuEebhgpslvrj2QcTdG6UDupG0pTQaKb+nhjjUKlRGJjOEOu+Wvam4n9eM9Hda3/MRJxoKsh8UTfhSEdoGgfqMEmJ5iNDMJHM3IpIH0tMtAktY0Jwl19eJbViwXUK7q2bLZVhjjScwhnkwYUrKEEZKlAFAg/wBC/waj1az9ab9T5vTVmLmWP4A+vjB//MljQ=</latexit><latexit sha1_base64="5jVvqao/CqLTfA1XbyMSbH2pu3U=">AAACAXicbVDLSsNAFL3xWesr6kZwM9gKLqQmzUKXBTddVrAPaEOZTCft0MkkzEwKJdSNv+LGhSJu/Qt3/o3Tx0JbD1w4nHMv994TJJwp7Tjf1tr6xubWdm4nv7u3f3BoHx03VJxKQusk5rFsBVhRzgSta6Y5bSWS4ijgtBkM76Z+c0SlYrF40OOE+hHuCxYygrWRuvapV+xoFlFV9BCJxah8hTxT117XLjglZwa0StwFKcACta791enFJI2o0IRjpdquk2g/w1Izwukk30kVTTAZ4j5tGyqwWepnsw8m6MIoPRTG0pTQaKb+nshwpNQ4CkxnhPVALXtT8T+vnerw1s+YSFJNBZkvClOOdIymcaAek5RoPjYEE8nMrYgMsMREm9DyJgR3+eVV0iiXXKfk3ruFSnURRw7O4BwuwYUbqEAValAHAo/wDK/wZj1ZL9a79TFvXbMWMyfwB9bnD0hZlDE=</latexit>

3⇥3 conv2, 32
<latexit sha1_base64="ALrnOAie1goJy/PVTGIwBGtKNfk=">AAAB/XicbVC7SgNBFL0bXzG+1kdnM7gJWEjYTQotAzYpI5gHJEuYnUySIbOzy8xsIC5Be3/CxkIRW//Dzr9x8ig0euDC4Zx7ufeeIOZMadf9sjJr6xubW9nt3M7u3v6BfXjUUFEiCa2TiEeyFWBFORO0rpnmtBVLisOA02Ywup75zTGVikXiVk9i6od4IFifEayN1LVPyvmOZiFV+TIikRiXLlC51LUdt+jOgf4Sb0mcilN4fACAWtf+7PQikoRUaMKxUm3PjbWfYqkZ4XSa6ySKxpiM8IC2DRXYLPTT+fVTVDBKD/UjaUpoNFd/TqQ4VGoSBqYzxHqoVr2Z+J/XTnT/yk+ZiBNNBVks6icc6QjNokA9JinRfGIIJpKZWxEZYomJNoHlTAje6st/SaNU9Nyid+M5lSoskIVTOINz8OASKlCFGtSBwB08wQu8WvfWs/VmvS9aM9Zy5hh+wfr4BrMwlO4=</latexit><latexit sha1_base64="uvlPrcRe6DZhSonrRxLX/A948Nc=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GWwFF1KSdqHLgpsuK9gHtKFMppN26GQSZm4KNRR/xY0LRdz6H+78G6dtFtp64MLhnHu59x4/FlyD43xbuY3Nre2d/G5hb//g8Mg+PmnpKFGUNWkkItXxiWaCS9YEDoJ1YsVI6AvW9sd3c789YUrzSD7ANGZeSIaSB5wSMFLfPquWesBDpktVTCM5qVzjaqVvF52yswBeJ25GiihDo29/9QYRTUImgQqiddd1YvBSooBTwWaFXqJZTOiYDFnXUEnMQi9dXD/Dl0YZ4CBSpiTghfp7IiWh1tPQN50hgZFe9ebif143geDWS7mME2CSLhcFicAQ4XkUeMAVoyCmhhCquLkV0xFRhIIJrGBCcFdfXietStl1yu69W6zVszjy6BxdoCvkohtUQ3XUQE1E0SN6Rq/ozXqyXqx362PZmrOymVP0B9bnD5NMk1s=</latexit>

3⇥3 conv2, 32
<latexit sha1_base64="ALrnOAie1goJy/PVTGIwBGtKNfk=">AAAB/XicbVC7SgNBFL0bXzG+1kdnM7gJWEjYTQotAzYpI5gHJEuYnUySIbOzy8xsIC5Be3/CxkIRW//Dzr9x8ig0euDC4Zx7ufeeIOZMadf9sjJr6xubW9nt3M7u3v6BfXjUUFEiCa2TiEeyFWBFORO0rpnmtBVLisOA02Ywup75zTGVikXiVk9i6od4IFifEayN1LVPyvmOZiFV+TIikRiXLlC51LUdt+jOgf4Sb0mcilN4fACAWtf+7PQikoRUaMKxUm3PjbWfYqkZ4XSa6ySKxpiM8IC2DRXYLPTT+fVTVDBKD/UjaUpoNFd/TqQ4VGoSBqYzxHqoVr2Z+J/XTnT/yk+ZiBNNBVks6icc6QjNokA9JinRfGIIJpKZWxEZYomJNoHlTAje6st/SaNU9Nyid+M5lSoskIVTOINz8OASKlCFGtSBwB08wQu8WvfWs/VmvS9aM9Zy5hh+wfr4BrMwlO4=</latexit><latexit sha1_base64="uvlPrcRe6DZhSonrRxLX/A948Nc=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GWwFF1KSdqHLgpsuK9gHtKFMppN26GQSZm4KNRR/xY0LRdz6H+78G6dtFtp64MLhnHu59x4/FlyD43xbuY3Nre2d/G5hb//g8Mg+PmnpKFGUNWkkItXxiWaCS9YEDoJ1YsVI6AvW9sd3c789YUrzSD7ANGZeSIaSB5wSMFLfPquWesBDpktVTCM5qVzjaqVvF52yswBeJ25GiihDo29/9QYRTUImgQqiddd1YvBSooBTwWaFXqJZTOiYDFnXUEnMQi9dXD/Dl0YZ4CBSpiTghfp7IiWh1tPQN50hgZFe9ebif143geDWS7mME2CSLhcFicAQ4XkUeMAVoyCmhhCquLkV0xFRhIIJrGBCcFdfXietStl1yu69W6zVszjy6BxdoCvkohtUQ3XUQE1E0SN6Rq/ozXqyXqx362PZmrOymVP0B9bnD5NMk1s=</latexit>

3⇥3 conv2, 32
<latexit sha1_base64="ALrnOAie1goJy/PVTGIwBGtKNfk=">AAAB/XicbVC7SgNBFL0bXzG+1kdnM7gJWEjYTQotAzYpI5gHJEuYnUySIbOzy8xsIC5Be3/CxkIRW//Dzr9x8ig0euDC4Zx7ufeeIOZMadf9sjJr6xubW9nt3M7u3v6BfXjUUFEiCa2TiEeyFWBFORO0rpnmtBVLisOA02Ywup75zTGVikXiVk9i6od4IFifEayN1LVPyvmOZiFV+TIikRiXLlC51LUdt+jOgf4Sb0mcilN4fACAWtf+7PQikoRUaMKxUm3PjbWfYqkZ4XSa6ySKxpiM8IC2DRXYLPTT+fVTVDBKD/UjaUpoNFd/TqQ4VGoSBqYzxHqoVr2Z+J/XTnT/yk+ZiBNNBVks6icc6QjNokA9JinRfGIIJpKZWxEZYomJNoHlTAje6st/SaNU9Nyid+M5lSoskIVTOINz8OASKlCFGtSBwB08wQu8WvfWs/VmvS9aM9Zy5hh+wfr4BrMwlO4=</latexit><latexit sha1_base64="uvlPrcRe6DZhSonrRxLX/A948Nc=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GWwFF1KSdqHLgpsuK9gHtKFMppN26GQSZm4KNRR/xY0LRdz6H+78G6dtFtp64MLhnHu59x4/FlyD43xbuY3Nre2d/G5hb//g8Mg+PmnpKFGUNWkkItXxiWaCS9YEDoJ1YsVI6AvW9sd3c789YUrzSD7ANGZeSIaSB5wSMFLfPquWesBDpktVTCM5qVzjaqVvF52yswBeJ25GiihDo29/9QYRTUImgQqiddd1YvBSooBTwWaFXqJZTOiYDFnXUEnMQi9dXD/Dl0YZ4CBSpiTghfp7IiWh1tPQN50hgZFe9ebif143geDWS7mME2CSLhcFicAQ4XkUeMAVoyCmhhCquLkV0xFRhIIJrGBCcFdfXietStl1yu69W6zVszjy6BxdoCvkohtUQ3XUQE1E0SN6Rq/ozXqyXqx362PZmrOymVP0B9bnD5NMk1s=</latexit>

3⇥3 conv2, 32
<latexit sha1_base64="ALrnOAie1goJy/PVTGIwBGtKNfk=">AAAB/XicbVC7SgNBFL0bXzG+1kdnM7gJWEjYTQotAzYpI5gHJEuYnUySIbOzy8xsIC5Be3/CxkIRW//Dzr9x8ig0euDC4Zx7ufeeIOZMadf9sjJr6xubW9nt3M7u3v6BfXjUUFEiCa2TiEeyFWBFORO0rpnmtBVLisOA02Ywup75zTGVikXiVk9i6od4IFifEayN1LVPyvmOZiFV+TIikRiXLlC51LUdt+jOgf4Sb0mcilN4fACAWtf+7PQikoRUaMKxUm3PjbWfYqkZ4XSa6ySKxpiM8IC2DRXYLPTT+fVTVDBKD/UjaUpoNFd/TqQ4VGoSBqYzxHqoVr2Z+J/XTnT/yk+ZiBNNBVks6icc6QjNokA9JinRfGIIJpKZWxEZYomJNoHlTAje6st/SaNU9Nyid+M5lSoskIVTOINz8OASKlCFGtSBwB08wQu8WvfWs/VmvS9aM9Zy5hh+wfr4BrMwlO4=</latexit><latexit sha1_base64="uvlPrcRe6DZhSonrRxLX/A948Nc=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GWwFF1KSdqHLgpsuK9gHtKFMppN26GQSZm4KNRR/xY0LRdz6H+78G6dtFtp64MLhnHu59x4/FlyD43xbuY3Nre2d/G5hb//g8Mg+PmnpKFGUNWkkItXxiWaCS9YEDoJ1YsVI6AvW9sd3c789YUrzSD7ANGZeSIaSB5wSMFLfPquWesBDpktVTCM5qVzjaqVvF52yswBeJ25GiihDo29/9QYRTUImgQqiddd1YvBSooBTwWaFXqJZTOiYDFnXUEnMQi9dXD/Dl0YZ4CBSpiTghfp7IiWh1tPQN50hgZFe9ebif143geDWS7mME2CSLhcFicAQ4XkUeMAVoyCmhhCquLkV0xFRhIIJrGBCcFdfXietStl1yu69W6zVszjy6BxdoCvkohtUQ3XUQE1E0SN6Rq/ozXqyXqx362PZmrOymVP0B9bnD5NMk1s=</latexit>

3⇥3 conv3, 64, /3
<latexit sha1_base64="9T5CCcjZVJnbfQMrWF4ednE5Cpk=">AAACAXicbVC7SgNBFL0bXzG+ojaCzWAipAhx14haLtikjGAekCxhdjJJhszOLjOzgRhi46/YWChi61/YWfonTh6FJh64cDjnXu69x484U9q2v6zEyura+kZyM7W1vbO7l94/qKowloRWSMhDWfexopwJWtFMc1qPJMWBz2nN799M/NqASsVCcaeHEfUC3BWswwjWRmqlj4rZpmYBVdkiIqEYFPPo8iKPzoqtdMYu2FOgZeLMScbN3X+7AFBupT+b7ZDEARWacKxUw7Ej7Y2w1IxwOk41Y0UjTPq4SxuGCmyWeqPpB2N0apQ26oTSlNBoqv6eGOFAqWHgm84A655a9Cbif14j1p1rb8REFGsqyGxRJ+ZIh2gSB2ozSYnmQ0MwkczcikgPS0y0CS1lQnAWX14m1fOCYxecWyfjlmCGJBzDCeTAgStwoQRlqACBB3iCF3i1Hq1n6816n7UmrPnMIfyB9fEDCRKWOg==</latexit><latexit sha1_base64="tiFopopmzdtitRSyB7td4oQofxQ=">AAACAXicbVDLSgMxFM3UV62vUTeCm2AruCh1xhF1WXDTZQX7gHYomTTThmaSIckUylA3/oobF4q49S/c+Tem7Sy0euDC4Zx7ufeeIGZUacf5snIrq2vrG/nNwtb2zu6evX/QVCKRmDSwYEK2A6QIo5w0NNWMtGNJUBQw0gpGtzO/NSZSUcHv9SQmfoQGnIYUI22knn3klbqaRkSVPIgFH3tleHVZhudezy46FWcO+Je4GSmCDPWe/dntC5xEhGvMkFId14m1nyKpKWZkWugmisQIj9CAdAzlyCz10/kHU3hqlD4MhTTFNZyrPydSFCk1iQLTGSE9VMveTPzP6yQ6vPFTyuNEE44Xi8KEQS3gLA7Yp5JgzSaGICypuRXiIZIIaxNawYTgLr/8lzQvKq5Tce/cYrWWxZEHx+AEnAEXXIMqqIE6aAAMHsATeAGv1qP1bL1Z74vWnJXNHIJfsD6+AVGQlDc=</latexit>

3⇥3 conv3, 64, /3
<latexit sha1_base64="9T5CCcjZVJnbfQMrWF4ednE5Cpk=">AAACAXicbVC7SgNBFL0bXzG+ojaCzWAipAhx14haLtikjGAekCxhdjJJhszOLjOzgRhi46/YWChi61/YWfonTh6FJh64cDjnXu69x484U9q2v6zEyura+kZyM7W1vbO7l94/qKowloRWSMhDWfexopwJWtFMc1qPJMWBz2nN799M/NqASsVCcaeHEfUC3BWswwjWRmqlj4rZpmYBVdkiIqEYFPPo8iKPzoqtdMYu2FOgZeLMScbN3X+7AFBupT+b7ZDEARWacKxUw7Ej7Y2w1IxwOk41Y0UjTPq4SxuGCmyWeqPpB2N0apQ26oTSlNBoqv6eGOFAqWHgm84A655a9Cbif14j1p1rb8REFGsqyGxRJ+ZIh2gSB2ozSYnmQ0MwkczcikgPS0y0CS1lQnAWX14m1fOCYxecWyfjlmCGJBzDCeTAgStwoQRlqACBB3iCF3i1Hq1n6816n7UmrPnMIfyB9fEDCRKWOg==</latexit><latexit sha1_base64="tiFopopmzdtitRSyB7td4oQofxQ=">AAACAXicbVDLSgMxFM3UV62vUTeCm2AruCh1xhF1WXDTZQX7gHYomTTThmaSIckUylA3/oobF4q49S/c+Tem7Sy0euDC4Zx7ufeeIGZUacf5snIrq2vrG/nNwtb2zu6evX/QVCKRmDSwYEK2A6QIo5w0NNWMtGNJUBQw0gpGtzO/NSZSUcHv9SQmfoQGnIYUI22knn3klbqaRkSVPIgFH3tleHVZhudezy46FWcO+Je4GSmCDPWe/dntC5xEhGvMkFId14m1nyKpKWZkWugmisQIj9CAdAzlyCz10/kHU3hqlD4MhTTFNZyrPydSFCk1iQLTGSE9VMveTPzP6yQ6vPFTyuNEE44Xi8KEQS3gLA7Yp5JgzSaGICypuRXiIZIIaxNawYTgLr/8lzQvKq5Tce/cYrWWxZEHx+AEnAEXXIMqqIE6aAAMHsATeAGv1qP1bL1Z74vWnJXNHIJfsD6+AVGQlDc=</latexit>

3⇥3 conv3, 64
<latexit sha1_base64="l5M46J+c/XXhFndfzLyG0BPQhSI=">AAAB/XicbVDJSgNBEK2JW4zbuNy8NE4CHiTMGFGPAS85RjALJCH0dDpJk56eobsnEIegd3/CiwdFvPof3vwbO8tBEx8UPN6roqqeH3GmtOt+W6mV1bX1jfRmZmt7Z3fP3j+oqjCWhFZIyENZ97GinAla0UxzWo8kxYHPac0f3Ez82pBKxUJxp0cRbQW4J1iXEayN1LaPCtmmZgFV2QIioRgWztDlRdt23Lw7BVom3pw4RSf39AgA5bb91eyEJA6o0IRjpRqeG+lWgqVmhNNxphkrGmEywD3aMFRgs7CVTK8fo5xROqgbSlNCo6n6eyLBgVKjwDedAdZ9tehNxP+8Rqy7162EiSjWVJDZom7MkQ7RJArUYZISzUeGYCKZuRWRPpaYaBNYxoTgLb68TKrnec/Ne7eeUyzBDGk4hhM4BQ+uoAglKEMFCNzDM7zCm/VgvVjv1sesNWXNZw7hD6zPH7xPlPQ=</latexit><latexit sha1_base64="qxq5SBIuHxIfTI8zdqgBBpZbHdU=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GWwFF1ISK+qy4KbLCvYBbSiT6aQdOpmEmZtCDcVfceNCEbf+hzv/xmmbhVYPXDiccy/33uPHgmtwnC8rt7K6tr6R3yxsbe/s7tn7B00dJYqyBo1EpNo+0UxwyRrAQbB2rBgJfcFa/uh25rfGTGkeyXuYxMwLyUDygFMCRurZR5VSF3jIdKmCaSTHlXN8ddmzi07ZmQP/JW5GiihDvWd/dvsRTUImgQqidcd1YvBSooBTwaaFbqJZTOiIDFjHUEnMQi+dXz/Fp0bp4yBSpiTgufpzIiWh1pPQN50hgaFe9mbif14ngeDGS7mME2CSLhYFicAQ4VkUuM8VoyAmhhCquLkV0yFRhIIJrGBCcJdf/kuaF2XXKbt3brFay+LIo2N0gs6Qi65RFdVQHTUQRQ/oCb2gV+vRerberPdFa87KZg7RL1gf35xrk2E=</latexit>

3⇥3 conv3, 64
<latexit sha1_base64="l5M46J+c/XXhFndfzLyG0BPQhSI=">AAAB/XicbVDJSgNBEK2JW4zbuNy8NE4CHiTMGFGPAS85RjALJCH0dDpJk56eobsnEIegd3/CiwdFvPof3vwbO8tBEx8UPN6roqqeH3GmtOt+W6mV1bX1jfRmZmt7Z3fP3j+oqjCWhFZIyENZ97GinAla0UxzWo8kxYHPac0f3Ez82pBKxUJxp0cRbQW4J1iXEayN1LaPCtmmZgFV2QIioRgWztDlRdt23Lw7BVom3pw4RSf39AgA5bb91eyEJA6o0IRjpRqeG+lWgqVmhNNxphkrGmEywD3aMFRgs7CVTK8fo5xROqgbSlNCo6n6eyLBgVKjwDedAdZ9tehNxP+8Rqy7162EiSjWVJDZom7MkQ7RJArUYZISzUeGYCKZuRWRPpaYaBNYxoTgLb68TKrnec/Ne7eeUyzBDGk4hhM4BQ+uoAglKEMFCNzDM7zCm/VgvVjv1sesNWXNZw7hD6zPH7xPlPQ=</latexit><latexit sha1_base64="qxq5SBIuHxIfTI8zdqgBBpZbHdU=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GWwFF1ISK+qy4KbLCvYBbSiT6aQdOpmEmZtCDcVfceNCEbf+hzv/xmmbhVYPXDiccy/33uPHgmtwnC8rt7K6tr6R3yxsbe/s7tn7B00dJYqyBo1EpNo+0UxwyRrAQbB2rBgJfcFa/uh25rfGTGkeyXuYxMwLyUDygFMCRurZR5VSF3jIdKmCaSTHlXN8ddmzi07ZmQP/JW5GiihDvWd/dvsRTUImgQqidcd1YvBSooBTwaaFbqJZTOiIDFjHUEnMQi+dXz/Fp0bp4yBSpiTgufpzIiWh1pPQN50hgaFe9mbif14ngeDGS7mME2CSLhYFicAQ4VkUuM8VoyAmhhCquLkV0yFRhIIJrGBCcJdf/kuaF2XXKbt3brFay+LIo2N0gs6Qi65RFdVQHTUQRQ/oCb2gV+vRerberPdFa87KZg7RL1gf35xrk2E=</latexit>

3⇥3 conv3, 64
<latexit sha1_base64="l5M46J+c/XXhFndfzLyG0BPQhSI=">AAAB/XicbVDJSgNBEK2JW4zbuNy8NE4CHiTMGFGPAS85RjALJCH0dDpJk56eobsnEIegd3/CiwdFvPof3vwbO8tBEx8UPN6roqqeH3GmtOt+W6mV1bX1jfRmZmt7Z3fP3j+oqjCWhFZIyENZ97GinAla0UxzWo8kxYHPac0f3Ez82pBKxUJxp0cRbQW4J1iXEayN1LaPCtmmZgFV2QIioRgWztDlRdt23Lw7BVom3pw4RSf39AgA5bb91eyEJA6o0IRjpRqeG+lWgqVmhNNxphkrGmEywD3aMFRgs7CVTK8fo5xROqgbSlNCo6n6eyLBgVKjwDedAdZ9tehNxP+8Rqy7162EiSjWVJDZom7MkQ7RJArUYZISzUeGYCKZuRWRPpaYaBNYxoTgLb68TKrnec/Ne7eeUyzBDGk4hhM4BQ+uoAglKEMFCNzDM7zCm/VgvVjv1sesNWXNZw7hD6zPH7xPlPQ=</latexit><latexit sha1_base64="qxq5SBIuHxIfTI8zdqgBBpZbHdU=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GWwFF1ISK+qy4KbLCvYBbSiT6aQdOpmEmZtCDcVfceNCEbf+hzv/xmmbhVYPXDiccy/33uPHgmtwnC8rt7K6tr6R3yxsbe/s7tn7B00dJYqyBo1EpNo+0UxwyRrAQbB2rBgJfcFa/uh25rfGTGkeyXuYxMwLyUDygFMCRurZR5VSF3jIdKmCaSTHlXN8ddmzi07ZmQP/JW5GiihDvWd/dvsRTUImgQqidcd1YvBSooBTwaaFbqJZTOiIDFjHUEnMQi+dXz/Fp0bp4yBSpiTgufpzIiWh1pPQN50hgaFe9mbif14ngeDGS7mME2CSLhYFicAQ4VkUuM8VoyAmhhCquLkV0yFRhIIJrGBCcJdf/kuaF2XXKbt3brFay+LIo2N0gs6Qi65RFdVQHTUQRQ/oCb2gV+vRerberPdFa87KZg7RL1gf35xrk2E=</latexit>

3⇥3 conv3, 64
<latexit sha1_base64="l5M46J+c/XXhFndfzLyG0BPQhSI=">AAAB/XicbVDJSgNBEK2JW4zbuNy8NE4CHiTMGFGPAS85RjALJCH0dDpJk56eobsnEIegd3/CiwdFvPof3vwbO8tBEx8UPN6roqqeH3GmtOt+W6mV1bX1jfRmZmt7Z3fP3j+oqjCWhFZIyENZ97GinAla0UxzWo8kxYHPac0f3Ez82pBKxUJxp0cRbQW4J1iXEayN1LaPCtmmZgFV2QIioRgWztDlRdt23Lw7BVom3pw4RSf39AgA5bb91eyEJA6o0IRjpRqeG+lWgqVmhNNxphkrGmEywD3aMFRgs7CVTK8fo5xROqgbSlNCo6n6eyLBgVKjwDedAdZ9tehNxP+8Rqy7162EiSjWVJDZom7MkQ7RJArUYZISzUeGYCKZuRWRPpaYaBNYxoTgLb68TKrnec/Ne7eeUyzBDGk4hhM4BQ+uoAglKEMFCNzDM7zCm/VgvVjv1sesNWXNZw7hD6zPH7xPlPQ=</latexit><latexit sha1_base64="qxq5SBIuHxIfTI8zdqgBBpZbHdU=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GWwFF1ISK+qy4KbLCvYBbSiT6aQdOpmEmZtCDcVfceNCEbf+hzv/xmmbhVYPXDiccy/33uPHgmtwnC8rt7K6tr6R3yxsbe/s7tn7B00dJYqyBo1EpNo+0UxwyRrAQbB2rBgJfcFa/uh25rfGTGkeyXuYxMwLyUDygFMCRurZR5VSF3jIdKmCaSTHlXN8ddmzi07ZmQP/JW5GiihDvWd/dvsRTUImgQqidcd1YvBSooBTwaaFbqJZTOiIDFjHUEnMQi+dXz/Fp0bp4yBSpiTgufpzIiWh1pPQN50hgaFe9mbif14ngeDGS7mME2CSLhYFicAQ4VkUuM8VoyAmhhCquLkV0yFRhIIJrGBCcJdf/kuaF2XXKbt3brFay+LIo2N0gs6Qi65RFdVQHTUQRQ/oCb2gV+vRerberPdFa87KZg7RL1gf35xrk2E=</latexit>

3⇥3 conv4, 128, /3
<latexit sha1_base64="/mb1DZsQ81gMLR/UWrJaM/1VD2s=">AAACAnicbVC7SgNBFL3rM8ZX1EpsBhMhRYi7iWDKgE3KCOYBSQizk9lkyOzsMjMbiEuw8VdsLBSx9SvsLP0TJ49CEw9cOJxzL/fe44acKW3bX9ba+sbm1nZiJ7m7t39wmDo6rqsgkoTWSMAD2XSxopwJWtNMc9oMJcW+y2nDHd5M/caISsUCcafHIe34uC+YxwjWRuqmTouZtmY+VZkiIoEYXeWQUyjl0GWxm0rbeXsGtEqcBUmXs/ffZQCodlOf7V5AIp8KTThWquXYoe7EWGpGOJ0k25GiISZD3KctQwU2Wzvx7IUJujBKD3mBNCU0mqm/J2LsKzX2XdPpYz1Qy95U/M9rRdordWImwkhTQeaLvIgjHaBpHqjHJCWajw3BRDJzKyIDLDHRJrWkCcFZfnmV1At5x847t066XIE5EnAG55AFB66hDBWoQg0IPMATvMCr9Wg9W2/W+7x1zVrMnMAfWB8/gLeWdg==</latexit><latexit sha1_base64="dAf0Cm9uQ1xeBqFOq5r9UwBs2AQ=">AAACAnicbVDLSgMxFM3UV62vUVfiJtgKLkqdtIJdFtx0WcE+oB1KJs20oZnMkGQKZShu/BU3LhRx61e4829M21lo64ELh3Pu5d57vIgzpR3n28psbG5t72R3c3v7B4dH9vFJS4WxJLRJQh7KjocV5UzQpmaa004kKQ48Ttve+G7utydUKhaKBz2NqBvgoWA+I1gbqW+fVQo9zQKqChVIQjG5KUJUrhbhdaVv552SswBcJygleZCi0be/eoOQxAEVmnCsVBc5kXYTLDUjnM5yvVjRCJMxHtKuoQKbrW6yeGEGL40ygH4oTQkNF+rviQQHSk0Dz3QGWI/UqjcX//O6sfarbsJEFGsqyHKRH3OoQzjPAw6YpETzqSGYSGZuhWSEJSbapJYzIaDVl9dJq1xCTgndo3ytnsaRBefgAlwBBG5BDdRBAzQBAY/gGbyCN+vJerHerY9la8ZKZ07BH1ifP8k1lHM=</latexit>

3⇥3 conv4, 128, /3
<latexit sha1_base64="/mb1DZsQ81gMLR/UWrJaM/1VD2s=">AAACAnicbVC7SgNBFL3rM8ZX1EpsBhMhRYi7iWDKgE3KCOYBSQizk9lkyOzsMjMbiEuw8VdsLBSx9SvsLP0TJ49CEw9cOJxzL/fe44acKW3bX9ba+sbm1nZiJ7m7t39wmDo6rqsgkoTWSMAD2XSxopwJWtNMc9oMJcW+y2nDHd5M/caISsUCcafHIe34uC+YxwjWRuqmTouZtmY+VZkiIoEYXeWQUyjl0GWxm0rbeXsGtEqcBUmXs/ffZQCodlOf7V5AIp8KTThWquXYoe7EWGpGOJ0k25GiISZD3KctQwU2Wzvx7IUJujBKD3mBNCU0mqm/J2LsKzX2XdPpYz1Qy95U/M9rRdordWImwkhTQeaLvIgjHaBpHqjHJCWajw3BRDJzKyIDLDHRJrWkCcFZfnmV1At5x847t066XIE5EnAG55AFB66hDBWoQg0IPMATvMCr9Wg9W2/W+7x1zVrMnMAfWB8/gLeWdg==</latexit><latexit sha1_base64="dAf0Cm9uQ1xeBqFOq5r9UwBs2AQ=">AAACAnicbVDLSgMxFM3UV62vUVfiJtgKLkqdtIJdFtx0WcE+oB1KJs20oZnMkGQKZShu/BU3LhRx61e4829M21lo64ELh3Pu5d57vIgzpR3n28psbG5t72R3c3v7B4dH9vFJS4WxJLRJQh7KjocV5UzQpmaa004kKQ48Ttve+G7utydUKhaKBz2NqBvgoWA+I1gbqW+fVQo9zQKqChVIQjG5KUJUrhbhdaVv552SswBcJygleZCi0be/eoOQxAEVmnCsVBc5kXYTLDUjnM5yvVjRCJMxHtKuoQKbrW6yeGEGL40ygH4oTQkNF+rviQQHSk0Dz3QGWI/UqjcX//O6sfarbsJEFGsqyHKRH3OoQzjPAw6YpETzqSGYSGZuhWSEJSbapJYzIaDVl9dJq1xCTgndo3ytnsaRBefgAlwBBG5BDdRBAzQBAY/gGbyCN+vJerHerY9la8ZKZ07BH1ifP8k1lHM=</latexit>

3⇥3 conv4, 128
<latexit sha1_base64="zsubIV5CZvxslTRAZRCOtVAfweE=">AAAB/nicbVDLSgNBEOyNrxhfq+LJy2AS8CBhNxHMMeAlxwjmAckSZieTZMjs7DIzGwhLIHe/wosHRbz6Hd78GyePgyYWNBRV3XR3+RFnSjvOt5Xa2t7Z3UvvZw4Oj45P7NOzhgpjSWidhDyULR8rypmgdc00p61IUhz4nDb90f3cb46pVCwUj3oSUS/AA8H6jGBtpK59Ucp1NAuoypUQCcX49ga5xXLXzjoFZwG0SdwVyVay+acZANS69lenF5I4oEITjpVqu06kvQRLzQin00wnVjTCZIQHtG2owGajlyzOn6K8UXqoH0pTQqOF+nsiwYFSk8A3nQHWQ7XuzcX/vHas+2UvYSKKNRVkuagfc6RDNM8C9ZikRPOJIZhIZm5FZIglJtokljEhuOsvb5JGseA6BffBzVaqsEQaLuEKrsGFO6hAFWpQBwIJPMMrvFkz68V6tz6WrSlrNXMOf2B9/gAzM5Uw</latexit><latexit sha1_base64="pEgALBGJZpjJ1XTKVfXVF3atqoQ=">AAAB/nicbVBNSwMxEM3Wr1q/VsWTl2AreJCyaQV7LHjpsYK1hXYp2TTbhmaTJckWylLwr3jxoIhXf4c3/41puwdtfTDweG+GmXlBzJk2nvft5DY2t7Z38ruFvf2DwyP3+ORRy0QR2iKSS9UJsKacCdoyzHDaiRXFUcBpOxjfzf32hCrNpHgw05j6ER4KFjKCjZX67lm11DMsorpUhUSKyc01RJVa3y16ZW8BuE5QRoogQ7PvfvUGkiQRFYZwrHUXebHxU6wMI5zOCr1E0xiTMR7SrqUC241+ujh/Bi+tMoChVLaEgQv190SKI62nUWA7I2xGetWbi/953cSENT9lIk4MFWS5KEw4NBLOs4ADpigxfGoJJorZWyEZYYWJsYkVbAho9eV18lgpI6+M7lGx3sjiyINzcAGuAAK3oA4aoAlagIAUPINX8OY8OS/Ou/OxbM052cwp+APn8wcTT5Od</latexit>

3⇥3 conv4, 128
<latexit sha1_base64="zsubIV5CZvxslTRAZRCOtVAfweE=">AAAB/nicbVDLSgNBEOyNrxhfq+LJy2AS8CBhNxHMMeAlxwjmAckSZieTZMjs7DIzGwhLIHe/wosHRbz6Hd78GyePgyYWNBRV3XR3+RFnSjvOt5Xa2t7Z3UvvZw4Oj45P7NOzhgpjSWidhDyULR8rypmgdc00p61IUhz4nDb90f3cb46pVCwUj3oSUS/AA8H6jGBtpK59Ucp1NAuoypUQCcX49ga5xXLXzjoFZwG0SdwVyVay+acZANS69lenF5I4oEITjpVqu06kvQRLzQin00wnVjTCZIQHtG2owGajlyzOn6K8UXqoH0pTQqOF+nsiwYFSk8A3nQHWQ7XuzcX/vHas+2UvYSKKNRVkuagfc6RDNM8C9ZikRPOJIZhIZm5FZIglJtokljEhuOsvb5JGseA6BffBzVaqsEQaLuEKrsGFO6hAFWpQBwIJPMMrvFkz68V6tz6WrSlrNXMOf2B9/gAzM5Uw</latexit><latexit sha1_base64="pEgALBGJZpjJ1XTKVfXVF3atqoQ=">AAAB/nicbVBNSwMxEM3Wr1q/VsWTl2AreJCyaQV7LHjpsYK1hXYp2TTbhmaTJckWylLwr3jxoIhXf4c3/41puwdtfTDweG+GmXlBzJk2nvft5DY2t7Z38ruFvf2DwyP3+ORRy0QR2iKSS9UJsKacCdoyzHDaiRXFUcBpOxjfzf32hCrNpHgw05j6ER4KFjKCjZX67lm11DMsorpUhUSKyc01RJVa3y16ZW8BuE5QRoogQ7PvfvUGkiQRFYZwrHUXebHxU6wMI5zOCr1E0xiTMR7SrqUC241+ujh/Bi+tMoChVLaEgQv190SKI62nUWA7I2xGetWbi/953cSENT9lIk4MFWS5KEw4NBLOs4ADpigxfGoJJorZWyEZYYWJsYkVbAho9eV18lgpI6+M7lGx3sjiyINzcAGuAAK3oA4aoAlagIAUPINX8OY8OS/Ou/OxbM052cwp+APn8wcTT5Od</latexit>

3⇥3 conv4, 128
<latexit sha1_base64="zsubIV5CZvxslTRAZRCOtVAfweE=">AAAB/nicbVDLSgNBEOyNrxhfq+LJy2AS8CBhNxHMMeAlxwjmAckSZieTZMjs7DIzGwhLIHe/wosHRbz6Hd78GyePgyYWNBRV3XR3+RFnSjvOt5Xa2t7Z3UvvZw4Oj45P7NOzhgpjSWidhDyULR8rypmgdc00p61IUhz4nDb90f3cb46pVCwUj3oSUS/AA8H6jGBtpK59Ucp1NAuoypUQCcX49ga5xXLXzjoFZwG0SdwVyVay+acZANS69lenF5I4oEITjpVqu06kvQRLzQin00wnVjTCZIQHtG2owGajlyzOn6K8UXqoH0pTQqOF+nsiwYFSk8A3nQHWQ7XuzcX/vHas+2UvYSKKNRVkuagfc6RDNM8C9ZikRPOJIZhIZm5FZIglJtokljEhuOsvb5JGseA6BffBzVaqsEQaLuEKrsGFO6hAFWpQBwIJPMMrvFkz68V6tz6WrSlrNXMOf2B9/gAzM5Uw</latexit><latexit sha1_base64="pEgALBGJZpjJ1XTKVfXVF3atqoQ=">AAAB/nicbVBNSwMxEM3Wr1q/VsWTl2AreJCyaQV7LHjpsYK1hXYp2TTbhmaTJckWylLwr3jxoIhXf4c3/41puwdtfTDweG+GmXlBzJk2nvft5DY2t7Z38ruFvf2DwyP3+ORRy0QR2iKSS9UJsKacCdoyzHDaiRXFUcBpOxjfzf32hCrNpHgw05j6ER4KFjKCjZX67lm11DMsorpUhUSKyc01RJVa3y16ZW8BuE5QRoogQ7PvfvUGkiQRFYZwrHUXebHxU6wMI5zOCr1E0xiTMR7SrqUC241+ujh/Bi+tMoChVLaEgQv190SKI62nUWA7I2xGetWbi/953cSENT9lIk4MFWS5KEw4NBLOs4ADpigxfGoJJorZWyEZYYWJsYkVbAho9eV18lgpI6+M7lGx3sjiyINzcAGuAAK3oA4aoAlagIAUPINX8OY8OS/Ou/OxbM052cwp+APn8wcTT5Od</latexit>

3⇥3 conv4, 128
<latexit sha1_base64="zsubIV5CZvxslTRAZRCOtVAfweE=">AAAB/nicbVDLSgNBEOyNrxhfq+LJy2AS8CBhNxHMMeAlxwjmAckSZieTZMjs7DIzGwhLIHe/wosHRbz6Hd78GyePgyYWNBRV3XR3+RFnSjvOt5Xa2t7Z3UvvZw4Oj45P7NOzhgpjSWidhDyULR8rypmgdc00p61IUhz4nDb90f3cb46pVCwUj3oSUS/AA8H6jGBtpK59Ucp1NAuoypUQCcX49ga5xXLXzjoFZwG0SdwVyVay+acZANS69lenF5I4oEITjpVqu06kvQRLzQin00wnVjTCZIQHtG2owGajlyzOn6K8UXqoH0pTQqOF+nsiwYFSk8A3nQHWQ7XuzcX/vHas+2UvYSKKNRVkuagfc6RDNM8C9ZikRPOJIZhIZm5FZIglJtokljEhuOsvb5JGseA6BffBzVaqsEQaLuEKrsGFO6hAFWpQBwIJPMMrvFkz68V6tz6WrSlrNXMOf2B9/gAzM5Uw</latexit><latexit sha1_base64="pEgALBGJZpjJ1XTKVfXVF3atqoQ=">AAAB/nicbVBNSwMxEM3Wr1q/VsWTl2AreJCyaQV7LHjpsYK1hXYp2TTbhmaTJckWylLwr3jxoIhXf4c3/41puwdtfTDweG+GmXlBzJk2nvft5DY2t7Z38ruFvf2DwyP3+ORRy0QR2iKSS9UJsKacCdoyzHDaiRXFUcBpOxjfzf32hCrNpHgw05j6ER4KFjKCjZX67lm11DMsorpUhUSKyc01RJVa3y16ZW8BuE5QRoogQ7PvfvUGkiQRFYZwrHUXebHxU6wMI5zOCr1E0xiTMR7SrqUC241+ujh/Bi+tMoChVLaEgQv190SKI62nUWA7I2xGetWbi/953cSENT9lIk4MFWS5KEw4NBLOs4ADpigxfGoJJorZWyEZYYWJsYkVbAho9eV18lgpI6+M7lGx3sjiyINzcAGuAAK3oA4aoAlagIAUPINX8OY8OS/Ou/OxbM052cwp+APn8wcTT5Od</latexit>

fc3, 256

fc4, 128

fc5, 128

fc1, 128

n⇥ 128
<latexit sha1_base64="abuIyilZGG02n6wFWP+O32pzT3U=">AAAB9XicbVC7SgNBFL3rM8bXqqXNYCJYhZ00pgzYpIxgHpCsYXYymwyZnV1mZpWw5D9sBBWxtfcz7PwQeyePQhMPXDiccy/33hMkgmvjeV/O2vrG5tZ2bie/u7d/cOgeHTd1nCrKGjQWsWoHRDPBJWsYbgRrJ4qRKBCsFYyupn7rjinNY3ljxgnzIzKQPOSUGCvdFiXqGh4xjXC5Uuy5Ba/kzYBWCV6QQtX9/ngCgHrP/ez2Y5pGTBoqiNYd7CXGz4gynAo2yXdTzRJCR2TAOpZKYjf52ezqCTq3Sh+FsbIlDZqpvycyEmk9jgLbGREz1MveVPzP66QmrPgZl0lqmKTzRWEqkInRNALU54pRI8aWEKq4vRXRIVGEGhtU3oaAl19eJc1yCXslfI0L1RrMkYNTOIMLwHAJVahBHRpAQcEDPMOLc+88Oq/O27x1zVnMnMAfOO8/3tuTtw==</latexit><latexit sha1_base64="LQreGSIO+N3n7tXi89GpRPOs3bE=">AAAB9XicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaKUlsKDGRjwROsrcssGFv77I7pyEX/oeNhcbY+l/s/DcucIWCL5nk5b2ZzMwLYikMuu63k9va3tndy+8XDg6Pjk+Kp2dtEyWa8RaLZKS7ATVcCsVbKFDybqw5DQPJO8H0duF3Hrk2IlL3OIu5H9KxEiPBKFrpoaxIH0XIDfGqtfKgWHIr7hJkk3gZKUGG5qD41R9GLAm5QiapMT3PjdFPqUbBJJ8X+onhMWVTOuY9SxW1m/x0efWcXFllSEaRtqWQLNXfEykNjZmFge0MKU7MurcQ//N6CY5qfipUnCBXbLVolEiCEVlEQIZCc4ZyZgllWthbCZtQTRnaoAo2BG/95U3SrlY8t+LdeaV6I4sjDxdwCdfgwQ3UoQFNaAEDDc/wCm/Ok/PivDsfq9ack82cwx84nz9VMpEY</latexit>

n⇥ 128
<latexit sha1_base64="abuIyilZGG02n6wFWP+O32pzT3U=">AAAB9XicbVC7SgNBFL3rM8bXqqXNYCJYhZ00pgzYpIxgHpCsYXYymwyZnV1mZpWw5D9sBBWxtfcz7PwQeyePQhMPXDiccy/33hMkgmvjeV/O2vrG5tZ2bie/u7d/cOgeHTd1nCrKGjQWsWoHRDPBJWsYbgRrJ4qRKBCsFYyupn7rjinNY3ljxgnzIzKQPOSUGCvdFiXqGh4xjXC5Uuy5Ba/kzYBWCV6QQtX9/ngCgHrP/ez2Y5pGTBoqiNYd7CXGz4gynAo2yXdTzRJCR2TAOpZKYjf52ezqCTq3Sh+FsbIlDZqpvycyEmk9jgLbGREz1MveVPzP66QmrPgZl0lqmKTzRWEqkInRNALU54pRI8aWEKq4vRXRIVGEGhtU3oaAl19eJc1yCXslfI0L1RrMkYNTOIMLwHAJVahBHRpAQcEDPMOLc+88Oq/O27x1zVnMnMAfOO8/3tuTtw==</latexit><latexit sha1_base64="LQreGSIO+N3n7tXi89GpRPOs3bE=">AAAB9XicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaKUlsKDGRjwROsrcssGFv77I7pyEX/oeNhcbY+l/s/DcucIWCL5nk5b2ZzMwLYikMuu63k9va3tndy+8XDg6Pjk+Kp2dtEyWa8RaLZKS7ATVcCsVbKFDybqw5DQPJO8H0duF3Hrk2IlL3OIu5H9KxEiPBKFrpoaxIH0XIDfGqtfKgWHIr7hJkk3gZKUGG5qD41R9GLAm5QiapMT3PjdFPqUbBJJ8X+onhMWVTOuY9SxW1m/x0efWcXFllSEaRtqWQLNXfEykNjZmFge0MKU7MurcQ//N6CY5qfipUnCBXbLVolEiCEVlEQIZCc4ZyZgllWthbCZtQTRnaoAo2BG/95U3SrlY8t+LdeaV6I4sjDxdwCdfgwQ3UoQFNaAEDDc/wCm/Ok/PivDsfq9ack82cwx84nz9VMpEY</latexit>

n⇥ 128
<latexit sha1_base64="abuIyilZGG02n6wFWP+O32pzT3U=">AAAB9XicbVC7SgNBFL3rM8bXqqXNYCJYhZ00pgzYpIxgHpCsYXYymwyZnV1mZpWw5D9sBBWxtfcz7PwQeyePQhMPXDiccy/33hMkgmvjeV/O2vrG5tZ2bie/u7d/cOgeHTd1nCrKGjQWsWoHRDPBJWsYbgRrJ4qRKBCsFYyupn7rjinNY3ljxgnzIzKQPOSUGCvdFiXqGh4xjXC5Uuy5Ba/kzYBWCV6QQtX9/ngCgHrP/ez2Y5pGTBoqiNYd7CXGz4gynAo2yXdTzRJCR2TAOpZKYjf52ezqCTq3Sh+FsbIlDZqpvycyEmk9jgLbGREz1MveVPzP66QmrPgZl0lqmKTzRWEqkInRNALU54pRI8aWEKq4vRXRIVGEGhtU3oaAl19eJc1yCXslfI0L1RrMkYNTOIMLwHAJVahBHRpAQcEDPMOLc+88Oq/O27x1zVnMnMAfOO8/3tuTtw==</latexit><latexit sha1_base64="LQreGSIO+N3n7tXi89GpRPOs3bE=">AAAB9XicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaKUlsKDGRjwROsrcssGFv77I7pyEX/oeNhcbY+l/s/DcucIWCL5nk5b2ZzMwLYikMuu63k9va3tndy+8XDg6Pjk+Kp2dtEyWa8RaLZKS7ATVcCsVbKFDybqw5DQPJO8H0duF3Hrk2IlL3OIu5H9KxEiPBKFrpoaxIH0XIDfGqtfKgWHIr7hJkk3gZKUGG5qD41R9GLAm5QiapMT3PjdFPqUbBJJ8X+onhMWVTOuY9SxW1m/x0efWcXFllSEaRtqWQLNXfEykNjZmFge0MKU7MurcQ//N6CY5qfipUnCBXbLVolEiCEVlEQIZCc4ZyZgllWthbCZtQTRnaoAo2BG/95U3SrlY8t+LdeaV6I4sjDxdwCdfgwQ3UoQFNaAEDDc/wCm/Ok/PivDsfq9ack82cwx84nz9VMpEY</latexit>

n⇥ 128
<latexit sha1_base64="abuIyilZGG02n6wFWP+O32pzT3U=">AAAB9XicbVC7SgNBFL3rM8bXqqXNYCJYhZ00pgzYpIxgHpCsYXYymwyZnV1mZpWw5D9sBBWxtfcz7PwQeyePQhMPXDiccy/33hMkgmvjeV/O2vrG5tZ2bie/u7d/cOgeHTd1nCrKGjQWsWoHRDPBJWsYbgRrJ4qRKBCsFYyupn7rjinNY3ljxgnzIzKQPOSUGCvdFiXqGh4xjXC5Uuy5Ba/kzYBWCV6QQtX9/ngCgHrP/ez2Y5pGTBoqiNYd7CXGz4gynAo2yXdTzRJCR2TAOpZKYjf52ezqCTq3Sh+FsbIlDZqpvycyEmk9jgLbGREz1MveVPzP66QmrPgZl0lqmKTzRWEqkInRNALU54pRI8aWEKq4vRXRIVGEGhtU3oaAl19eJc1yCXslfI0L1RrMkYNTOIMLwHAJVahBHRpAQcEDPMOLc+88Oq/O27x1zVnMnMAfOO8/3tuTtw==</latexit><latexit sha1_base64="LQreGSIO+N3n7tXi89GpRPOs3bE=">AAAB9XicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaKUlsKDGRjwROsrcssGFv77I7pyEX/oeNhcbY+l/s/DcucIWCL5nk5b2ZzMwLYikMuu63k9va3tndy+8XDg6Pjk+Kp2dtEyWa8RaLZKS7ATVcCsVbKFDybqw5DQPJO8H0duF3Hrk2IlL3OIu5H9KxEiPBKFrpoaxIH0XIDfGqtfKgWHIr7hJkk3gZKUGG5qD41R9GLAm5QiapMT3PjdFPqUbBJJ8X+onhMWVTOuY9SxW1m/x0efWcXFllSEaRtqWQLNXfEykNjZmFge0MKU7MurcQ//N6CY5qfipUnCBXbLVolEiCEVlEQIZCc4ZyZgllWthbCZtQTRnaoAo2BG/95U3SrlY8t+LdeaV6I4sjDxdwCdfgwQ3UoQFNaAEDDc/wCm/Ok/PivDsfq9ack82cwx84nz9VMpEY</latexit>

n⇥ 128
<latexit sha1_base64="abuIyilZGG02n6wFWP+O32pzT3U=">AAAB9XicbVC7SgNBFL3rM8bXqqXNYCJYhZ00pgzYpIxgHpCsYXYymwyZnV1mZpWw5D9sBBWxtfcz7PwQeyePQhMPXDiccy/33hMkgmvjeV/O2vrG5tZ2bie/u7d/cOgeHTd1nCrKGjQWsWoHRDPBJWsYbgRrJ4qRKBCsFYyupn7rjinNY3ljxgnzIzKQPOSUGCvdFiXqGh4xjXC5Uuy5Ba/kzYBWCV6QQtX9/ngCgHrP/ez2Y5pGTBoqiNYd7CXGz4gynAo2yXdTzRJCR2TAOpZKYjf52ezqCTq3Sh+FsbIlDZqpvycyEmk9jgLbGREz1MveVPzP66QmrPgZl0lqmKTzRWEqkInRNALU54pRI8aWEKq4vRXRIVGEGhtU3oaAl19eJc1yCXslfI0L1RrMkYNTOIMLwHAJVahBHRpAQcEDPMOLc+88Oq/O27x1zVnMnMAfOO8/3tuTtw==</latexit><latexit sha1_base64="LQreGSIO+N3n7tXi89GpRPOs3bE=">AAAB9XicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaKUlsKDGRjwROsrcssGFv77I7pyEX/oeNhcbY+l/s/DcucIWCL5nk5b2ZzMwLYikMuu63k9va3tndy+8XDg6Pjk+Kp2dtEyWa8RaLZKS7ATVcCsVbKFDybqw5DQPJO8H0duF3Hrk2IlL3OIu5H9KxEiPBKFrpoaxIH0XIDfGqtfKgWHIr7hJkk3gZKUGG5qD41R9GLAm5QiapMT3PjdFPqUbBJJ8X+onhMWVTOuY9SxW1m/x0efWcXFllSEaRtqWQLNXfEykNjZmFge0MKU7MurcQ//N6CY5qfipUnCBXbLVolEiCEVlEQIZCc4ZyZgllWthbCZtQTRnaoAo2BG/95U3SrlY8t+LdeaV6I4sjDxdwCdfgwQ3UoQFNaAEDDc/wCm/Ok/PivDsfq9ack82cwx84nz9VMpEY</latexit>

n⇥ 128
<latexit sha1_base64="abuIyilZGG02n6wFWP+O32pzT3U=">AAAB9XicbVC7SgNBFL3rM8bXqqXNYCJYhZ00pgzYpIxgHpCsYXYymwyZnV1mZpWw5D9sBBWxtfcz7PwQeyePQhMPXDiccy/33hMkgmvjeV/O2vrG5tZ2bie/u7d/cOgeHTd1nCrKGjQWsWoHRDPBJWsYbgRrJ4qRKBCsFYyupn7rjinNY3ljxgnzIzKQPOSUGCvdFiXqGh4xjXC5Uuy5Ba/kzYBWCV6QQtX9/ngCgHrP/ez2Y5pGTBoqiNYd7CXGz4gynAo2yXdTzRJCR2TAOpZKYjf52ezqCTq3Sh+FsbIlDZqpvycyEmk9jgLbGREz1MveVPzP66QmrPgZl0lqmKTzRWEqkInRNALU54pRI8aWEKq4vRXRIVGEGhtU3oaAl19eJc1yCXslfI0L1RrMkYNTOIMLwHAJVahBHRpAQcEDPMOLc+88Oq/O27x1zVnMnMAfOO8/3tuTtw==</latexit><latexit sha1_base64="LQreGSIO+N3n7tXi89GpRPOs3bE=">AAAB9XicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaKUlsKDGRjwROsrcssGFv77I7pyEX/oeNhcbY+l/s/DcucIWCL5nk5b2ZzMwLYikMuu63k9va3tndy+8XDg6Pjk+Kp2dtEyWa8RaLZKS7ATVcCsVbKFDybqw5DQPJO8H0duF3Hrk2IlL3OIu5H9KxEiPBKFrpoaxIH0XIDfGqtfKgWHIr7hJkk3gZKUGG5qD41R9GLAm5QiapMT3PjdFPqUbBJJ8X+onhMWVTOuY9SxW1m/x0efWcXFllSEaRtqWQLNXfEykNjZmFge0MKU7MurcQ//N6CY5qfipUnCBXbLVolEiCEVlEQIZCc4ZyZgllWthbCZtQTRnaoAo2BG/95U3SrlY8t+LdeaV6I4sjDxdwCdfgwQ3UoQFNaAEDDc/wCm/Ok/PivDsfq9ack82cwx84nz9VMpEY</latexit>

1⇥ 128
<latexit sha1_base64="re6A69ea/j7iDZJnGB4pG4r3iEk=">AAAB9XicbVC7SgNBFL3rM8bXqqXNYCJYhZ00pgzYpIxgHpCsYXYymwyZnV1mZpWw5D9sBBWxtfcz7PwQeyePQhMPXDiccy/33hMkgmvjeV/O2vrG5tZ2bie/u7d/cOgeHTd1nCrKGjQWsWoHRDPBJWsYbgRrJ4qRKBCsFYyupn7rjinNY3ljxgnzIzKQPOSUGCvdFjHqGh4xjXC5Uuy5Ba/kzYBWCV6QQtX9/ngCgHrP/ez2Y5pGTBoqiNYd7CXGz4gynAo2yXdTzRJCR2TAOpZKYjf52ezqCTq3Sh+FsbIlDZqpvycyEmk9jgLbGREz1MveVPzP66QmrPgZl0lqmKTzRWEqkInRNALU54pRI8aWEKq4vRXRIVGEGhtU3oaAl19eJc1yCXslfI0L1RrMkYNTOIMLwHAJVahBHRpAQcEDPMOLc+88Oq/O27x1zVnMnMAfOO8/f4uTeg==</latexit><latexit sha1_base64="rZzZFo28RAaKt8hwJMFqsgT1CkA=">AAAB9XicbVDLTgJBEOzFF+IL9ehlIph4Ijtc5EjihSMm8khgJbPDABNmH5np1ZAN/+HFg8Z49V+8+TcOsAcFK+mkUtWd7i4/VtKg6347ua3tnd29/H7h4PDo+KR4etY2UaK5aPFIRbrrMyOUDEULJSrRjbVgga9Ex5/eLvzOo9BGRuE9zmLhBWwcypHkDK30UKakjzIQhtBqrTwoltyKuwTZJDQjJcjQHBS/+sOIJ4EIkStmTI+6MXop0yi5EvNCPzEiZnzKxqJnacjsJi9dXj0nV1YZklGkbYVIlurviZQFxswC33YGDCdm3VuI/3m9BEc1L5VhnKAI+WrRKFEEI7KIgAylFhzVzBLGtbS3Ej5hmnG0QRVsCHT95U3SrlaoW6F3tFRvZHHk4QIu4Roo3EAdGtCEFnDQ8Ayv8OY8OS/Ou/Oxas052cw5/IHz+QP105Db</latexit>

1⇥ 128
<latexit sha1_base64="re6A69ea/j7iDZJnGB4pG4r3iEk=">AAAB9XicbVC7SgNBFL3rM8bXqqXNYCJYhZ00pgzYpIxgHpCsYXYymwyZnV1mZpWw5D9sBBWxtfcz7PwQeyePQhMPXDiccy/33hMkgmvjeV/O2vrG5tZ2bie/u7d/cOgeHTd1nCrKGjQWsWoHRDPBJWsYbgRrJ4qRKBCsFYyupn7rjinNY3ljxgnzIzKQPOSUGCvdFjHqGh4xjXC5Uuy5Ba/kzYBWCV6QQtX9/ngCgHrP/ez2Y5pGTBoqiNYd7CXGz4gynAo2yXdTzRJCR2TAOpZKYjf52ezqCTq3Sh+FsbIlDZqpvycyEmk9jgLbGREz1MveVPzP66QmrPgZl0lqmKTzRWEqkInRNALU54pRI8aWEKq4vRXRIVGEGhtU3oaAl19eJc1yCXslfI0L1RrMkYNTOIMLwHAJVahBHRpAQcEDPMOLc+88Oq/O27x1zVnMnMAfOO8/f4uTeg==</latexit><latexit sha1_base64="rZzZFo28RAaKt8hwJMFqsgT1CkA=">AAAB9XicbVDLTgJBEOzFF+IL9ehlIph4Ijtc5EjihSMm8khgJbPDABNmH5np1ZAN/+HFg8Z49V+8+TcOsAcFK+mkUtWd7i4/VtKg6347ua3tnd29/H7h4PDo+KR4etY2UaK5aPFIRbrrMyOUDEULJSrRjbVgga9Ex5/eLvzOo9BGRuE9zmLhBWwcypHkDK30UKakjzIQhtBqrTwoltyKuwTZJDQjJcjQHBS/+sOIJ4EIkStmTI+6MXop0yi5EvNCPzEiZnzKxqJnacjsJi9dXj0nV1YZklGkbYVIlurviZQFxswC33YGDCdm3VuI/3m9BEc1L5VhnKAI+WrRKFEEI7KIgAylFhzVzBLGtbS3Ej5hmnG0QRVsCHT95U3SrlaoW6F3tFRvZHHk4QIu4Roo3EAdGtCEFnDQ8Ayv8OY8OS/Ou/Oxas052cw5/IHz+QP105Db</latexit>
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Fig. 5 Neural network architecture.

TABLE II Neural Network Configuration

Part Layer Parameter Output

Vector fc1 27× 128 n× 128
part fc2 [128× 128]× 12 n× 128

conv1 [3× 3, 16]× 3 (n+ 1)× 99× 99× 16
conv2 [3× 3, 32]× 3 (n+ 1)× 33× 33× 32

Image conv3 [3× 3, 64]× 3 (n+ 1)× 11× 11× 64
conv4 [3× 3, 128]× 3 (n+ 1)× 4× 4× 128

part fc3 128× 256 (n+ 1)× 256
fc4 256× 128 (n+ 1)× 128
fc5 256× 128 n× 128

fc5 256× 128 n× 128
Merged fc2 [128× 128]× 9 n× 128

part fc6 128× 32 n× 32
fc7 32× 1 n× 1

features from heterogeneous input by processing vector-based
features (shown in the upper left) and image-based features
(shown in the upper middle) individually, and then processing
them together (shown in the lower left) after concatenating the
output of the vector and image part together.

For the image part of the network, note that the image-
based features of the sink fragment are the same in the batch,
so we only process them once, to save runtime, and its output
is distributed to the output of every source images. Besides,
all the image-based features go through the same shared
network because the same set of information is needed to be
extracted. Thus, each image-based feature is first processed
individually through a shared convolutional neural network to
reduce runtime. Processing image-based features from source
fragments and sink fragments through the same network can
also make better use of all layout images. The shared network
contains twelve convolution layers (red colored, labeled as
conv) and two fully connected layers (blue colored, labeled
as fc). The output from the sink image is then concatenated
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with every output from the source images and the combination
passes through one more 128-way fully connected layer. For
the vector part of the network, vector-based features are first
transformed by a 128-way fully connected layer. Then, there
are four residual networks (ResNet) blocks (purple colored,
labeled as res) which can resolve the gradient vanishing
problem while training very deep neural networks [21]. The
output of a ResNet block is the sum of its input and the
output of three fully connected layers as shown in the middle
sub-figure of Fig. 5. After that, the output from the image
part is concatenated with the output from the vector-based
features. There is one 128-way fully connected layer to
down-size the combination. The network ends with three
ResNet blocks and two more fully connected layers. The filter
and parameter configuration of the neural network is listed
in TABLE II. Both fully connected layers and convolutional
layers are followed by a leaky rectified linear unit (LReLU)
with y = max(0.01x, x) as activation, where x is the input
and y is the output [22].

C. SoftMax Regression Loss

Given a query of a batch of n VPPs with at most one
positive VPP, the network predicts the connection probability
s1, s2, . . . , sn for each VPP. The task for connection pre-
diction is to determine the index of the correct VPP to be
connected:

argmax
i

si, (3)

as there can only be one source in a net.
While prior work handles similar problems as multi-class

classification or two-class classification, e.g., see [3], we
note that conventional multi-class classification approaches
are in lack of two important properties for our work. In
fact, exponential effort would be required to conduct data
augmentation if we were to use conventional multi-class
classification methods. Firstly, the classification result for
prior approaches depends on the order of classes, whereas for
this work, the connection prediction should be independent of
the order. Secondly, and more importantly, none of the prior
methods can handle a variable number of classes, which is
natural for the VPP connection prediction in our work, as
this prediction is subject to a variable number of candidates.

Simply modeling the VPP connection problem as a two-
class classification problem is not appropriate, either. The
main difference between our problem and classical regression
problems is that we only care about the relative predicted
probability between the only one positive VPP and the
remaining negative ones, instead of their absolute values.
Consequently, only the VPP with the largest predicted prob-
ability matters in the result. Moreover, an outlying negative
VPP prediction would easily mislead the matching. Assuming
a traditional two-class classification formulation, where the
input of the neural network contains n VPPs with the same
sink fragment, the loss of the two-class classification is

lr = − 1

n

log
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t
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−
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+
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+
∑
j 6=t
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−
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−
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j

 , (4)

whose partial derivative with respect to each score of either
class is

∂lr
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) otherwise,
(5)

where s+j and s−j are the scores of connection and non-
connection for the j-th source fragment with 1 ≤ j ≤ n and
t is the index of the true connection. The partial derivative
with respect to the i-th weight of either neuron in the last
fully connected layer is

∂lr

∂w+
i

= − ∂lr

∂w−i
=

1

n

 n∑
j=1

es
+
j xi,j

es
−
j + es

+
j

− xi,t

 , (6)

where xi,j is the i-th input value of the last fully connected
layer for the j-th source fragment. Therefore, the score of
each source fragment acts independently on the gradient. The
coefficient of the positive part of the gradient, which is due
to the negative samples, is limited to 1 so that the VPP with
even the largest connection probability will not dominate the
gradient. As a result, misprediction of one VPP, which would
significantly influence our desired output as in Equation (3),
barely affects the average loss. Additionally, the numbers of
positive and negative VPPs are imbalanced as most of the
VPPs are negative samples. The negative part of the gradient,
which is due to the only positive sample, is divided by the
number of VPPs in the batch. Therefore, such a two-class
classification model has a serious imbalance problem as it can
easily gain a high accuracy by simply classifying all VPPs as
negative, which is meaningless.

To resolve these problems, we consider only one score sj
for the j-th source fragment with 1 ≤ j ≤ n. We propose the
following SoftMax regression loss

lc = − log
est∑n
j=1 e

sj
, (7)

whose partial derivative with respect to each score of connec-
tion is

∂lc
∂sj

=


esj∑n

j=1 esj
− 1 if j = t,

esj∑n
j=1 esj

otherwise.
(8)

The partial derivative of our proposed loss with respect to the
i-th weight of the only neuron in the last fully connected layer
is

∂lc
∂wi

=

∑n
j=1 e

sjxi,j∑n
j=1 e

sj
− xi,t, (9)

in which the shortcomings of conventional two-class and
multi-class classification models are resolved as follows.
Firstly, the source fragment with higher score contributes
more significantly in the gradient with an exponential factor.
Let jmax be the index of the largest sj . As the positive
part of the loss is dominated by xi,jmax , we have ∂lc

∂wi
≈

xi,jmax − xi,t. Secondly, the summation of the coefficients
in the positive part equals to that of the negative part, so
there is no imbalance issue. Thirdly, given any permutation
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of source fragments, the most probable source fragment is
consistently selected. Fourthly, the network can handle any
number of source fragments as input.

With these four advantages considered, the proposed Soft-
Max regression loss better reflects our way of computing the
output as in Equation (3), which is also supported by the
empirical results.

V. DEFENSE AGAINST DEEP LEARNING ATTACK

Routing perturbations represent an effective means for
security-aware physical design to protect split-manufactured
layouts from proximity attacks [19]. In contrast, placement
perturbations can incur large overheads and the perturbations
are eventually offset by routing, rendering designs vulnerable,
especially when split after higher layers [23], [24].

In this work, we seek to defend split-manufactured lay-
outs by randomly inserting routing blockages within the
FEOL metal layers. Since commercial tools from leading
vendors employ deterministic physical-design algorithms, a
DNN which is trained on a sufficiently large database of
physical layouts can help capturing the essence of the behavior
of those tools. Therefore, to ensure that advanced DL-based
attacks (or any other attack) cannot easily circumvent the
security promises offered by our defense, we shall introduce
sufficient randomness during the layout generation. Given
the same inputs and constraints, multiple design runs should
provide sufficiently different solutions, to prevent attackers
from learning the defense strategy. Still, all solutions have to
remain fully compliant with design and manufacturing rules,
which is achieved by employing commercial-grade tools.

It is understood that randomized routing-level perturbations
will have an impact on the power, performance, and area
(PPA) of the design and, hence, the degree of randomness
should also remain controllable. Therefore, during the first
step of our defense strategy, the designer has to provide the
percentage of g-cells which shall be blocked at various layers.
For example, assuming a split layer of M6, the designer should
insert blockages throughout any layer(s) of choice below M6.
Next, we identify the die and core boundary of the design and
the size of a g-cell. The total number of g-cells is derived
accordingly for all the layers where the designer seeks to
insert blockages. Then, an iterative process is conducted as
follows: a random layout location (x, y, z), snapped to the
nearest g-cell location, is chosen, and a routing blockage of
the same size as the g-cell is introduced into the design. This
process is repeated until the blockage requirements specified
by the designer are fulfilled. Note that we keep track of the
number of blockages already added across the metal layers,
also accounting for the preferred routing directions of those
layers. We do so to guide the iterative process such that no
bias is introduced (by random chance) toward a particular
metal layer and/or a specific routing direction.

Once all routing blockages have been introduced into the
design, the global router is invoked again, re-routing the
blocked parts of all affected nets. Note that we freeze the
placement, to support a fair PPA comparison and a fair
security evaluation. Next, we perform a design rule check

Fig. 6 Example of routing blockages inserted in ITC-99
benchmark b22_C. (Left) Routing blockages in green are
randomly inserted for M3, in yellow for M4, and in red for
M5, respectively. Note that colors for the background and
for pins at the core boundary are value-inverted for better
visibility. (Right) Re-routed layout after blockage insertion.

(DRC) for the re-routed solution and, once the design is
devoid of any DRC violations, the routing blockages are
removed again and the Design Exchange Format (DEF) is
generated and streamed out for attack analysis. In case DRC
violations are reported, which is expressed by an overflow of
routing resources introduced by some particular blockages, we
select among those violating blockages and iteratively remove
some of them until a DRC-clean layout can be obtained.
Exemplary layout snapshots for randomly inserted routing
blockages and the re-routed, DRC-clean layout for the ITC-99
benchmark b22_C are shown in Fig. 6.

VI. EXPERIMENTAL INVESTIGATION

We conduct six sets of experiments as follows. In the
first set, we evaluate the effectiveness of our proposed DL
attack and compare it with the state-of-the-art network-flow
attack [2] and the machine-learning attack [3]. In the second
set, we compare the performance of our attack against the
network-flow attack for a particular congested design. In the
third set, we illustrate the impact of randomized insertion of
routing blockages on the aforementioned attacks [2], [3]. In
the fourth set, we evaluate the impact of blockages on timing-
critical and congested designs. In the fifth and sixth sets of
experiments, we analyze the layout cost as induced by routing
blockages on regular ITC-99 benchmarks with timing-critical
and congested versions, respectively.

We implement our feature extraction with C++ and train
the model with Python and TensorFlow [25]. Without loss
of generality, we select 31 VPPs for each sink fragment as
the input of our DL attack based on the proposed criteria
in Section IV-A. The learning rate is set as 0.001 and decayed
to 60% for every 10 epochs. We execute all DL experiments
on a 64-bit Linux machine with Intel Xeon 2.2 GHz CPUs
and an NVIDIA Titan V GPU. We set the maximum runtime
as 100,000 seconds (more than 24 hours) for all attacks and
report CCR (Equation (1)) as the primary metric. Recall that
CCR serves well as a measure for attack effectiveness, but
not so much for IP protection. Besides, all the network-flow
attacks are executed on a high-performance computing (HPC)
facility where each computational node has two 14-core Intel
Broadwell processors (Xeon E5-2680), running at 2.4 GHz.
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Further, each node has 128 GB RAM in total and 4 GB RAM
are guaranteed (by the Slurm HPC scheduler) for each attack.

A. Evaluation and Comparison with State-of-the-Art Attacks

1) Setup: In the first set of experiments, we derive a total
of nine training and five validation designs (all combinational
ones) from the ISCAS-85 [26], MCNC [27], and ITC-99
benchmark suite [28]. Concerning testing layouts, we use
the same benchmarks as mentioned in [2] to ensure a fair
comparison. We guarantee that the training, validation, and
testing layouts are derived from different designs.

We use the academic NanGate 45 nm Open Cell Li-
brary [17] with ten metal layers. Synopsys Design Compiler
M-2016.12-SP2 is used for synthesis; Cadence Innovus 17.1
is used for placement and routing. All training, validation,
and testing layouts are devoid of any DRC violations. Once a
layout is generated, we export the DEF file and split the layout
after M1 or M3, respectively, providing two sets to evaluate
the attacks for different split layers. We also use this setup
for all other sets of experiments, unless specified otherwise.

2) Results: We list the CCR for our proposed attack and
the state-of-the-art attack [2] in TABLE III, where the results
vary across the different designs. In general, the fewer nets are
split, the fewer candidates are to consider for each fragment,
and the higher the CCR tends to be. Besides, we note that
design rules, timing constraints, and core utilization may also
affect CCR, but for ours, interpreting the working of the
DL attack in more detail would not be straightforward, as
is the case with most DL models. We evaluate the success of
the network-flow attack ourselves using the binary released
in [29]. We note that the runtime of [29] exceeds the limit on
several large designs (due to repetitive trials for removal of
combinational loops). Our DL attack outperforms the state-of-
the-art attack by 1.21× and 1.12× CCR when splitting after
M1 and M3, respectively. Our inference time (including fea-
ture extraction) is significantly shorter, namely only 0.001×.

We further verify the effectiveness of our proposed softmax
regression loss and image-based features. For these experi-
ments, the baseline is using only the vector-based features
with the loss Equation (4) for simple two-class classification.
With the softmax regression loss in Equation (7), the aver-
age CCR is 1.07× that of the baseline. When additionally
employing the image-based features, the average CCR further
improves to 1.09×. We note that using the softmax regression
loss also marginally improves the runtime. Thanks to the
efficient layout encoding and network structure, the runtime
for further using the image-based features remains comparable
to that of only using the vector-based features.

We also compare our method with another machine-
learning attack [3]. Originally, the attack [3] provides only a
list of candidates (LoC) for every fragment, no matter whether
it is a source or sink fragment. We modify the code provided
by [3] to only report the LoCs for sink fragments since an
attacker can readily distinguish sink fragments from source
fragments; this is relevant as an attacker needs to select a
source for each sink fragment. We consider the three metrics
proposed in [3]: (1) |LoC| designates the average size of

the identified list of candidates for each testing benchmark,
(2) classification accuracy measures the number of times that
the actual match of a fragment is included in its LoC, and
(3) success rate of proximity attack, which is identical to
CCR. We introduce a fourth metric, called precision, which
is the fraction of actual matching among LoC, calculated as
accuracy over |LoC|. TABLE IV provides the results for [3]
and for our proposed attack. For ours, note that we select every
VPP into the LoC whose score is higher than a reference value
s0; s0 = −8 across all benchmarks. While achieving very
similar accuracy, our |LoC| is on average just 0.53×, meaning
that we can correctly infer the actual match using much
smaller LoCs. On average, we achieve 1.24× the precision
and even 2.20× the CCR compared to [3].

Besides, we have also synthesized the designs considered
in this section using an advanced technology node. We have
conducted the first-ever attack on split manufacturing in the
context of the 7 nm node, using the ASAP7 library [30].
Here we like to caution that it is not meaningful to directly
compare the final CCR results across two nodes; the related
technologies are quite different in many ways, including the
cell types, numbers of metal layers, resistance and capacitance
for each layer, design rules, etc., resulting in considerably
different physical layouts. For example, the layouts obtained
using the ASAP7 library exhibit, on average, around 5× the
number of source pins and 4× the number of sink pins, when
compared to the layouts obtained using the NanGate 45 nm
Open Cell Library [17]. Accordingly, we observe that CCR
efficacy tends to be more limited. Still, for larger designs such
as the ITC-99 benchmark b18_C, our results obtained for the
advanced node [30] even outperform those obtained for the
mature node [17], which indicates that our DL framework is
capable of handling large-scale, advanced, and more complex
layouts. More results on attacking split-manufactured layouts
of advanced nodes will be presented in future work.

B. Evaluation on Congested Design
1) Setup: In the second set of experiments, we execute

our DL attack on the Low-Density Parity Check (LDPC)
benchmark from [31], which is an inherently wire-dominated
design and thus suitable for exploring the impact of congestion
on our attack. We synthesize with a timing constraint of 5 ns
(200 MHz) and place and route with the utilization of 15%.

While performing initial experiments, we noticed that the
LDPC benchmark was unroutable, with around 17k DRC
violations and many congestion hotspots forming only after
the detailed placement stage. Upon investigation, we could
attribute this to large counts of AOI22 cells, which are
characterized by high pin densities, thereby not only inducing
congestion but even hindering routing in the vicinity of
many instances. Thus, we next employed a setup change as
follows: AOI22 cells are disabled during synthesis, but no
such restriction is imposed on Cadence Innovus during place
and route. Doing so restored routability, resulted in DRC-
clean layouts, all while allowing for some AOI22 instances to
be introduced by layout optimization. Importantly for this set
of experiments, the design remained congested, as confirmed
per the congestion maps examined after placement.
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TABLE III Comparison With [2] on Selected ISCAS-85 and ITC-99 Benchmarks

Design
Split Layer: Metal 1 Split Layer: Metal 3

# Sink # Source CCR (%) Runtime (s) # Sink # Source CCR (%) Runtime (s)
Pins Pins [2] Ours [2] Ours Pins Pins [2] Ours [2] Ours

b07_C 520 235 8.43 10.19 326.13 8.55 115 51 55.65 84.35 0.67 3.62
b11_C 738 296 9.05 10.03 1719.46 11.06 213 57 66.67 66.67 0.94 4.20
b13_C 430 215 10.42 17.91 130.82 7.53 88 52 42.05 70.45 0.44 3.55
b14_C 6338 2864 N/A 8.57 > 100000 77.62 2117 583 30.33 30.42 2576.42 16.08
b15_C 10176 3847 N/A 5.79 > 100000 130.30 4910 1235 26.42 24.24 38292.53 33.50
b17_C 32385 12479 N/A 4.08 > 100000 599.47 16190 4590 N/A 19.03 > 100000 157.61
b18_C 84292 33703 N/A 4.59 > 100000 2861.27 32719 9359 N/A 23.74 > 100000 453.66
c1355 403 226 9.90 12.41 151.22 7.65 77 32 89.61 97.40 0.50 3.53
c1908 432 213 8.49 11.11 260.50 7.45 54 27 94.44 87.04 0.47 3.34
c2670 803 428 6.32 9.46 2251.82 11.70 206 120 54.85 58.74 1.48 4.64
c3540 1354 512 6.41 8.49 39187.25 17.55 452 124 54.87 51.11 7.39 5.42
c432 231 121 11.26 8.23 15.62 5.29 43 21 76.74 86.05 0.37 3.35
c5315 1919 847 7.50 9.33 94281.90 23.59 590 248 52.20 62.03 26.11 6.81
c6288 4124 2160 N/A 14.52 > 100000 49.64 551 78 63.16 61.52 7.13 4.22
c7552 2008 1108 12.10 11.11 48656.51 22.82 296 175 50.34 72.30 7.64 3.72
c880 460 234 11.09 13.91 568.99 6.31 77 37 71.43 76.62 0.74 2.34

Average* 9.18% 11.11% 13889.37 s 10.67 s 59.20% 66.35% 2923.06 s 7.02 s
Ratio 1.00× 1.21× 1.000× 0.001× 1.00 1.12× 1.000× 0.002×

* For fairness, designs on which [2] times out are excluded for the calculation of average values.

TABLE IV Comparison With [3] on Selected ISCAS-85 and
ITC-99 Benchmarks Split after Metal 3

Design Accuracy (%) |LoC| Precision (%) CCR (%)
[3] Ours [3] Ours [3] Ours [3] Ours

b07_C 94.12 96.08 15.96 12.27 5.90 7.83 35.29 52.94
b11_C 82.46 85.96 23.60 20.60 3.49 4.17 21.05 64.91
b13_C 100.00 98.08 18.44 14.42 5.42 6.80 28.85 44.23
b14_C 85.93 76.67 103.11 47.39 0.83 1.62 15.61 43.74
b15_C 83.56 78.06 178.85 86.15 0.47 0.91 8.18 33.52
b17_C 61.39 58.98 273.02 127.05 0.22 0.46 4.81 22.33
b18_C 54.91 50.25 209.84 74.45 0.26 0.67 4.01 23.29
c1355 100.00 100.00 11.88 10.22 8.42 9.79 40.63 78.13
c1908 100.00 100.00 12.15 10.30 8.23 9.71 29.63 81.48
c2670 95.83 97.50 31.16 29.95 3.08 3.26 31.67 53.33
c3540 91.13 89.52 42.18 29.39 2.16 3.05 11.29 64.52
c432 95.24 95.24 7.10 11.10 13.42 8.58 52.38 85.71
c5315 95.56 96.77 65.77 47.25 1.45 2.05 21.37 52.42
c6288 82.05 82.05 29.77 8.72 2.76 9.41 35.90 78.21
c7552 98.86 99.43 41.51 28.34 2.38 3.51 32.57 53.14
c880 100.00 100.00 14.22 10.49 7.03 9.54 32.43 62.16

Average 88.82% 87.79% 67.41 35.51 4.10% 5.08% 25.35% 55.88%
Ratio 1.00× 0.99× 1.00× 0.53× 1.00× 1.24× 1.00× 2.20×

We further perform iterative synthesis runs to generate ten
different netlists, which are functionally equivalent but exhibit
different gate-level implementations. We perform placement
and routing for all eleven layouts, and arrange the layouts
into ten for training and cross-validation, and one for testing.

2) Results: We execute the network-flow attack [2] on
the LDPC benchmark considering M8 as the split layer; this
particular layer had to be considered since the attack [2]
already ran into time-out for the split layer of M6. The
CCR obtained for the network-flow attack is 28.92%. Recall
that, to handle heavily congested layouts, our image-based
features are specifically devised to capture routing detours.
Accordingly, our attack achieves a CCR of 39.63%, which is
a notable improvement over the network-flow attack.

C. Routing Perturbation as Defense

1) Setup: In the third set of experiments, we derive six
combinational designs from the ITC-99 benchmark suite [28].

The essence for layout generation and the DL setup is
described in Sec. VI-A1. Furthermore, the procedures for
routing perturbation (Sec. V) are implemented as custom
TCL scripts working with Cadence Innovus 17.1. We consider
splitting after M6 and, hence, insert routing blockages in M3,
M4, and M5, respectively. In case a different split layer is
chosen by the designer, blockages can be added accordingly.
Since we divide the number of blockages across three metal
layers, out of which M3 and M5 are horizontal metal layers,
and M4 is a vertical layer, more blockages are assigned to
M4, while the remaining blockages are distributed uniformly
across the horizontal layers. For the first batch of experiments,
labeled as Fewer Blks, we block 12%, 22%, and 12% of the
g-cells in M3, M4, and M5, respectively, while in the second
batch (More Blks) we block 17%, 25%, and 17% g-cells
for the same layers. In general, we add blockages such that
timing overheads do not exceed 5% much, and all layouts are
clocked at iso-performance of 5ns. For each design in these
two batches, we generate 100 layouts with routing blockages
inserted randomly following our proposed defense strategy.
As indicated, we ensure that the final layouts remain routable
after our perturbation procedures and are devoid of any DRC
violations. We release our protected layouts in [32].

We perform a comparative analysis on the randomized
insertion of routing blockages leveraging the proposed DL
attack and the network-flow attack [2]. For our DL attack,
we consider two different training approaches as follows.
In the first approach, we pick 40 of the 100 layouts to
train the DL model, cross-validate the model using ten other
layouts, and attack the remaining 50 unseen layouts; all
layouts arising from one design. For each benchmark under
attack, a corresponding model is trained individually and
that particular model is used only for attacking its respec-
tive benchmark. We refer to this as the robust approach;
it represents the most rigorous approach for evaluating the
strength of the defense, which can only be conducted by the
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TABLE V Comparison With [2] on Selected ITC-99 Bench-
marks Split after M6

Benchmark No Blk Fewer Blks More Blks
[2] Ours # Blks [2] Ours # Blks [2] Ours

b14_C 51.06 80.85 605 55.58 53.61 800 40.10 37.26
b15_C 56.16 60.96 916 31.88 34.50 1216 25.59 29.84
b17_C 24.24 26.07 2377 20.11 25.12 2687 20.90 25.40
b20_C 61.19 72.03 1271 36.12 35.67 1685 29.78 32.00
b21_C 56.40 69.55 1269 41.94 44.53 1682 32.98 34.15
b22_C 47.64 55.36 1874 32.92 34.73 2486 27.36 31.62

Average 49.45 60.80 – 36.42 38.03 – 29.45 31.71

The CCR results for our DL attack are obtained using the robust approach.

b1
4_
C

b1
5_
C

b1
7_
C

b2
0_
C

b2
1_
C

b2
2_
C

20

40

60

80

C
C

R
/

%

(a) Robust approach.
b1
4_
C

b1
5_
C

b1
7_
C

b2
0_
C

b2
1_
C

b2
2_
C

20

40

60

80

(b) Leave-one-out approach.

No Blk Fewer Blks More Blks

Fig. 7 CCR results for our DL attack when splitting after
M6, considering selected ITC-99 benchmarks, which are
protected with randomly inserted routing blockages. For each
benchmark and for each configuration/scenario, we have inde-
pendently conducted 50 runs; all the results are summarized in
boxplots. The upper and lower boundaries of each box span
from the 5th to the 95th percentile for the respective data
set, while the whiskers represent the minimal and maximal
values, the bars inside the boxes represent the median, and
the grey dots reflect outliers; all concerning the 50 runs for
the respective configuration. Besides, red dots represent the
attack results for the respective original, unprotected layouts.

security-enforcing designers itself, not by an actual attacker.
In our second approach, we leverage a leave-one-out scheme
as follows. Given six designs in total, we use five designs
(with ten layouts each) to train a model that is then used
to attack the one remaining, unseen design. Accordingly, a
model is created for each design under attack, with 50 layouts
available for learning. Note that an attacker can take such an
approach.

2) Results: For both the network-flow attack [2] and our
DL attack, we present the CCR results for layouts split after
M6 in TABLE V. In the presence of the defense, our attack
outperforms the network-flow attack in all cases. Next, we
describe the findings in more detail.

First, we discuss the results for the robust learning ap-
proach. Again, we are considering this approach to thor-

oughly evaluate the strength of our routing-perturbation de-
fense scheme. The corresponding CCR results are illustrated
in TABLE V and Fig. 7 (a). The average CCR results for the
layouts with less blocked g-cells (“Fewer Blks,” grey bars)
are 53.61%, 34.5%, 25.12%, 35.67%, 44.53%, and 34.73%,
respectively. This corresponds to an average reduction of CCR
by 22.78 percentage points (i.e., the arithmetic difference
of percentage values, pp for short) across all benchmarks
when compared to the original, unprotected designs. Once
we block even more g-cells (“More Blks,” blue bars), the
CCR accuracy drops further: average CCR values are 37.26%,
29.84%, 25.4%, 32%, 34.15%, and 31.62%, respectively. This
corresponds to an average reduction of CCR by 29.09 pp
across all benchmarks, indicating the strength of the proposed
defense even for this robust evaluation mode.

Next, we consider the regular leave-one-out learning ap-
proach where we assume that the design to be attacked is
not available for training. The results for both batches of g-
cell blockages are illustrated in Fig. 7 (b). The average CCR
results for “Fewer Blks” (grey bars) are 52.24%, 30.58%,
17.91%, 33.45%, 41.55%, and 34.67%, respectively. This
corresponds to a CCR reduction of 25.74 pp on average
across all benchmarks. Increasing the number of blockages
has a noticeable impact; the average CCR results for “More
Blks” (blue bars) are 36.13%, 23.92%, 17.68%, 27.81%,
33.52%, and 24.55%, respectively, which corresponds to a
CCR reduction of 33.53 pp across all benchmarks on average.

Overall, we note that the CCR can be reduced signifi-
cantly by our randomized routing-perturbation defense. We
also note that there is no significant difference for CCR
results between the robust and the leave-one-out learning
approach, which confirms the generality and efficacy of the
models learned across different designs. For larger designs
like b17_C, however, which are more difficult to attack in
general (give the many fragments to be considered), we note
that more blockages are more challenging to attack under
the leave-one-out approach in particular. This demonstrates
the effectiveness of our defense for large designs under the
realistic attack/learning model.

We also perform similar experiments for the network-flow
attack [2]. The corresponding CCR results are illustrated
in Fig. 8. For the “Fewer Blks” batch (grey bars), the average
CCR values are 55.58%, 31.88%, 20.11%, 36.12%, 41.94%,
and 32.92%, respectively. Comparing these with the CCR
values observed for original, unprotected layouts, we observe
reductions by 13.02 pp on average across all benchmarks.
Note that there is no significant reduction for benchmark
b14_C; this is because the CCR result for the unprotected
layout came out lower than expected, to begin with, i.e., when
considering expectations arising from our DL attack (Fig. 7).
For the “More Blks” batch (blue bars), as expected, the CCR
numbers are further reduced: average CCR results are 40.1%,
25.59%, 20.91%, 29.78%, 32.98%, and 27.36%, respectively.
Compared to the original layouts, this setup of blocking more
g-cells provides better protection by enforcing lower CCR by
20.00 pp on average across all benchmarks. When comparing
the network-flow attack with our proposed DL attack, our
method outperforms in all cases, as also shown in TABLE V.
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TABLE VI Increase in Via Counts for Our Proposed Defense on Selected ITC-99 Benchmarks

Benchmark Fewer Blks More Blks

Name Total Nets Placement Total Vias ∆+V67† ∆+V78† Total Vias ∆+V67† ∆+V78† Total Vias
Util. (%) Before Lifting After Lifting After Lifting After Lifting After Lifting After Lifting After Lifting

b14_C 3009 70 17810 235 50 19478 370 129 20302
b15_C 4306 60 31347 623 313 36481 869 438 38376
b17_C 15477 70 113187 2166 1087 137754 2489 1210 142073
b20_C 7425 70 41455 799 359 47373 1107 556 49658
b21_C 7407 70 41377 684 254 45855 998 447 47907
b22_C 11439 65 62883 1145 497 71614 1603 783 75027
† This denotes the increase in the number of vias when compared to original, unprotected layouts, as averaged over 100 protected layouts.
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Fig. 8 CCR results for the network-flow attack [2] when
splitting after M6, considering selected ITC-99 benchmarks,
which are protected with randomly inserted routing blockages.
Each scenario for each benchmark considered covers 50 runs.
The interpretation of the boxplot is the same as Fig. 7.

D. Routing Perturbation as Defense on Congested and
Timing-Critical Designs

1) Setup: In the fourth set of experiments, we evaluate
the impact of randomized insertion of routing blockages
on the security of timing-critical and congested designs,
respectively. To mimic timing-critical designs, we synthesize
the selected ITC-99 benchmarks for a 4 ns constraint (250
MHz frequency); we note that constraining at even faster
timing (e.g., for 3 ns) violated some paths during synthesis.
Concerning the congested design, we leverage the LDPC
design following the same setup explained in Sec. VI-B1.
We consider splitting after M6 for timing-critical ITC-99
benchmarks and insert routing blockages in M3, M4, and
M5. In contrast, we consider splitting after M8 for LDPC
and accordingly insert blockages in M4, M5, M6, and M7. We
block 12%, 22%, and 12% of the g-cells in M3, M4, and M5,
respectively, for timing-critical ITC-99 benchmarks, whereas
we block 5%, 6%, 6%, and 5% g-cells for M4, M5, M6,
and M7, respectively, for the congested LDPC benchmark.
These numbers of blockages are without loss of generality
but chosen carefully after multiple runs to ensure DRC-clean.

2) Results: The baseline CCR for unprotected layouts is
71.64%, 65.21%, 63.16%, and 56.35% for b14_C, b15_C,
b20_C, and b22_C, respectively. Upon inserting the ran-
domized routing blockages, we observe an average reduction

of 30.37 pp, 35.6 pp, 25.69 pp, and 26.63 pp, respectively,
when compared to these CCR baselines. The CCR for the
unprotected LDPC benchmark is 28.92%, and invoking our
defense strategy reduces the CCR to 25.42%. Although the
drop in CCR is only at 3.50 pp, our defense helps to
increase the absolute number of wrongly inferred connections
significantly, and thereby increases the scale of IP protection.
For example, splitting the original LDPC benchmark after M8
results in 2,743 cut nets, while for our defense technique, we
note 3,629 cut nets, i.e., an increase of 32.3%.

E. Layout Costs Induced by Routing-Perturbation Defense

1) Setup: As demonstrated, the proposed defense is effec-
tive in hindering both the network-flow attack [2] and the our
DL attack. In this fifth set of experiments, we investigate the
timing and power costs incurred by this defense. Recall that
we do not incur any overheads for die area. The analysis is
carried out for the slow process corner, using a supply voltage
of 0.95V. To ensure fairness for this layout evaluation (and the
above security evaluation), we did “freeze” the placement of
all the designs and introduced randomized routing blockages
only to affect the routing of the layouts. Also, we add
blockages such that the timing overheads do not exceed 5%
much and such that no DRC violations occur. All layouts are
clocked at iso-performance of 5ns.

2) Results: The timing and power overheads for selected
ITC-99 benchmarks are shown in Fig. 9. For the “Fewer
Blks” batch, the power overheads are on average 2.24%,
4.21%, 4.29%, 3.27%, 2.43%, and 3.35%, respectively for
b14_C, b15_C, b17_C, b20_C, b21_C, and b22_C over
original, unprotected layouts. The average timing overheads
for the same batch and same set of benchmarks are 2.71%,
3.97%, 2.16%, 3.61%, 2.7%, and 3.76%, respectively. Upon
increasing the number of blockages (“More Blks”), we ob-
serve a steady increase in power: the average overheads
are now 3.32%, 6.78%, 9.91%, 7.46%, 3.95%, and 6.15%,
respectively. This increase is, as expected, particularly pro-
nounced for larger designs like b17_C. The timing overheads,
however, increase only marginally, to on average 3.67%,
4.32%, 2.21%, 3.97%, 3.42%, and 4.26%.

Since the insertion of routing blockages forces the router to
lift the nets above the split layer and/or detour nets through
regions where there are no blockages, an increase in the total
count of vias (due to lifting of nets) and wirelength (due to
detouring of nets) is expected. We confirm this by contrasting
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TABLE VII Increase in Metal Wirelength for Our Proposed Defense on Selected ITC-99 Benchmarks

Benchmark Fewer Blks More Blks

Name Total Wirelength ∆+M6‡ ∆+M7‡ ∆+M8‡ Total Wirelength ∆+M6‡ ∆+M7‡ ∆+M8‡ Total Wirelength
Before Lifting (µm) After Lifting After Lifting After Lifting After Lifting After Lifting After Lifting After Lifting After Lifting

b14_C 30540 2309 1537 362 33885 2710 1777 824 35273
b15_C 62470 3780 2676 2031 70193 5256 3415 2930 75012
b17_C 261088 14937 7100 4142 304556 15878 7387 4333 307821
b20_C 79397 5384 5225 2852 94243 7600 6139 4500 101268
b21_C 76678 5336 4418 1810 85760 6734 5340 2769 90437
b22_C 130983 9717 7640 4342 145396 13134 8841 6737 155888

‡ This denotes the increase in the respective metal layer wirelength when compared to original, unprotected layouts, as averaged over 100 protected layouts.
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Fig. 9 Timing and power overheads for selected ITC-99
benchmarks for zero die-area overhead. Each scenario for each
benchmark considered covers 50 runs. The interpretation of
the boxplots is the same as Fig. 7.

these metrics for the unprotected layouts without blockages
versus our protected layouts with blockages.

In TABLE VI we note an increase in vias for selected
ITC-99 benchmarks. For the “Fewer Blks” batch, the in-
crease in total vias are on average 9.37%, 16.38%, 21.7%,
14.28%, 10.82%, and 13.88%, respectively, for b14_C,
b15_C, b17_C, b20_C, b21_C, and b22_C over original,
unprotected layouts. Upon increasing the number of blockages
(“More Blks”), the total increase in total vias for the same set
of benchmarks are 14%, 22.42%, 25.52%, 19.79%, 15.78%,
and 19.83%, respectively. These numbers attest to the fact
that more nets have been lifted above the split layer for both
configurations of the proposed routing-perturbation scheme.

Furthermore, the increases in wirelength are shown in TA-
BLE VII. With “Fewer Blks,” the average increase in total
wirelength for the same set of benchmarks are 10.95%,
12.36%, 16.65%, 18.69%, 11.84%, and 11%, respectively.
As the number of blockages are increased with “More Blks,”
the average increase rises to 15.5%, 20.07%, 17.9%, 27.55%,
17.94%, and 19.01%, respectively, which shows that larger
parts of the nets reside in the higher layers.

F. Layout Costs Induced by Routing-Perturbation Defense on
Congested and Timing-Critical Designs

1) Setup: In the sixth set of experiments, we evaluate
layout costs for the ITC-99 benchmarks (where timing closure
is performed at 4 ns to mimic timing-critical designs) and for
the congested LDPC benchmark. For the ITC-99 benchmarks,
all designs are generated considering an initial utilization of
70%. For the LDPC benchmark, setup details are the same as
in Sec. VI-B1. For both benchmarks, blockages are iteratively
added such that timing overheads do not exceed 5% much and
such that no DRC violations occur.

2) Results: First, we discuss the timing and power over-
heads for ITC-99 benchmarks considering the aggressive
timing closure. The power overheads are on average 2.82%,
5.39%, 8.25%, 2.59%, 2.48%, and 3.42%, respectively, for
b14_C, b15_C, b17_C, b20_C, b21_C, and b22_C over
original, unprotected layouts. The average timing overheads
for the same batch and same set of benchmarks are 1.96%,
3.72%, 0.46%, 2.31%, 2.32%, and 2.77%, respectively. Sec-
ond, we discuss the overheads incurred for the congested
LDPC benchmark. We observe an instance increase of 2.07%,
which translates to an increase in standard-cell area of 4.5%;
note that this additional standard-cell area does not impact the
die area. This increase in instance count and the increase in
wirelength (4.49%) leads to a power overhead of 7.1%, albeit
at a minimal timing overhead of 0.72%.

Thus, we conclude that our proposed routing-perturbation
technique is feasible even for timing-critical and congested
designs, and that the re-routing required after insertion of
routing blockages is naturally imposing power overheads, by
virtue of using additional buffer(s) and/or upsizing of standard
cells, under the traditional objective of maintaining timing.

VII. CONCLUSION

In this work, we presented an effective and efficient attack
on split manufacturing using deep learning. Firstly, we pro-
posed suitable vector-based and image-based features as well
as a neural network architecture that simultaneously processes
these heterogeneous features. We further proposed a SoftMax
regression loss that directly reflects on the accuracy for the
virtual pin pair matching problem of split manufacturing and
eliminates imbalance issues found in the prior art. Compared
with the state-of-the-art network-flow attack [2], the correct
connection rate (CCR) is improved by 21% and 12% when
splitting after metal layers M1 and M3, respectively. More-
over, our attack’s runtime is significantly better, namely less



LI et al.: DEEP LEARNING ANALYSIS FOR SPLIT MANUFACTURED LAYOUTS WITH ROUTING PERTURBATION 13

than 1% when compared to [2]. We extended our comparison
to [3], considering the size and accuracy for their notion of
lists of candidates; for ours, the average size is significantly
reduced, namely by 47%, while the accuracy is sacrificed
only marginally, namely by 1%. Furthermore, our CCR is on
average 2.2× that of [3]. For the first time, we also studied
the prospects of attacking layouts split for an advanced node,
where we found that our proposed attack performed relatively
well for larger designs. Taking this motivating finding further
will be the scope for future work. Finally, we proposed a
randomized strategy for routing-blockage insertion, which de-
grades the effectiveness (expressed by CCR) for the network-
flow attack and our deep-learning attack, with an acceptable
impact on power and timing and zero overhead for die area.
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