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Abstract—Logic locking aims to protect the intellectual prop-
erty (IP) of integrated circuit (IC) designs throughout the glob-
alized supply chain. The SAIL attack, based on tailored machine
learning (ML) models, circumvents combinational logic locking
with high accuracy and is amongst the most potent attacks as
it does not require a functional IC acting as an oracle. In this
work, we propose UNSAIL, a logic locking technique that inserts
key-gate structures with the specific aim to confuse ML models
like those used in SAIL. More specifically, UNSAIL serves to
prevent attacks seeking to resolve the structural transformations
of synthesis-induced obfuscation, which is an essential step for
logic locking. Our approach is generic; it can protect any local
structure of key-gates against such ML-based attacks in an
oracle-less setting. We develop a reference implementation for
the SAIL attack and launch it on both traditionally locked
and UNSAIL-locked designs. For SAIL, two ML models have
been proposed (which we implement accordingly), namely a
change-prediction model and a reconstruction model; the change-
prediction model is used to determine which key-gate struc-
tures to restore using the reconstruction model. Our study on
benchmarks ranging from the ISCAS-85 and ITC-99 suites to
the OpenRISC Reference Platform System-on-Chip (ORPSoC)
confirms that UNSAIL degrades the accuracy of the change-
prediction model and the reconstruction model by an average
of 20.13 and 17 percentage points (pp), respectively. When
the aforementioned models are combined, which is the most
powerful scenario for SAIL, UNSAIL reduces the attack accuracy
of SAIL by an average of 11pp. We further demonstrate that
UNSAIL thwarts other oracle-less attacks, i.e., SWEEP and the
redundancy attack, indicating the generic nature and strength
of our approach. Detailed layout-level evaluations illustrate that
UNSAIL incurs minimal area and power overheads of 0.26%
and 0.61%, respectively, on the million-gate ORPSoC design.

Index Terms—Logic locking, Hardware security, IP protection,
Hardware obfuscation, Machine learning

I. INTRODUCTION

THE substantial and continuously increasing manufactur-
ing costs have led most of the semiconductor industry

to adopt a fabless business model. Leading semiconductor
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Fig. 1. Illustration of logic locking using X(N)OR logic gate. (a) Original
design. (b) Locked design using an XOR key-gate (light gray) controlled by
key-input k1; the correct key is 0. (c) Re-synthesized locked design. The key-
gate is transformed to an XNOR key-gate (dark gray), along with localized
transformations of other gates, but the correct key remains 0.

design houses such as Apple® and Qualcomm® outsource their
fabrication to off-shore foundries, which may be potentially
untrustworthy. Attackers present in the integrated circuit (IC)
supply chain can compromise the security of the underlying
hardware during fabrication, testing, assembly, and packaging.
Several hardware-focused attacks can be launched by attack-
ers, which include (but are not limited to) reverse engineering,
illegal overproduction, intellectual property (IP) piracy, and
implantation of malicious circuits known as hardware Tro-
jans [1]. Several design-for-security techniques seek to prevent
IP piracy during the untrusted manufacturing stage, such
as state-space obfuscation [2], split manufacturing [3], [4],
hardware metering [5], and logic locking [6], [7]. The prime
focus of this paper is to address the shortcomings of traditional
logic locking techniques in offering protection during the
untrusted manufacturing stage. The important technical terms
used in the paper are defined in Table I to ease readability.

A. Logic Locking

In logic locking, additional key-gates are inserted in the
original design to obfuscate its underlying functionality. These
key-gates are controlled by key-inputs ~k, driven by an on-chip
tamper-proof memory. The locked design functions properly
only after programming the correct key. An example of logic
locking is illustrated in Fig. 1. The original design is shown
in Fig. 1(a) where a suitable place for key-gate insertion is
marked. An XOR key-gate is inserted, which is driven by an
original signal from the netlist and the newly introduced key-
input k1 as depicted in Fig. 1(b). The correct key-bit for an
XOR key-gate must be 0 to maintain the original functionality
of the design. However, as one can observe, it would be
trivial for an attacker to identify the correct key owing to
the one-to-one mapping between the type of key-gate and the
corresponding key value.
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TABLE I
DEFINITION OF COMMON TERMS

Term Description

Key-gate
A key-gate is a newly added gate and more precisely interposed into the design, driven by an original wire from the netlist and a newly introduced key-input k.
Only when the correct key-bit value for k is assigned, that key-gate would maintain/restore the functionality of the design; otherwise, it would remain locked,
i.e., non-functional.

Locked netlist A netlist where selected nets are locked using key-gates driven by key-inputs (connected to a tamper-proof memory).

Oracle-less attack
An attacker with access only to the GDSII representation of a locked design performs reverse engineering to obtain the locked netlist.
Therefore, the attacker needs to get around the logic locking scheme and all its key-gates focusing on structural analysis.
This is in contrast to the majority of attacks being oracle-guided, where the attacker holds a working chip, essential for functional verification.

Subgraph Locality around a key-gate; different sizes of subgraphs serve to capture different fan-in and fan-out cones of key-gates.
Pre-/Post-subgraph Pre-/Post-synthesis key-gate subgraph. These are essential to describe the obfuscation of key-gates induced by re-synthesis.
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Fig. 2. Integration of logic locking in the IC supply chain. An attacker in the fab can launch an oracle-less attack on a locked netlist, obtaining the original
design. Such a threat is considered more dangerous than that of an oracle-guided attack, which requires a working chip, as it can be easily launched by
further adversaries at an earlier stage in the supply chain. The flow of an oracle-less attack is highlighted in the red dotted rectangle. In contrast, the flow of
an oracle-guided attack is illustrated in the orange dotted rectangle. In this work, we focus on oracle-less attacks only.

To decorrelate this kind of inference/information leakage,
logic locking schemes incur obfuscation through iterative
rounds of synthesis.1 We refer to such an obfuscation pro-
cedure as “re-synthesis” throughout the paper. The locked and
re-synthesized design is shown in Fig. 1(c). Still, without any
further efforts, the scale and persuasiveness of such obfusca-
tions are subject alone to the synthesis tool, whose objectives
and metrics are not focused toward security. These and other
risks incurred by design tools during the implementation of
secure schemes have been acknowledged, e.g., see [8], [9].

Fig. 2 illustrates the integration of logic locking in the IC
supply chain. Logic locking is commonly implemented on a
synthesized design where the key is the designer’s secret. Post-
testing, the correct key is loaded into the chips either by the
design house or another trustworthy entity.

B. Threat Models and Assumptions

Most of the existing research on logic locking assumes an
oracle-guided threat model (orange dotted box in Fig. 2). In
such a scenario, an attacker has access to (i) a locked netlist
and (ii) a functional IC holding the correct key (in a tamper-
and access-proof memory), useful for functional verification of
any attack inference. An attacker can obtain the locked netlist
by reverse-engineering the layout of a chip, and another chip
can be used as an oracle for functional verification. However,
these chips must be obtained from the open market; they
become available only sometime after fabrication.

Another threat arises from fab-based adversaries who have
access to all the structural information of an IC during
manufacturing but do not possess an activated, working IC
required for functional verification. That is, if adversaries can

1Synthesis is a design stage which “compiles” an algorithmic/behavioral
description to an optimized hardware implementation consisting of logic gates.

devise attacks using only the locked netlist, such oracle-less
attacks could compromise the security offered by logic locking
very early in the supply chain, which represents a more potent
threat model. The red dotted box in Fig. 2 indicates the flow
of an oracle-less attack.

C. Scope of This Work

This work is motivated by the recent emergence of oracle-
less, machine learning (ML)-based attacks on logic locking.
Our objective is to develop an effective technique to delineate
the learning of an ML-based framework, leading to low
accuracy of such otherwise powerful attacks. We propose
UNSAIL, a defense mechanism that can be integrated with any
traditional logic locking technique, to protect locking against
learning-based oracle-less attacks, mainly the SAIL [10] and
SWEEP [11] attacks.

Again, the main focus of this work on UNSAIL is to thwart
oracle-less attacks and protect the design during the untrusted
manufacturing stage. Nevertheless, UNSAIL can be readily
integrated with some SAT-attack resilient locking technique,
to achieve a two-layer defense protecting against both oracle-
guided and oracle-less attacks.

The primary contributions of this work are as follows:
1) We implement a framework for the UNSAIL defense

which can be easily integrated with any combinational
logic locking technique and any design-tool suite (e.g.,
Synopsys Design Compiler).

2) We develop a reference framework of SAIL and imple-
ment the algorithms as outlined in [10].

3) We perform a thorough and detailed analysis of our
proposed UNSAIL technique. To that end, we have studied
the effect of different types of key-gates, different key-
sizes, and other key-gate insertion algorithms. We also
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study the effect of randomizing the selection of key-gates
when securing against different oracle-less attacks.

Through our elaborate experimental study, the effective-
ness of UNSAIL for protecting combinational logic locking
techniques against the oracle-less ML-based SAIL [10] and
SWEEP [11] attacks is showcased. To the best of our knowl-
edge, no other defense mechanisms have been proposed to mit-
igate these potent attacks. Additionally, our experiments also
demonstrate that UNSAIL can thwart non-ML-based oracle-
less attacks such as the redundancy attack [12].

More specifically, five sets of comprehensive experiments
are performed to validate the effectiveness of UNSAIL: (i) eval-
uating the change-prediction model of SAIL; (ii) evaluating the
reconstruction model of SAIL; (iii) evaluating the full SAIL
attack, where both models are used in conjunction; (iv) eval-
uating the SWEEP attack; and (v) evaluating the redundancy
attack. Throughout our experiments using benchmarks from
the ISCAS-85 and ITC-99 suite and the OpenRISC Reference
Platform System-on-Chip (ORPSoC), the proposed defense
is shown to effectively reduce the accuracy of the different
ML models of SAIL by an average of 20.13, 17, and 11
percentage points (pp), respectively. In addition, the accuracy
for the SWEEP attack reduces by an average of 15pp, show-
casing that our defense is resilient against another powerful
oracle-less, learning-based attack. The average percentage of
UNSAIL’s key-bits recovered by the redundancy attack is 38%,
demonstrating that UNSAIL also protects against this non-
ML-based oracle-less attack. Layout-level evaluations show
that our defense incurs minimal area and power overheads of
0.26% and 0.61%, respectively, on the million-gate ORPSoC
design.

The remainder of this paper is organized as follows. The
landscape of attack and defense strategies for logic locking
is reviewed in Sec. II. Details about the relevant prior art of
oracle-less ML-based attacks on logic locking are provided
in Sec. III. Section IV presents the concept of our proposed
UNSAIL scheme, whereas the implementation details of both
the SAIL attack and the UNSAIL defense are given in Sec. V.
The experimental setup is described in Sec. VI, and our de-
tailed experimental study is presented in Sec. VII. Section VIII
provides a discussion, and we conclude in Sec. IX.

II. LOGIC LOCKING TECHNIQUES AND RELATED ATTACKS

A. Brief Overview of Logic Locking

Traditional Logic Locking. Early research in logic lock-
ing focused on finding suitable places for the insertion of
key-gates. Researchers proposed several key-gate insertion
algorithms such as random logic locking (RLL) [6], fault
analysis-based logic locking (FLL) [13], and strong/secure
logic locking (SLL) [14]. Researchers also investigated the use
of different logic gates for obfuscation, e.g., X(N)OR gates [6],
[13], AND/OR gates [15], multiplexers (MUXes) [13], etc.
One advantage of such schemes is the high output corruption
induced upon the application of incorrect keys.

SAT-Attack Resilient Logic Locking. An adversary with
access to a functional IC can launch several attacks on the
aforementioned logic locking techniques. The most potent

oracle-guided attack is the SAT-based attack, which compro-
mised all existing logic locking schemes at that time [16]. In
response to this powerful attack, researchers began developing
SAT-attack resilient solutions such as Anti-SAT [17], stripped
functionality logic locking (SFLL) [18], and SFLL-fault [19].
With each newly introduced SAT-attack resilient scheme,
tailored oracle-guided attacks emerged, such as Double-
DIP [20], AppSAT [21], etc.

B. Oracle-Less Attacks on Logic Locking

The initial research was primarily focused on protecting
logic locking from the SAT-based and other derivative attacks,
which require an oracle. Recently, various oracle-less attacks
have been proposed that rely only on structural properties of
the locked design. They can be classified as follows.

Oracle-Less Attacks on SAT-Attack Resilient Logic
Locking. Such attacks focus on structural properties of SAT-
attack resilient techniques and attempt to circumvent their
security promise by identifying and removing the added
protection logic, thereby isolating the original circuit cone.
Examples include the SFLL-hd–unlocked attack [8], the func-
tional reverse engineering-based attack [22], and the functional
analysis attacks [23]. One of the drawbacks of SAT-attack
resilient locking techniques [17]–[19] is that they thwart the
SAT-based attack [16] by inducing a low output corruption
for incorrect key-assignments. As a result, SAT-attack re-
silient locking techniques are usually integrated with a high-
corruptibility locking technique such as RLL or FLL [18], to
achieve security against removal attacks. Such an integration is
commonly referred to as two-layer locking. In order to recover
the original design, both layers must be broken.

Oracle-Less Attacks on Traditional Logic Locking. This
category includes the de-synthesis attack [24], the redundancy
attack [12], and the ML-based SAIL [10] and SWEEP [11]
attacks, all of which target traditional logic locking. For
example, with the redundancy attack by Li et al. [12], the
authors observed that incorrect assignment(s) of the key-bit
value(s) result in more redundancies in the netlist, enabling
them to prune out incorrect key-assignments.

Most relevant for this work, SAIL [10] leverages ML to
learn localized structural changes induced by re-synthesis for
obfuscation of logic locking (see Fig. 3). SWEEP [11] utilizes
a feature weighting algorithm to learn and perform a mapping
between design features and the correct key. Both these attacks
are discussed in more detail next.

III. PRIOR WORK ON ORACLE-LESS ML-BASED ATTACKS
ON TRADITIONAL LOGIC LOCKING

A. SAIL [10]

In SAIL [10], the authors have shown that ML models can
learn and revert the structural changes induced by re-synthesis,
for traditional logic locking techniques (e.g., RLL, FLL, and
SLL). Often there is a direct correspondence between the
type of key-gate and the key-bit value, as illustrated earlier
in Fig. 1. Hence, logic locking techniques seek to apply
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structural changes for all the key-gates using iterative re-
synthesis, thereby obfuscating the correspondence between the
type of key-gate and the key-bit value.

Utilizing the locked design C’(~x, ~k), SAIL seeks to recover
the original netlist C(~x), where ~x is the vector of regular inputs
and ~k is the vector of additional key-inputs. The notion of
SAIL is to learn the structural changes introduced on key-gates
by deterministic design tools, logic synthesis in particular. The
authors of [10] have shown that SAIL succeeds in (i) retrieving
the locked design before synthesis, and (ii) obtaining the
key values by analyzing the type of retrieved key-gates. A
conceptual example is illustrated in Fig. 3.

The flow of SAIL is shown in Fig. 4. In addition to the
locked netlist C’, the attacker also requires knowledge of the
underlying logic locking technique C’ = lock(C, ~k) and
the synthesis setup. To generate training data, another round
of locking is first implemented on top of the locked design,
providing C’’(~x, ~k, ~k1) = lock(C’, ~k1). Local structures
around key-gates, which are identified by their connection
to key-inputs ~k1, are extracted as pre-synthesis subgraphs or
pre-subgraphs for short, denoted as set S. Next, the design
C’’ is synthesized and, similarly, structures around key-gates
connected to ~k1 are extracted as post-synthesis subgraphs or
post-subgraphs for short, denoted as set S’. This procedure
is repeated multiple times to generate an extensive data set of
pre-subgraphs and post-subgraphs of various degrees.2 This
data set is then used to train two ML models: ML1, a change-
prediction model and ML2, a reconstruction model. Given
a key-gate and some surrounding structure from the locked
design under attack, ML1 shall predict whether the related
subgraph went through a structural change due to re-synthesis
and, if any change is predicted, ML2 shall revert the change,

2Some examples of subgraphs can be found in Fig. 5 and Fig. 6.

providing the original, un-obfuscated key-gate. More details
for the two ML models are discussed next.

Change-Prediction Model ML1. This model is built using
the notion of Random Forest (RF), an ensemble-based model
scheme used for classification or regression problems. In
general, an RF is composed of multiple decision trees trained
independently, and the model outputs the most voted class
by individual trees. For SAIL, the sets S and S’ are to be
compared, providing a Boolean change indicator. The set [S’,
change indicator] is then provided to the RF classifier in which
each decision tree is trained using separately bootstrapped
samples from the data set [25]. Moreover, a subset of attributes
is randomly chosen from the available attributes to split each
tree at each node, as is common practice for RF [26]. However,
further details, such as the number of decision trees employed,
have not been provided in [10].

Reconstruction Model ML2. This model consists of a multi-
layer, multi-channel neural network. The model is trained
using the set [S’,S]; however, the details of the network
structure, training algorithm, or weight initialization have
not been provided in [10]. Generating the training data and
conducting the training procedure is to be conducted again
for each newly introduced design and each newly introduced
logic locking scheme, while the form of training data remains
the same for both ML1 and ML2.

B. SWEEP [11]

SWEEP [11] is a constant-propagation attack developed to
circumvent MUX-based logic locking [13]. In MUX-based
logic locking, the key-gates are commonly 2:1 MUXes,
where the “true input” is connected with the intended signal
of the original design, while the “false input” is connected to
another signal of the original design [13]. As the true input
can be easily made either to be the first or the second input
pin of the MUX, the key-bit provided at the select pin of the
MUX can be accordingly either 0 or 1—there is no inherent
information leakage as there is no fixed correspondence of
correct key-bit values and MUX key-gates.

Still, SWEEP succeeded in learning the synthesis-induced
structural changes as follows. The attack is made aware of
(i) the obfuscation algorithm leveraged for selecting signals
for true and false inputs, and the (ii) locked design. The attack
performs a training stage in which the obfuscation algorithm
is utilized to generate some locked designs with known correct
key-bit values. Next, an iterative procedure is followed. Each
key-input is visited twice, setting the correct/incorrect key
value as a constant and synthesizing the locked design for
both cases. A set of features is extracted from the synthesis
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Fig. 5. High-level concept of UNSAIL. Left: training SAIL models after
incorporating UNSAIL. The same subgraph has two distinct labels, funda-
mentally undermining training efforts for SAIL. Right: accordingly, SAIL
cannot determine whether the subgraph went through change or not, which
is an essential step for the attack’s efficacy.

reports obtained for both cases (correct versus incorrect key-bit
assignment). A feature weighting algorithm is utilized to learn
the correlation between the extracted features and the correct
key-bit values. Once training is completed, the same constant-
propagation technique used in the training stage is utilized
to extract the features from the design under attack. Finally,
the correct key-bit values are identified using the weighted
function generated from the training data.

IV. PROPOSED DEFENSE

In this work, we propose UNSAIL, a defense scheme that
aims to confuse oracle-less ML-based attacks on logic locking,
particularly but not exclusively the ML models used in SAIL.

In general, the quality of training data determines the
accuracy and performance of any ML system. Thus, a specific
goal for UNSAIL is to inject “bad data” during learning.
As shown in Fig. 5, our key idea is to replicate data that
evokes different attack responses. Specifically, we introduce
identical subgraphs in the final locked netlist that could readily
be classified as either “Changed” or “Unchanged,” thereby
confusing both ML1 and ML2 of SAIL. In other words, the “bad
data” injected by UNSAIL propagates through SAIL, feeding
into its ML models and inducing flawed inferences.

Next, we outline the working principle of UNSAIL. A
motivational example is shown in Fig. 6. Note that more
implementation details for UNSAIL are also given in Sec. V-B.

First, a design is locked traditionally, using any combina-
tional logic locking technique of choice, with only a subset
of all the desired key-gates being inserted at this stage (say,
K/2). This locked design is then passed through synthesis,
which transforms some of the key-gates and surrounding
structures (i.e., the subgraphs). For the remaining key-gates
(say, the other K/2), UNSAIL then carefully “injects” identical
subgraphs in that post-synthesized design. Essentially, there
are two parts to this. First, we tackle the subgraphs, which
remained unchanged during synthesis. For that, we want to
revisit the synthesis stage and add transformable UNSAIL
key-gate structures matching to the specific sets of gates
which remained unchanged so far. In other words, we want
synthesis to work on UNSAIL structures, which will then
undergo changes. Second, we can achieve a similar effect
for the structures that already went through change due to
the earlier synthesis step by adding the same structures in
the post-synthesized design. The newly added structures are

not generated by the synthesis tool and did not undergo any
structural change. Since the resulting UNSAIL-locked design
now contains genuinely transformed subgraphs and “injected”
ones in sufficiently large numbers, SAIL will fail to identify
structural changes with confidence.

V. METHODOLOGY

A. Implementation of SAIL

The concept of SAIL was presented in [10]; we have also
reviewed it in Sec. III. However, the precise setup details were
not provided in [10]. Thus, in this work, we implement SAIL
according to the best of our understanding. As it is forming
an essential part as a baseline for our work, we discuss our
SAIL implementation in some detail.

We encode the subgraphs as vectors that describe the order
of gates in the subgraph structures. We consider the following
sizes of subgraphs, or sub-sizes for short: sub=3, sub=5, and
sub=6. A subgraph is extracted and encoded as an individual
vector for each key-input in the locked design for all sub-
sizes. For example, if the design is locked using K=64 and
sub-sizes of sub=3, sub=5, and sub=6 are considered, then
64 subgraphs/vectors are extracted from the locked design for
each sub-size, or 192 subgraphs/vectors in total. We note that
in SAIL, the authors considered sub-sizes from sub=3 up to
sub=10, and they observed that (a) the accuracy of the SAIL
classifier increased with the sub-size but also (b) the average
accuracy saturated for sub-size of sub=5 to sub=6 [10].

After extracting all vectors, we apply a one-hot encoding
on them, and we feed the encoded vectors to a classifier
model ML1 that we built as described in [10] and reviewed
in Sec. III. Concerning the reconstruction model ML2, the
authors in [10] described it merely as a multi-input multi-
channel network; however, no details were given regarding
the type of the network used nor regarding its dimensions. In
order to reproduce the results of SAIL, we had to implement
and test several network types for ML2, such as feedforward
neural network and recurrent neural network. The model that
showed the best results was a sequence-to-sequence (Seq2Seq)
encoder-decoder model with attention.3 We implemented the
encoder using an embedding layer and two long short-term
memory (LSTM) layers. The embedding converts the tex-
tual encoded vectors (representing subgraphs) into vectors of
real numbers. The decoder model is implemented using two
LSTMs with attention. ML2 is an ensemble model; hence,
we have trained three such models for the different sub-
sizes considered (sub=3, sub=5, and sub=6). The models
were combined using a cumulative voting scheme. More
implementation and setup details are also provided in Sec. VI.

B. Implementation of UNSAIL

Fig. 7 illustrates the UNSAIL flow, which can be integrated
with any combinational logic locking technique. To protect

3In general, such models consist of an encoder processing the input and a
decoder processing the output, while the attention mechanism serves for the
decoder to focus on the relevant parts of the encoded input when generating
the translation. Such models are commonly used in automated translation and,
for our work, the goal is to translate the post-subgraphs to pre-subgraphs.
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Fig. 6. Example of UNSAIL integrated with X(N)OR logic locking scheme. (a) Original design. (b) Locked design using one XOR key-gate; the correct key
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the original design C using a key-size of K, C is first locked
using K/2 key-bits following the logic locking technique of
the designer’s choice. Next, the locked design C’ is passed
through synthesis, to obtain an obfuscated design C’o. The
local structures around all key-gates (i.e., subgraphs) are
obtained from both C’ and C’o and compared to detect any
changes induced by re-synthesis. The subgraphs that went
through synthesis-induced changes are selected and stored in
a dictionary data structure. Note that subgraphs which did not
go through changes during synthesis are also stored for later
use, in a separate set U.

Next, the dictionary is used to guide the insertion of the
remaining K/2 key-gates. The search is carried out until all
the remaining key-bits are assigned with key-gates. Note that,
if some particular entry cannot be found in the locked netlist,
we can easily “fill-up” remaining key-bits by leveraging some
more instances of other entries previously found. Some of the
UNSAIL-locked structures are synthesized to the specific set
of gates in U to confuse the learning of the ML-models further.

In this work, the subgraph extraction, UNSAIL key-gates
insertion stages, and RLL are implemented using Perl scripts
that operate directly on Verilog netlists.

C. Scope and Effect of UNSAIL

We emphasize that for SAIL [10], only X(N)OR-based logic
locking is evaluated. In our work, however, we thoroughly
investigate the impact of various types of key-gates (Table II).

TABLE II
VARIATIONS OF KEY-GATES USED IN THIS WORK

Locking Variations Types of Key-Gates
X(N)OR X(N)OR key-gates

CL v1
Multiplexers key-gates constructed using AND, OR gates
& multiplexers key-gates constructed using NAND gates

CL v2
Multiplexers key-gates constructed using NOR gates

& CL v1

CL v3
X(N)OR key-gates

& CL v2

CL v4
AND/OR key-gates

& CL v3

CL is short for compound locking where a mix of various key-gates are used.

The motivation for considering different structures is as
follows. X(N)OR key-gates, which are commonly applied for
many logic locking schemes, can be replaced by MUXes,
which are more resilient against most attacks when compared
to simple gates (as also indicated in Sec. III-B). For such
replacement, the locked net and its negated signal would be
connected to the MUX inputs in one of the two possible
orders, and the resulting key-bit is connected to the MUX
select line (see also Fig. 12(a) on page 13). However, given
that the negated signal might be easy to identify from the
netlist structure, such an otherwise resilient MUX could be
tackled by SAIL and similar attacks. Thus, we advocate to vary
and mix different types of key-gates, and we study the effect
of such compound locking (CL). Note that, when locking the
designs with the CL variations (Table II), the type of the key-
gate is chosen randomly from the set of key-gates. We perform
such random selection to break the deterministic nature of the
mapping problem targeted at by the ML models of SAIL.

Next, we conduct an exploratory experiment on two cases
for the ITC-99 benchmark b17_C to understand the impact
of UNSAIL on the final structure of locked designs. For case
a), we lock the benchmark with K=512, using only RLL,
but considering all the different key-gate structures listed in
Table II. For each structure considered, 20 instances of RLL
designs are generated. For case b), we lock the benchmark
using both RLL and UNSAIL; each technique is employed
to realize 256 key-bits, resulting in K=512. As in a), we
consider all the different structures, and 20 locked instances
are generated for each of the structures.

For both cases, first, the post-subgraphs and pre-subgraphs
are extracted. The post-subgraphs that went through change
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Fig. 8. Visualizing the pre-subgraph and post-subgraph data using t-distributed stochastic neighbor embedding [27]. (Top) Aggressive synthesis optimization
is performed on the RLL benchmarks and, thus, in most cases, the “Changed” and “Unchanged post-synthesis subgraphs can be clearly differentiated, which
is the main requirement for SAIL. (Bottom) Once UNSAIL is incorporated, these classes are largely overlapping, and the more substantial the overlap, the
larger the complexity for the classification problem in general, i.e., for any classifier model, including the one used for SAIL.

due to synthesis are labeled as “Changed” and those unaltered
as “Unchanged.” The related data is then projected non-
linearly to 2D using t-distributed stochastic neighbor embed-
ding (t-SNE) [27]. Fig. 8(top) represents the data set for
RLL traditionally employed—for most key-gate structures;
one cluster is dominant, namely that for “Changed” post-
subgraphs. Applying UNSAIL, however, can render such clas-
sification significantly more difficult—clusters are primarily
overlapping, as shown in Fig. 8(bottom). In short, enhancing
logic locking through UNSAIL, we can expect a large overlap
between classes, essentially ensuring “bad data,” thereby hin-
dering appropriate training of SAIL (or, for that matter, any
ML-based attack on structural properties of locked netlists).

To further quantify the difficulty of separating/learning
the classes, we study the classification accuracy in detail.
Although we investigate various classification models, as dis-
cussed in more detail in Sec. VII-A, the robustness of such
insights depends on the classifier choices/parameters. Thus,
our first goal is to support our claim that UNSAIL can incur
a difficult classification problem for any classifier type.

The related notion of meta-analysis of supervised ML
models is a research area that aims to correlate the inherent
complexity of a dataset with the performance of the classi-
fiers [28]. Several metrics, including the maximum Fisher’s
discriminant ratio F1 [29], have been proposed to characterize
the classification complexity inherent to datasets [30], [31]. F1
has been shown to be effective for quantifying the difficulty
in separating the data into corresponding classes and, hence,
in portraying the complexity of the respective classification
problem [30]–[32]. In general, Fisher’s discriminant ratio f
measures how strongly two classes differ along with a specific
feature and is defined as follows:

f =
(µ1-µ2)2

(σ1)2 + (σ2)2

where µx represent the mean of the feature values for class
x and σx represents the standard deviation of the feature

TABLE III
MAXIMUM FISHER’S DISCRIMINANT FOR K=512 AND SUB=3 ON

SELECTED ITC-99 BENCHMARKS

Key-gates X(N)OR CL v1 CL v2 CL v3 CL v4
Insertion RLL UNSAIL RLL UNSAIL RLL UNSAIL RLL UNSAIL RLL UNSAIL

b14 C 2.15 1.03 2.13 0.57 3.75 0.66 6.37 0.71 1.41 0.90
b15 C 1.30 0.85 2.06 0.61 3.73 0.75 5.47 0.80 1.04 0.65
b20 C 1.60 0.90 1.98 0.60 4.75 0.82 2.64 0.84 1.22 0.98
b21 C 1.56 2.00 2.00 0.65 4.75 0.63 3.09 2.00 2.00 2.00
b22 C 1.76 0.98 1.94 0.62 3.01 0.86 5.61 0.62 1.21 1.00
b17 C 0.97 0.83 2.04 0.69 3.95 0.45 9.60 0.87 2.00 2.00

Average 1.56 1.10 2.03 0.62 3.99 0.70 5.46 0.97 1.48 1.25

values. The range of the ratio is [0 −→ ∞]. A small ratio
indicates a substantial overlap between the classes. The larger
the ratio, the easier is the separation of the two classes using
that feature/attribute. Hence, to measure the overlap between
two classes in general, f is calculated for all of the considered
features. Then the maximum ratio F1 is selected to judge the
separability of the classes.

It is expected that F1 will be lower for UNSAIL when
compared to RLL. We quantify the F1 ratio for both UNSAIL
and RLL on selected ITC-99 benchmarks for K=512 and
sub=3 (Table III). Indeed, the results support our claim: On
average, UNSAIL achieves a 55.72% reduction in the F1
ratio, which translates to complex classification problems in
general. It is expected that the effect of UNSAIL on the change-
prediction classification should be more prominent for those
cases where a significant reduction can be observed, i.e., for
particular flavors of compound locking. This is verified in
Sec. VII-A, as the results obtained there show that compound-
based UNSAIL locking affects the classification stage more
than X(N)OR-based UNSAIL locking.

VI. EXPERIMENTAL SETUP

Here, we provide the details regarding the experimental
setup followed in our work. See also Fig. 9 for an overview.
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Fig. 9. The various components employed in our study. Gray colored boxes
represent scripts developed/implemented in-house.

A. Test Cases

We study the effectiveness of UNSAIL on eight combina-
tional benchmarks from the ISCAS-85 suite and six combi-
national benchmarks from the ITC-99 suite. Similar to the
exploratory experiment in Sec. V-C, we consider two cases:
a) RLL, and b) UNSAIL based on RLL. For both cases, each
benchmark is locked using all the different key-gate structures
in Table II. For case a), ISCAS-85 benchmarks are locked with
K=64 and K=128, respectively, while ITC-99 benchmarks are
locked with K=256 and K=512, respectively. Moreover, each
benchmark is locked 20 times for each structure, resulting in
a total of 2,800 RLL instances. For each structure, key-size,
and benchmark, one of these 20 locked instances is considered
as circuit under attack and excluded from the training set,
resulting in a total of 140 attacked RLL instances. For case b),
same benchmarks are locked, considering the same parameters
as above, while following the UNSAIL procedure.

Besides leveraging RLL, we also integrate UNSAIL with
FLL [13] and SLL [14], respectively. Locked instances of
selected ISCAS-85 benchmarks are generated using the open-
source tool provided in [33]. Since the aforementioned logic
locking techniques are essentially X(N)OR-based logic lock-
ing, we train the model using RLL-based logic locking and
launch the attack on the FLL-based and SLL-based locked
instances with K=128. Independently, we also investigate
UNSAIL when locking the GPS module in the million-gate
ORPSoC design [34].

B. Setup for Security Evaluation

The SAIL model ML1 is implemented as a RF model with
50 decision trees and also as a support vector machine (SVM)
using a radial basis function Gaussian kernel. The hyper-
parameters for the SVM classifier were re-evaluated for each
trained model and, thus, the kernel parameters such as the scale
vary depending on the circuit under attack and its correspond-
ing training set. The SAIL model ML2 is implemented as an
ensemble of Seq2Seq encoder-decoder models with attention,
as described in Sec. V. We use an embedding dimension of
256 for both the encoder and decoder. All of the LSTM
layers consist of 200 hidden units. In order to mitigate over-
fitting during training, a random-dropout probability of 0.05
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Fig. 10. Process for assessing the security of UNSAIL against the SAIL attack.

was set. Each Seq2Seq model is trained for 60 epochs with
a mini-batch size of 20. In each epoch, the subgraphs are
shuffled, and then mini-batches are constructed. The network
parameters are updated using Adam optimizer after each mini-
batch. A learning rate of 0.002, a gradient decay factor of
0.9, and a squared gradient decay factor of 0.999 are set.
Both SAIL models are implemented in MATLAB.

We also launch SWEEP on RLL and UNSAIL-locked in-
stances using the open-source attack tool [11]. The default
margin value of 0 was used. The higher the margin is, the
lower the chance of performing a wild guess by the attack,
and the lower the reported accuracy is. We also evaluate the
resilience of UNSAIL against another oracle-less attack on
logic locking, the redundancy attack [12].

The output corruption enforced by UNSAIL is measured
by the Hamming distance (HD) between the outputs of the
original design and the outputs of the locked design, under
the application of random incorrect keys. The output error rate
(OER) is calculated, as well. Ideal values for HD and OER
would be 50% and 100%, respectively. The simulations for HD
and OER are performed using Mentor Graphics ModelSim.

C. Setup for Synthesis, Testing, and Layout Evaluation

Synthesis is performed using Synopsys Design Compiler
for the slow process corner with particular focus on area
minimization and iso-performance timing closure. Synopsys
Tetramax was used to generate a minimal set of test patterns
for the locked benchmarks. Test coverage and fault coverage
are also calculated using the same tool. For layout-level
assessment, we employ the public Nangate 45nm Open Cell
Library with ten metal layers and use Cadence Innovus.
Layout overheads are calculated at 0.95V, 125◦C, with the
slow process corner and input switching activity of 0.20.

VII. EXPERIMENTAL INVESTIGATION

In this section, we first perform a detailed and thorough
security analysis of our proposed UNSAIL scheme, starting
with the SAIL attack [10]. Fig. 10 summarizes the evaluation
process used for UNSAIL against the SAIL attack. We consider
the role of (i) key-size, (ii) key-gate type, (iii) initial key-gate
insertion algorithm, and (iv) subgraph size. When detailing the
attack results, we initially report the classification accuracy
of the change prediction model ML1 using RF and SVM
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TABLE IV
ACCURACY FOR SAIL RANDOM FOREST (RF) CLASSIFIER FOR SELECTED ISCAS-85 AND ITC-99 BENCHMARKS USING SUB=3

K=64 K=128
Key-gates X(N)OR CL v1 CL v2 CL v3 CL v4 X(N)OR CL v1 CL v2 CL v3 CL v4
Insertion RLL UNSAIL RLL UNSAIL RLL UNSAIL RLL UNSAIL RLL UNSAIL RLL UNSAIL RLL UNSAIL RLL UNSAIL RLL UNSAIL RLL UNSAIL

c880 0.72 0.58 1.00 0.64 1.00 0.59 0.97 0.56 0.92 0.62 0.70 0.57 1.00 0.58 1.00 0.63 0.93 0.60 0.95 0.62
c1355 0.92 0.65 1.00 0.74 1.00 0.74 0.97 0.72 0.98 0.72 0.94 0.75 1.00 0.71 1.00 0.71 0.98 0.68 0.98 0.78
c1908 0.83 0.75 1.00 0.69 1.00 0.70 0.97 0.62 0.97 0.74 0.91 0.67 1.00 0.69 1.00 0.62 0.96 0.64 0.95 0.70
c2670 0.68 0.59 1.00 0.59 1.00 0.56 0.94 0.59 0.95 0.62 0.71 0.60 1.00 0.54 1.00 0.60 0.91 0.58 0.91 0.59
c3540 0.80 0.56 1.00 0.67 1.00 0.68 0.89 0.58 0.95 0.61 0.78 0.56 1.00 0.55 1.00 0.57 0.93 0.59 0.93 0.68
c5315 0.85 0.62 1.00 0.61 1.00 0.62 0.97 0.56 0.89 0.66 0.78 0.58 1.00 0.59 1.00 0.59 0.89 0.56 0.95 0.61
c6288 0.88 0.64 1.00 0.73 0.98 0.64 0.98 0.71 0.97 0.70 0.87 0.65 0.99 0.66 1.00 0.66 0.98 0.67 0.95 0.72
c7552 0.88 0.74 1.00 0.69 1.00 0.69 0.98 0.70 0.95 0.66 0.88 0.58 1.00 0.65 1.00 0.66 0.94 0.61 0.96 0.67

Average 0.82 0.64 1.00 0.67 0.99 0.65 0.96 0.63 0.95 0.67 0.82 0.62 0.99 0.62 1.00 0.63 0.94 0.62 0.95 0.67
K=256 K=512

b14 C 0.84 0.63 1.00 0.65 1.00 0.65 0.93 0.62 0.95 0.66 0.83 0.65 1.00 0.60 1.00 0.61 0.96 0.61 0.95 0.63
b15 C 0.77 0.59 1.00 0.59 1.00 0.58 0.94 0.56 0.95 0.59 0.75 0.60 1.00 0.55 1.00 0.57 0.95 0.55 0.95 0.59
b20 C 0.86 0.65 1.00 0.62 0.99 0.64 0.96 0.66 0.95 0.67 0.84 0.64 0.99 0.59 0.99 0.62 0.94 0.60 0.95 0.64
b21 C 0.85 0.65 0.99 0.67 0.99 0.64 0.99 0.60 0.99 0.67 0.86 0.63 1.00 0.62 1.00 0.63 0.94 0.60 0.96 0.64
b22 C 0.85 0.64 0.99 0.65 0.99 0.64 0.98 0.64 0.95 0.69 0.85 0.63 0.99 0.64 0.99 0.64 0.96 0.61 0.96 0.65
b17 C 0.72 0.61 1.00 0.59 1.00 0.57 0.94 0.57 0.96 0.60 0.75 0.58 1.00 0.56 1.00 0.57 0.92 0.57 0.92 0.59

Average 0.82 0.63 0.99 0.63 0.99 0.62 0.96 0.61 0.96 0.65 0.81 0.62 0.99 0.59 0.99 0.61 0.95 0.59 0.95 0.62

classifier models (Sec. VII-A). Next, we report the key-
gate recovery accuracy using the reconstruction model ML2

implemented as a Seq2Seq ensemble model (Sec. VII-B).
Finally, we report the overall key-gate recovery accuracy when
combining both ML1 and ML2 (Sec. VII-C).

Our evaluation is expanded beyond the SAIL attack; the
resilience of UNSAIL is further demonstrated against the
SWEEP attack and the redundancy attack in Sec. VII-D and
Sec. VII-E, respectively. Furthermore, the results of the output
corruption evaluation for UNSAIL are discussed in Sec. VII-F,
while the effect of UNSAIL on structural testing is investigated
in Sec. VII-G. The overheads of our defense are presented in
Sec. VII-H. Finally, the experimental results on the DARPA
OpenCores benchmark are discussed in Sec. VII-I.

A. Change-Prediction Model Accuracy on UNSAIL Vs. Tradi-
tional Logic Locking

Initially, we investigate the classification accuracy to eval-
uate the performance of ML1. The accuracy is defined as the
number of correct predictions divided by the total number of
predictions (i.e., key-size K). We test the model for different
key-sizes, different key-gate structures, several sub-sizes, and
two classification algorithms. Recall that the goal of UNSAIL
is to insert key-gates such that the complexity of the clas-
sification problem increases and the classification accuracy
drops. Indeed, for all considered cases, the model performs
with much lower accuracy on UNSAIL-locked instances.

Varying the Key-Gate Type. Pre- and post-subgraphs of
size sub=3 are extracted from all the locked instances. The
model ML1 is initially implemented as an RF model and
trained separately for each benchmark, with the data extracted
from 19 (in total 20) instances for each locking variation.
Then, the classifier is tested on locked ISCAS-85 and ITC-
99 benchmarks with K=64 and K=256, respectively; results
from both experiments are shown in Table IV. Studying the
classification accuracy of SAIL on RLL X(N)OR vs. RLL CL
increases the performance for the latter case. For example, the
average accuracy on RLL X(N)OR is 82%, while on RLL
CL v1, it is 99.5%. Further investigation reveals most of
the extracted post-subgraphs are affected by re-synthesis for
the evaluated CL scheme. This leads to an imbalanced data

set where most of the subgraphs belong to one class, namely
“Changed,” rendering classification less difficult.

Next, we study the effect of UNSAIL. We note that our
defense is capable of reducing the classification accuracy in
all the considered test cases. On an average, UNSAIL reduces
the classification accuracy when using X(N)OR, CL v2, and
CL v4 structures by 18pp, 34pp, and 28pp, respectively, for
K=64. Hence, UNSAIL has an even more significant effect on
reducing the classification accuracy when using CL techniques
as compared to UNSAIL X(N)OR locking.

Varying the Key-Size. Next, we repeat the previous ex-
periment for K=128 and K=512, to study the effect of
increasing the key-size on the classification accuracy. Results
from both the experiments are shown in Table IV. We note
that, on an average, the attack (classification accuracy of
SAIL) performs slightly better for smaller key-sizes. While the
average accuracy on RLL ISCAS-85 benchmarks is 94.4%
and 94% for K=64 and K=128, respectively, the average
accuracy on RLL ITC-99 benchmarks is 94.4% and 93.8%
for K=256 and K=512, respectively.

UNSAIL reduces the average classification accuracy when
using X(N)OR, CL v2, and CL v4 structures by 20pp, 37pp,
and 28pp, respectively, for ISCAS-85 instances with K=128.
For ITC-99 instances with K=512, UNSAIL reduces the
average classification accuracy by 19pp, 38pp, and 33pp,
respectively, for the same structures/locking techniques. We
note that UNSAIL has a larger impact on the instances locked
with a larger key-size: the average reduction for classification
accuracy is 29.2pp for K=64 and 30.8pp for K=128.
These findings illustrate that UNSAIL is effective for a varied
range of benchmarks with varying key-sizes.

Varying the Sub-size. In this set of experiments, we
examine the effect of varying the sub-size on the classification
accuracy for UNSAIL. Toward this end, we train and test ML1
using sub=5 and sub=6; see Table V for the results.

We observe that the classification accuracy for SAIL in-
creases with an increase of sub-size (which is in agreement
with the findings reported in [10]). For example, the average
classification accuracy for RLL X(N)OR increases from 82%
for sub=3 to 93% for sub=6. Increasing the sub-size leads
to an imbalanced data set as most subgraphs are affected by
re-synthesis, which results in higher classification accuracy.
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TABLE V
ACCURACY FOR SAIL RANDOM FOREST (RF) CLASSIFIER FOR SELECTED ISCAS-85 AND ITC-99 BENCHMARKS USING SUB=5 AND SUB=6

K=128
Sub-size sub=5 sub=6

Key-gates X(N)OR CL v1 CL v2 CL v3 CL v4 X(N)OR CL v1 CL v2 CL v3 CL v4
Insertion RLL UNSAIL RLL UNSAIL RLL UNSAIL RLL UNSAIL RLL UNSAIL RLL UNSAIL RLL UNSAIL RLL UNSAIL RLL UNSAIL RLL UNSAIL

c880 0.86 0.70 1.00 0.65 1.00 0.63 0.98 0.67 0.98 0.70 0.88 0.72 1.00 0.70 1.00 0.71 0.98 0.76 0.98 0.71
c1355 0.98 0.84 1.00 0.83 1.00 0.84 1.00 0.72 1.00 0.83 0.98 0.89 1.00 0.90 1.00 0.88 1.00 0.85 0.99 0.85
c1908 0.97 0.79 1.00 0.77 1.00 0.74 0.98 0.69 0.98 0.69 0.97 0.76 1.00 0.83 1.00 0.80 0.98 0.84 0.98 0.83
c2670 0.86 0.66 1.00 0.74 1.00 0.83 0.96 0.74 0.97 0.80 0.89 0.67 1.00 0.76 1.00 0.84 0.96 0.80 0.97 0.80
c3540 0.89 0.66 1.00 0.79 1.00 0.80 0.97 0.72 0.98 0.78 0.90 0.65 1.00 0.80 1.00 0.80 0.98 0.80 0.98 0.80
c5315 0.89 0.66 1.00 0.79 1.00 0.66 0.94 0.71 0.97 0.77 0.88 0.70 1.00 0.82 1.00 0.70 0.94 0.78 0.97 0.77
c6288 0.96 0.70 1.00 0.77 1.00 0.77 0.98 0.75 0.98 0.81 0.98 0.76 1.00 0.80 1.00 0.85 0.99 0.81 0.99 0.83
c7552 0.95 0.73 1.00 0.66 1.00 0.77 0.98 0.68 0.98 0.69 0.95 0.70 1.00 0.71 1.00 0.82 0.98 0.77 0.98 0.75

Average 0.92 0.72 0.99 0.75 0.99 0.76 0.97 0.71 0.98 0.76 0.93 0.73 1.00 0.79 1.00 0.80 0.98 0.80 0.98 0.79
K=512

Sub-size sub=5 sub=6
b14 C 0.92 0.74 1.00 0.73 1.00 0.76 0.98 0.68 0.98 0.73 0.93 0.73 1.00 0.77 1.00 0.77 0.98 0.71 0.99 0.75
b15 C 0.87 0.70 1.00 0.68 1.00 0.71 0.98 0.72 0.98 0.73 0.91 0.71 1.00 0.74 1.00 0.76 0.98 0.75 0.98 0.77
b20 C 0.92 0.72 0.99 0.71 0.99 0.75 0.98 0.72 0.98 0.72 0.92 0.75 0.99 0.79 0.99 0.76 0.98 0.76 0.98 0.77
b21 C 0.94 0.71 0.99 0.72 0.99 0.76 0.97 0.72 0.98 0.72 0.96 0.71 0.99 0.77 0.99 0.81 0.98 0.76 0.98 0.74
b22 C 0.96 0.74 1.00 0.72 1.00 0.74 0.96 0.72 0.99 0.72 0.96 0.75 1.00 0.75 1.00 0.77 0.97 0.76 0.99 0.78
b17 C 0.83 0.67 1.00 0.72 1.00 0.68 0.95 0.72 0.98 0.74 0.86 0.67 1.00 0.74 1.00 0.72 0.95 0.75 0.98 0.76

Average 0.91 0.71 0.99 0.71 0.99 0.73 0.97 0.71 0.98 0.73 0.92 0.72 0.99 0.76 0.99 0.76 0.97 0.75 0.98 0.76

TABLE VI
ACCURACY FOR SAIL SUPPORT VECTOR MACHINE (SVM) CLASSIFIER FOR SELECTED ISCAS-85 AND ITC-99 BENCHMARKS USING SUB=3

K=64 K=128
Key-gates X(N)OR CL v1 CL v2 CL v3 CL v4 X(N)OR CL v1 CL v2 CL v3 CL v4
Insertion RLL UNSAIL RLL UNSAIL RLL UNSAIL RLL UNSAIL RLL UNSAIL RLL UNSAIL RLL UNSAIL RLL UNSAIL RLL UNSAIL RLL UNSAIL

c880 0.71 0.58 1.00 0.64 1.00 0.62 0.97 0.56 0.94 0.61 0.71 0.56 1.00 0.58 1.00 0.62 0.93 0.62 0.96 0.62
c1355 0.92 0.67 1.00 0.72 1.00 0.75 0.97 0.60 0.98 0.74 0.94 0.73 1.00 0.78 1.00 0.77 0.98 0.70 0.98 0.76
c1908 0.82 0.74 1.00 0.73 1.00 0.70 0.97 0.64 0.97 0.74 0.94 0.69 1.00 0.68 1.00 0.65 0.96 0.65 0.95 0.74
c2670 0.69 0.56 1.00 0.64 1.00 0.59 0.94 0.59 0.95 0.64 0.67 0.59 1.00 0.54 1.00 0.58 0.91 0.57 0.91 0.61
c3540 0.80 0.56 1.00 0.63 1.00 0.64 0.89 0.59 0.95 0.59 0.78 0.54 1.00 0.58 1.00 0.57 0.93 0.58 0.93 0.68
c5315 0.83 0.62 1.00 0.61 1.00 0.62 0.97 0.55 0.89 0.66 0.80 0.58 1.00 0.59 1.00 0.60 0.89 0.57 0.95 0.62
c6288 0.88 0.61 1.00 0.71 0.98 0.64 0.98 0.72 0.97 0.66 0.87 0.67 0.99 0.66 0.99 0.66 0.98 0.65 0.95 0.72
c7552 0.88 0.70 1.00 0.67 1.00 0.69 0.98 0.69 0.95 0.66 0.88 0.63 1.00 0.63 1.00 0.66 0.94 0.61 0.96 0.68

Average 0.82 0.63 1.00 0.67 0.99 0.66 0.96 0.62 0.95 0.66 0.82 0.62 0.99 0.63 0.99 0.64 0.94 0.62 0.95 0.68
K=256 K=512

b14 C 0.84 0.64 1.00 0.65 1.00 0.66 0.93 0.63 0.95 0.64 0.83 0.64 1.00 0.59 1.00 0.61 0.96 0.60 0.95 0.63
b15 C 0.77 0.59 1.00 0.58 1.00 0.58 0.94 0.54 0.95 0.59 0.75 0.59 1.00 0.55 1.00 0.57 0.95 0.55 0.95 0.59
b20 C 0.86 0.64 0.99 0.63 0.99 0.64 0.99 0.66 0.99 0.68 0.84 0.64 0.99 0.59 0.99 0.62 0.94 0.61 0.95 0.64
b21 C 0.85 0.66 0.99 0.67 0.99 0.63 0.98 0.60 0.95 0.66 0.86 0.63 1.00 0.62 1.00 0.63 0.94 0.61 0.96 0.65
b22 C 0.88 0.62 1.00 0.64 0.99 0.63 0.96 0.65 0.95 0.69 0.85 0.62 0.99 0.64 0.99 0.64 0.96 0.61 0.96 0.65
b17 C 0.69 0.60 1.00 0.59 1.00 0.57 0.94 0.57 0.96 0.60 0.75 0.58 1.00 0.57 1.00 0.58 0.92 0.56 0.96 0.59

Average 0.82 0.62 0.99 0.63 0.99 0.62 0.96 0.61 0.96 0.64 0.81 0.62 0.99 0.59 0.99 0.61 0.95 0.59 0.95 0.62

This is intuitive as a large subgraph has a higher probability
of being affected by re-synthesis than a smaller subgraph.

Even with such an increase in classification accuracy for
larger sub-size, UNSAIL remains successful in reducing accu-
racy. Comparing UNSAIL vs. RLL, for CL v1 with sub=3,
sub=5, and sub=6, the average classification accuracy is
reduced by 37pp, 24pp, and 21pp, respectively, for ISCAS-
85 benchmarks locked with K=128. We note that the classifier
trained with sub=3 is affected most by UNSAIL; this is
expected as UNSAIL structures of size sub=3 were added.

Varying the Classifier Model. To further investigate the
efficacy of UNSAIL against other classification algorithms, the
SAIL model was implemented using SVM, trained, and tested
using sub=3 and different key-sizes; the related results are
presented in Table VI. These experiments are in agreement
with our earlier findings, namely that the SAIL classifier
achieves slightly better accuracy on locked instances with
smaller key-size. That is, the average classification accuracy
on ISCAS-85 benchmarks locked using RLL with K=64 is
94.4% and reduces marginally to 93.8% with K=128.

The results on UNSAIL-locked instances support our claim
that UNSAIL incurs a more complex classification problem
for different classifiers compared to RLL. The average classi-
fication accuracy for CL v1 was reduced by 37pp and 36pp
using the RF model and SVM model, respectively, for ISCAS-
85 benchmarks locked with K=128 and sub=3.

Integrating UNSAIL with FLL and SLL. We locked
ISCAS-85 benchmarks using SLL and FLL with K=128
using the binaries provided in [33]. Each benchmark was
locked once using SLL and once using FLL. Reusing the 20
X(N)OR-based RLL instances for each of those benchmarks,
ML1 (implemented as RF) was trained for sub=6 and then
launched on the SLL and FLL instances. The average accuracy
of the model on SLL and FLL benchmarks is 97% and 93%,
respectively. Comparing the performance of ML1 on RLL
(Table V) vs. ML1 on FLL, the results are largely consistent.
In the case of SLL, we observe an increase in the accuracy of
ML1 when compared to RLL, namely by an average of 4pp.

To evaluate the performance of UNSAIL in protecting the
FLL and SLL instances, we next integrate UNSAIL with SLL
and FLL. As usual, 64 key-gates are employed during initial
locking, whereupon the remaining 64 key-gates are injected
by UNSAIL, thereby achieving K=128. We train the model
using RLL-based UNSAIL instances and launch it on the SLL-
based and the FLL-based UNSAIL instances; this is fair since
SLL and FLL are also using X(N)OR key-gate structures. The
results are reported in Fig. 11. The average accuracy on the
SLL-based UNSAIL instances is 69%, implying a reduction
of 28pp; the average accuracy on the FLL-based UNSAIL
instances is 75%, indicating a reduction of 18pp. These
findings support our claim the UNSAIL is capable of protecting
any combinational logic locking technique from SAIL.
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Fig. 11. SAIL change-prediction model ML1 accuracy on UNSAIL vs. SLL
and FLL when K=128 and sub=6 on selected ISCAS-85 benchmarks.

Summary. ML1 of SAIL was thoroughly tested on RLL and
UNSAIL-locked instances of selected ISCAS-85 and ITC-99
benchmarks. We considered different types of key-gate, key-
sizes, sub-sizes, and other classification models. The classifier
was additionally studied on SLL/FLL vs. SLL/FLL-based
UNSAIL. Results show that the classification accuracy of ML1
increases with an increase in sub-size, which is also reported
in [10]. It was also observed that ML1 achieves better accuracy
on benchmarks locked with smaller key-sizes. Besides, ML1
achieves a higher accuracy on (1) the CL-based RLL vs.
X(N)OR-based RLL and (2) SLL instances when compared
to RLL and FLL.

Analysis of the results for UNSAIL-locked instances shows
that our defense is capable of decreasing the classification
accuracy of ML1 for all of the tested cases, achieving the best
performance when sub=3 is used. Our defense technique does
not require a specific classification model or setup; it succeeds
in increasing the complexity for classifying the key-gates and
related subgraphs under all scenarios. Moreover, our defense
does not require a specific locking technique and can protect
any traditionally locked design.

B. Reconstruction Model Accuracy on UNSAIL Vs. Tradi-
tional Logic Locking

Here, we study ML2 for RLL and UNSAIL-locked instances.
The accuracy of recovering the pre-synthesis key-gate is
shown for ISCAS-85 benchmarks and ITC-99 benchmarks
with K=128 and K=512, respectively, in Table VII. Two
important observations can be inferred from the results, which
are discussed next.

Varying the Key-Gate Type. Recall that in this work, we
also study the effect of different types of key-gates (Table II).
We believe that by varying the locking structures, the model
will need to understand (have learned on) a larger variation

TABLE VII
KEY-GATE DETECTION ACCURACY USING SAIL RECONSTRUCTION

MODEL ON UNSAIL VS. RLL

K=128
Key-gates X(N)OR CL v1 CL v2 CL v3 CL v4
Insertion RLL UNSAIL RLL UNSAIL RLL UNSAIL RLL UNSAIL RLL UNSAIL

c880 0.72 0.46 0.47 0.26 0.31 0.16 0.26 0.15 0.38 0.17
c1355 0.60 0.62 0.56 0.26 0.40 0.11 0.33 0.24 0.36 0.28
c1908 0.64 0.56 0.52 0.24 0.34 0.16 0.29 0.18 0.45 0.27
c2670 0.77 0.48 0.57 0.26 0.32 0.18 0.24 0.14 0.41 0.23
c3540 0.62 0.46 0.47 0.23 0.30 0.17 0.30 0.21 0.34 0.26
c5315 0.65 0.52 0.45 0.22 0.30 0.14 0.30 0.10 0.43 0.16
c6288 0.57 0.45 0.58 0.21 0.42 0.13 0.25 0.15 0.41 0.33
c7552 0.55 0.43 0.47 0.23 0.37 0.15 0.24 0.16 0.40 0.17

Average 0.64 0.50 0.51 0.24 0.35 0.15 0.28 0.17 0.40 0.23
K=512

b14 C 0.71 0.50 0.45 0.24 0.43 0.30 0.31 0.22 0.41 0.27
b15 C 0.77 0.57 0.48 0.23 0.49 0.23 0.32 0.19 0.44 0.27
b20 C 0.71 0.56 0.47 0.23 0.49 0.26 0.32 0.18 0.45 0.25
b21 C 0.71 0.52 0.46 0.25 0.48 0.26 0.29 0.18 0.45 0.27
b22 C 0.68 0.50 0.46 0.30 0.50 0.27 0.34 0.17 0.42 0.24
b17 C 0.74 0.54 0.46 0.22 0.47 0.26 0.34 0.2 0.38 0.28

Average 0.72 0.53 0.46 0.25 0.48 0.26 0.32 0.19 0.43 0.26

TABLE VIII
KEY-GATE DETECTION ACCURACY USING SAIL RECONSTRUCTION

MODEL ON UNSAIL VS. SLL AND FLL FOR K=128

Insertion SLL SLL-based UNSAIL FLL FLL-based UNSAIL
c880 0.75 0.35 0.44 0.41

c1355 0.46 0.46 0.37 0.42
c1908 0.44 0.44 0.47 0.32
c2670 0.61 0.33 0.34 0.43
c3540 0.58 0.42 0.41 0.49
c5315 0.38 0.24 0.51 0.4
c7552 0.44 0.44 0.48 0.37

Average 0.52 0.38 0.43 0.41

of synthesis-induced changes, which tends to affect the un-
derlying accuracy. Moreover, by randomizing the selection of
key-gate types used, we can expect to limit the “deterministic
footprint” for obfuscation inferred by the synthesis tools.

We observe that the average recovery accuracy reduces once
we introduce more variations to the key-gate structures. The
average accuracy on RLL ISCAS-85 instances with K=128
for X(N)OR, CL v1, CL v2, CL v3, and CL v4 key-gate
structures is 64%, 51%, 35%, 28%, and 40%, respectively
(Table VII). For the large ITC-99 benchmarks with K=512,
the average key-gate recovery accuracy is 72%, 46%, 48%,
32%, and 43%, respectively.

Effect of UNSAIL Structures. The accuracy of ML2 is
further reduced by the UNSAIL structures, as shown in Ta-
ble VII. The average key-gate recovery accuracy for UNSAIL-
locked ISCAS-85 instances with K=128) for X(N)OR, CL v1,
CL v2, CL v3, and CL v4 techniques is 50%, 24%, 15%,
17%, and 23%, respectively, which represents an average
reduction of 17.8pp when compared to RLL. For the larger
ITC-99 benchmarks with K=512, the average reduction is
18.6pp. Similarly, a consistent effect induced by UNSAIL
for reducing the accuracy is also observed when comparing
UNSAIL to SLL and FLL, as shown in Table VIII.

Summary. More variations in key-gate structures hinder the
reconstruction model in general, and the UNSAIL structures
strengthen this effect further, for any logic locking technique.
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C. Change-Prediction-Boosted Reconstruction Model Accu-
racy on UNSAIL Vs. Traditional Logic Locking

Finally, to evaluate the effectiveness of UNSAIL, we launch
the full SAIL attack where ML1 is combined with ML2 first to
detect the subgraphs that went through changes due to synthe-
sis and then revert those changes. We report the accuracy of
the full SAIL attack in Table IX. We use the RF classifier
with sub=6 since this configuration provided the highest
classification accuracy, as previously shown in Sec.VII-A.

Analyzing the results obtained on RLL-based locking; first,
we note that the effect of varying the key-gates, as observed
in Sec. VII-B is still present. More specifically, we observe
a reduction in the attack accuracy from an average of 68%
(RLL-based X(N)OR) down to 27% (RLL-based CL v3) on
ISCAS-85 benchmarks with K=128. Similarly, a reduction in
accuracy is also observed for the larger ITC-99 benchmarks
with K=512. Focusing on the results obtained on X(N)OR
locking, it can be observed that the reconstruction accuracy is
boosted when both the models of SAIL are merged. That is,
comparing with the results in Table VII for the case of RLL,
the average accuracy on ISCAS-85 benchmarks is increased
from 64% to 68%. Nevertheless, UNSAIL is capable of reduc-
ing the accuracy by 11pp, dropping it to 57%.

This latter finding is further supported once the full SAIL
attack is launched on SLL and FLL instances (Table X).
Comparing to the results in Table VIII, the average accuracy
increases by 3pp for both SLL and FLL. On average, UNSAIL
reduces the accuracy by 9pp for SLL and by 2pp for FLL on
ISCAS-85 benchmarks with K=128. Although the reduction
in accuracy is marginal for FLL-based UNSAIL, the final
accuracy of 44% is still below random-guessing (50%).

Analyzing the results of CL structures for RLL, we note
that merging the two attack models did not boost the key-gate
recovery accuracy for RLL to begin with. This is because most
of the key-gate structures added by RLL go through changes
due to synthesis; recall that mainly one class of subgraphs
can be observed in Fig. 8 for RLL-based CL. Hence, using
a classifier model to boost ML2 will not provide a significant
benefit. For example, the average key-gate recovery accuracy
for CL v4 was 40% using ML2 on its own, which even
(slightly) reduced to 39% for the combined and boosted attack
setup. In contrast, UNSAIL ensures that two types of classes
exist in training and, thus, the key-gate detection accuracy
for CL-based UNSAIL is observed to increase. Although the
accuracy of the classifier was reduced by an average of
19.5pp when using CL-based UNSAIL, the classifier was
still able to improve the overall accuracy of the attack. Even
then, the average key-gate recovery accuracy for CL-based
UNSAIL instances is 53%, which is just a shade better than
random-guessing, rendering the full SAIL attack futile.

D. SWEEP Attack [11] on UNSAIL Vs. RLL

Here, we launch the SWEEP attack on locked ISCAS-85
and ITC-99 benchmarks. The attack model is trained using the
variations of key-gate types shown in Table II. The accuracy
metric is used as suggested in [11]; it denotes the percentage
of correctly extracted key-bits out of the entire key-size. The

TABLE IX
KEY-GATE DETECTION ACCURACY USING SAIL

CHANGE-PREDICTION-BOOSTED RECONSTRUCTION MODEL ON UNSAIL
VS. RLL USING SUB=6 FOR THE CHANGE-PREDICTION MODEL

K=128
Key-gates X(N)OR CL v1 CL v2 CL v3 CL v4
Insertion RLL UNSAIL RLL UNSAIL RLL UNSAIL RLL UNSAIL RLL UNSAIL

c880 0.77 0.47 0.52 0.59 0.31 0.60 0.26 0.41 0.38 0.49
c1355 0.66 0.63 0.54 0.48 0.38 0.40 0.30 0.49 0.36 0.50
c1908 0.64 0.65 0.51 0.54 0.51 0.54 0.29 0.50 0.41 0.50
c2670 0.81 0.63 0.55 0.59 0.32 0.55 0.20 0.53 0.41 0.52
c3540 0.66 0.59 0.47 0.58 0.30 0.59 0.30 0.58 0.34 0.57
c5315 0.69 0.57 0.49 0.59 0.30 0.54 0.30 0.43 0.43 0.52
c6288 0.57 0.53 0.54 0.57 0.33 0.53 0.25 0.52 0.38 0.55
c7552 0.62 0.45 0.30 0.60 0.28 0.59 0.29 0.50 0.40 0.55

Average 0.68 0.57 0.49 0.57 0.34 0.54 0.27 0.50 0.39 0.53
K=512

b14 C 0.71 0.59 0.46 0.56 0.43 0.6 0.30 0.47 0.42 0.48
b15 C 0.77 0.66 0.49 0.58 0.49 0.61 0.32 0.49 0.46 0.52
b20 C 0.71 0.64 0.47 0.56 0.50 0.59 0.35 0.44 0.45 0.49
b21 C 0.67 0.59 0.46 0.55 0.48 0.56 0.29 0.46 0.45 0.51
b22 C 0.68 0.58 0.46 0.59 0.50 0.57 0.34 0.50 0.42 0.50
b17 C 0.74 0.63 0.48 0.49 0.49 0.58 0.32 0.48 0.38 0.48

Average 0.71 0.62 0.47 0.56 0.48 0.59 0.32 0.47 0.43 0.50

TABLE X
KEY-GATE DETECTION ACCURACY USING SAIL

CHANGE-PREDICTION-BOOSTED RECONSTRUCTION MODE ON UNSAIL
VS. SLL AND FLL WHEN K=128 AND USING SUB=6 FOR THE

CHANGE-PREDICTION MODEL

Insertion SLL SLL-based UNSAIL FLL FLL-based UNSAIL
c880 0.73 0.49 0.47 0.51

c1355 0.51 0.51 0.48 0.5
c1908 0.45 0.52 0.46 0.45
c2670 0.63 0.33 0.36 0.39
c3540 0.67 0.57 0.45 0.57
c5315 0.37 0.38 0.49 0.39
c7552 0.52 0.45 0.54 0.28

Average 0.55 0.46 0.46 0.44

attack was launched on RLL and UNSAIL-locked instances;
results are documented in Table XI.

First, SWEEP does not cope well with X(N)OR locking, as
indicated in [11]. We experimentally verify this through the
low accuracy of 33% observed on the RLL X(N)OR bench-
marks. Second, although SWEEP was explicitly developed to
attack MUX-based locking, the accuracy of our MUX-based
CL techniques for RLL is relatively low, with an average
of 41.63%. For the related CL approach, we replace an
X(N)OR key-gate by a MUX, with one input driven by the true
wire/signal as is and the other input driven by the false signal,
which is simply the true signal inverted (Fig. 12(a)). Hence,
depending on the key-bit assignment (to the MUX select line),
the MUX key-gate will either be replaced by a buffer or an
inverter by the synthesis tool run by SWEEP. Accordingly, few
structural changes are induced, which can be extracted for the
training of the SWEEP model. This is in contrast to other
techniques broken by SWEEP, e.g., we observe that SWEEP
was able to handle FLL (Fig. 12(b)) significantly better, with
an average accuracy of 76.3%.4

4For FLL, there is a specific algorithm underlying to select the true and
false wires connected to the MUX key-gates [13]. Depending on the key-bit,
different fan-in cones will be fed to the MUX inputs (Fig. 12(b)), resulting
in various synthesis-induced changes for those fan-in cones, which enable
SWEEP to learn the correlation between the extracted features and the correct
key-bit. Even if the selection of wires is randomized, the wrong key-bit
assignments still result in larger fan-in cones/logic structures on average when
compared to the correct key-bit assignment, as indicated in [11].
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TABLE XI
ACCURACY OF SWEEP ATTACK [11] ON RLL VS. UNSAIL

K=128
Key-gates X(N)OR CL v1 CL v2 CL v3 CL v4
Insertion RLL UNSAIL RLL UNSAIL RLL UNSAIL RLL UNSAIL RLL UNSAIL

c880 0.35 0.18 0.24 0.06 0.41 0.26 0.36 0.28 0.34 0.31
c1355 0.04 0.06 0.20 0.14 0.16 0.07 0.18 0.09 0.36 0.21
c1908 0.13 0.14 0.16 0.12 0.20 0.12 0.20 0.15 0.39 0.17
c2670 0.41 0.23 0.38 0.24 0.29 0.17 0.34 0.17 0.44 0.23
c3540 0.33 0.28 0.37 0.25 0.38 0.29 0.31 0.27 0.52 0.30
c5315 0.41 0.19 0.48 0.27 0.50 0.27 0.48 0.22 0.62 0.27
c6288 0.25 0.20 0.30 0.27 0.27 0.20 0.36 0.22 0.42 0.27
c7552 0.27 0.12 0.44 0.17 0.37 0.20 0.41 0.23 0.43 0.29

Average 0.27 0.17 0.32 0.19 0.32 0.20 0.33 0.21 0.44 0.25
K=512

b14 C 0.39 0.28 0.50 0.30 0.46 0.27 0.47 0.24 0.53 0.35
b15 C 0.41 0.33 0.45 0.29 0.44 0.25 0.46 0.23 0.52 0.39
b20 C 0.37 0.38 0.50 0.30 0.44 0.28 0.44 0.32 0.50 0.40
b21 C 0.38 0.33 0.44 0.25 0.44 0.25 0.47 0.25 0.53 0.37
b22 C 0.38 0.29 0.48 0.27 0.47 0.30 0.44 0.22 0.53 0.40
b17 C 0.43 0.34 0.49 0.24 0.47 0.25 0.47 0.29 0.57 0.38

Average 0.39 0.33 0.48 0.27 0.45 0.27 0.46 0.26 0.53 0.38

𝑘ଵ 𝑘ଵ
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Fig. 12. Example of logic locking using MUXes. The true path is denoted by
green, while the false path is denoted by red. (a) MUX key-gate inserted by
UNSAIL. The false wire is the negation of the true wire. (b) MUX key-gate
inserted by traditional logic locking. The false wire is taken from the design.

Third, SWEEP was launched on RLL vs. UNSAIL-locked
instances, to study the effect of adding UNSAIL key-gate
structures on the performance of SWEEP. On average, UNSAIL
degrades the performance of the attack by 15pp, which
demonstrates that UNSAIL hardens locking against another
ML-based attack, not only SAIL.

E. Redundancy Attack [12] on UNSAIL Vs. RLL

We launched the redundancy attack on RLL and UNSAIL-
locked ISCAS-85 and ITC-99 benchmarks for K=128. We
demonstrate the percentages of deciphered key-bits in Ta-
ble XII. In our analysis, we study the effect of different key-
gates as well. The average attack accuracy on X(N)OR-based
RLL-locked benchmarks is 42%. We observe that the attack
is more successful on CL v4-based RLL, with an average
accuracy of 52%. Note that CL v4 contains AND/OR key-
gates where incorrect key-bits result in stuck-at-faults; such
key-gates are more vulnerable to the redundancy attack.

The redundancy attack’s accuracy is reported as high as
79.59% on X(N)OR-based RLL-locked ISCAS-85 bench-
marks in [12], in contrast to the average accuracy of 25%,
observed in our study for the same benchmarks. The degra-
dation in accuracy observed here is contingent upon the re-
synthesis step followed in our work. Note that industry-grade
synthesis tools invoke redundancy checking and removal as
an integral step of logic optimization [12], [35]. Thus, when
the locked RLL benchmarks are re-synthesized, the synthesis
tool removes redundancies in the netlist that could have been
generated by incorrect key-bits. Consequently, we observe a

TABLE XII
ACCURACY OF REDUNDANCY ATTACK [12] ON UNSAIL VS. RLL

K=128
Key-gates X(N)OR CL v1 CL v2 CL v3 CL v4
Insertion RLL UNSAIL RLL UNSAIL RLL UNSAIL RLL UNSAIL RLL UNSAIL

c880 0.10 0.06 0.08 0.10 0.12 0.12 0.11 0.12 0.34 0.25
c1355 0.02 0.02 0.90 0.01 0.11 0.01 0.45 0.04 0.55 0.17
c1908 0.08 0.08 0.01 0.11 0.05 0.06 0.05 0.07 0.29 0.14
c2670 0.29 0.33 0.16 0.35 0.27 0.27 0.19 0.33 0.40 0.39
c3540 0.52 0.54 0.42 0.56 0.43 0.36 0.38 0.41 0.80 0.47
c5315 0.43 0.39 0.32 0.43 0.48 0.40 0.45 0.39 0.55 0.52
c6288 0.31 0.26 0.20 0.23 0.31 0.26 0.27 0.26 0.52 0.31
c7552 0.30 0.32 0.27 0.22 0.26 0.22 0.27 0.26 0.31 0.35

Average 0.26 0.25 0.29 0.25 0.25 0.21 0.27 0.23 0.47 0.32
K=128

b14 0.50 0.42 0.44 0.47 0.45 0.40 0.48 0.44 0.49 0.55
b15 0.63 0.59 0.60 0.57 0.52 0.61 0.50 0.55 0.64 0.58
b20 0.54 0.32 0.42 0.44 0.33 0.53 0.39 0.39 0.64 0.54
b21 0.52 0.42 0.42 0.37 0.43 0.39 0.41 0.48 0.51 0.52
b22 0.63 0.38 0.46 0.43 0.43 0.47 0.48 0.43 0.53 0.49
b17 0.73 0.75 0.53 0.59 0.54 0.62 0.60 0.65 0.60 0.65

Average 0.59 0.48 0.48 0.48 0.45 0.50 0.48 0.49 0.57 0.56

low attack accuracy on both RLL and UNSAIL schemes.5

When comparing the resilience of baseline RLL with UNSAIL,
we note that UNSAIL reduces the accuracy of the attack further
by an average of 3.34pp across all locking variations.

F. Hamming Distance (HD) and Output Error Rate (OER)
Analysis on UNSAIL Vs. RLL

Next, we calculate the HD and OER between the original
benchmark outputs and the outputs of the RLL and UNSAIL-
locked instances by applying random keys. This is done to
quantify the level of functional obfuscation for the logic
locking techniques in general, independent of an actual attack.
For each benchmark, 100 random keys are chosen, and
the locked instances’ outputs are compared with the golden
outputs by applying 10,000 random input patterns. The
results are documented in Table XIII.

It is observed that, with an increase in key-size, HD in-
creases for ISCAS-85 and ITC-99 benchmarks. This is intu-
itive, as an increase in key-size/number of key-inputs allows
for a more widespread propagation of potentially false key-bit
assignments (albeit that remains subject to the netlist structure)
and, in turn, the possibility for more output corruption.

Comparing UNSAIL vs. RLL, RLL achieves a higher HD,
by an average of 3.25pp. This is because UNSAIL inserts
key-gates in specific locations that would affect the perfor-
mance of the ML models used by SAIL but might not be
effective in propagating the effect of faults to the outputs
when incorrect key-bits are applied. Next, we also calculate
OER for UNSAIL-locked benchmarks; ideally, OER should be
100%. The average OER obtained for UNSAIL on ISCAS-85
benchmarks (K=64 and K=128) is 99.95%, whereas the OER
obtained for ITC-99 benchmarks with K=256 and K=512 is
100% for all the test cases.

G. UNSAIL Test and Fault Coverage

Here, we study the impact of UNSAIL on the testability
of the overall design. We report the fault coverage and test

5In fact, we have launched the redundancy attack on X(N)OR-based RLL-
locked benchmarks without re-synthesis (in BENCH format) and observed
similar accuracy values as reported in [12].
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TABLE XIII
HD RESULTS FOR RLL AND UNSAIL SCHEMES ON SELECTED ISCAS-85 BENCHMARKS UPON APPLYING 100 RANDOM KEYS AND 10,000 RANDOM

INPUT PATTERNS FOR EACH KEY ASSIGNMENT

RLL UNSAIL
Key-gates X(N)OR CL v1 CL v2 CL v3 CL v4 X(N)OR CL v1 CL v2 CL v3 CL v4
Key-size 64 128 64 128 64 128 64 128 64 128 64 128 64 128 64 128 64 128 64 128

c880 0.28 0.34 0.29 0.38 0.26 0.37 0.25 0.37 0.29 0.29 0.18 0.39 0.28 0.40 0.24 0.36 0.30 0.34 0.29 0.37
c1355 0.33 0.46 0.22 0.46 0.32 0.43 0.33 0.43 0.29 0.44 0.24 0.38 0.16 0.32 0.19 0.36 0.25 0.39 0.28 0.34
c1908 0.33 0.43 0.32 0.43 0.30 0.44 0.29 0.40 0.30 0.33 0.23 0.35 0.28 0.35 0.27 0.39 0.33 0.32 0.23 0.35
c2670 0.09 0.11 0.09 0.12 0.11 0.14 0.06 0.13 0.11 0.12 0.10 0.11 0.09 0.11 0.09 0.14 0.08 0.12 0.08 0.13
c3540 0.35 0.44 0.30 0.36 0.30 0.40 0.34 0.39 0.31 0.40 0.27 0.43 0.31 0.34 0.27 0.33 0.29 0.35 0.29 0.37
c5315 0.17 0.21 0.15 0.22 0.15 0.20 0.14 0.22 0.15 0.19 0.11 0.18 0.11 0.15 0.14 0.17 0.12 0.16 0.10 0.15
c6288 0.35 0.42 0.36 0.41 0.35 0.45 0.37 0.45 0.33 0.43 0.36 0.37 0.33 0.39 0.36 0.35 0.32 0.40 0.33 0.36
c7552 0.14 0.21 0.16 0.19 0.15 0.18 0.13 0.16 0.13 0.19 0.10 0.13 0.12 0.16 0.10 0.17 0.17 0.16 0.14 0.15

Average 0.25 0.33 0.24 0.32 0.24 0.33 0.24 0.32 0.24 0.30 0.20 0.29 0.21 0.28 0.21 0.28 0.23 0.28 0.22 0.28

Key-size 256 512 256 512 256 512 256 512 256 512 256 512 256 512 256 512 256 512 256 512
b14 C 0.17 0.25 0.16 0.29 0.16 0.30 0.18 0.30 0.16 0.26 0.17 0.22 0.17 0.20 0.12 0.21 0.13 0.20 0.15 0.27
b15 C 0.15 0.23 0.14 0.24 0.14 0.22 0.13 0.24 0.12 0.18 0.09 0.18 0.12 0.15 0.11 0.19 0.12 0.15 0.08 0.18
b20 C 0.10 0.20 0.13 0.18 0.12 0.18 0.09 0.17 0.10 0.15 0.10 0.15 0.07 0.17 0.08 0.15 0.07 0.12 0.06 0.15
b21 C 0.12 0.17 0.12 0.20 0.10 0.19 0.12 0.17 0.10 0.16 0.08 0.15 0.07 0.16 0.11 0.14 0.08 0.15 0.07 0.14
b22 C 0.07 0.16 0.07 0.16 0.08 0.13 0.08 0.16 0.06 0.12 0.07 0.15 0.09 0.10 0.07 0.10 0.06 0.11 0.03 0.12
b17 C 0.05 0.10 0.05 0.09 0.05 0.08 0.05 0.10 0.05 0.09 0.04 0.09 0.03 0.08 0.02 0.07 0.03 0.07 0.03 0.06

Average 0.11 0.19 0.11 0.19 0.11 0.18 0.11 0.19 0.10 0.16 0.09 0.16 0.09 0.14 0.08 0.14 0.08 0.13 0.07 0.15

coverage for locked benchmarks without key constraints, as
recommended in [36]. For context, we also obtain the coverage
values for the original designs. Fault coverage represents the
percentage of detected faults out of the total faults in the design
while test coverage represents the percentage of the detected
faults out of the detectable faults in the design [37].

The test coverage for the original ISCAS-85 and ITC-99
benchmarks is 100% for all benchmarks. The average fault
coverage is 99.98% and 99.92% for ISCAS-85 and ITC-
99 benchmarks, respectively. For UNSAIL-locked benchmarks,
the test coverage remains at 100% for all locked bench-
marks. Moreover, the average fault coverage is 99.71% and
99.96% for the locked ISCAS-85 and ITC-99 benchmarks,
respectively. These experiments illustrate that UNSAIL does
not negatively impact the testability of the underlying designs.

H. Implementation Overheads

Obfuscation Time. To obfuscate a design using UNSAIL,
the design must be initially locked using a traditional logic
locking algorithm (e.g., RLL, FLL, etc.) and then synthesized
using a synthesis tool of choice. The pre- and post-subgraphs
must be extracted and compared, and the additional UNSAIL
key-gates structures must be inserted. In our experiments, the
extraction of subgraphs took less than a second for ISCAS-
85 benchmarks for both K=64 and K=128, respectively.
For ITC-99 benchmarks, the extraction of subgraphs took
between 70s-138s for K=512. In case of locking the GPS
module in the ORPSoC design, the extraction took on average
6.5h. Insertion of UNSAIL key-gates took less than a second
for ISCAS-85 benchmarks, around 105s for the ITC-99
benchmarks, and on average 6h for the GPS module, which
demonstrates the scalability of our approach also for large
designs.

Layout Cost Incurred by UNSAIL. The area and power
overheads for RLL and UNSAIL-locked instances of ITC-99
benchmarks are reported for the largest key-size of K=512.
Area and power overheads for all the benchmarks have been
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Fig. 13. Area overheads for selected ITC-99 benchmarks locked with
K=512 at iso-performance of 200 MHz. (a) RLL with X(N)OR key-gates.
(b) UNSAIL integrated with RLL using X(N)OR key-gates. Each box consists
of 20 trials, the boxes span from the 5th to the 95th percentile, the whiskers
indicate the minimum and maximum values, the red bars indicate the median,
and the red dots represent outliers, respectively.

obtained for an iso-performance layout implementation con-
sidering 5 ns timing constraint. Area overheads for RLL and
UNSAIL-locked instances using X(N)OR key-gates are shown
in Fig. 13(a) and Fig. 13(b), respectively; the related power
overheads are illustrated in Fig. 14(a) and Fig. 14(b).

We note that UNSAIL increases the area overheads (by
0.37%–5.79%) and power overheads (by 4.88%–14.17%)
compared to the baseline RLL, i.e., at iso-performance. This
is because of two reasons playing out at the synthesis and
physical-layout level. First, the synthesis tool is unconstrained
after the insertion of UNSAIL key-gate structures. Thus, while
more secure than RLL, the UNSAIL netlists are less optimized
with regards to area and power. Second, as our physical-layout
flow is optimized for timing closure, algorithms internally
invoked by Cadence Innovus, like the insertion of buffers
and/or upsizing of gates, as well as further re-routing of nets
cause an increase in both area and power overheads. However,
the cost for UNSAIL is amortized for large, million-gate-based
designs, as illustrated next.
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Fig. 14. Power overheads for selected ITC-99 benchmarks locked with
K=512 at iso-performance of 200 MHz. (a) RLL with X(N)OR key-gates.
(b) UNSAIL integrated with RLL using X(N)OR key-gates. The details
regarding boxes are the same as in Fig. 13.

I. Results on DARPA OpenCores Benchmark [34]

For the DARPA CEP benchmark [34], also known as
ORPSoC, we lock the sensitive GPS module using X(N)OR
locking. The SAIL RF classifier was trained and tested on both
RLL and UNSAIL with K=512. The classification accuracy for
the case of RLL with sub=3 is 77%, whereas, for the case
of UNSAIL, it is 55%, i.e., only slightly better than random-
guessing. For sub=6, UNSAIL still succeeds in lowering the
classification accuracy, namely from 91% to 79%. The model
ML2 is tested as well, and the key-gate recovery accuracy for
RLL and UNSAIL is 73% and 53%, respectively. Once both
models are combined and the full SAIL attack is launched, the
key-gate detection accuracy for RLL vs. UNSAIL is reduced
from 73% to 66%. The area and power overheads for UNSAIL
using K=512 are 0.26% and 0.61%, respectively, for iso-
performance at 100 MHz.

In summary, we demonstrated that UNSAIL is both effective
and cost-efficient when protecting large designs against SAIL.

VIII. DISCUSSION

A. Impact of Re-Synthesizing UNSAIL-locked Designs

Essentially, for logic locking using UNSAIL, several key-
gate structures are added to confuse ML-based attacks. A
defender would like to have those structures injected by
UNSAIL ideally untouched. One might argue that an attacker
could re-synthesize the UNSAIL-locked designs to remove the
subterfuge added by our defense. However, doing so will only
increase the complexity of SAIL, as explained next.

The goal of SAIL is to obtain the locked netlist before re-
synthesis, let us call it netlist A. This locked netlist is re-
synthesized for obfuscation, providing netlist B. Next, UNSAIL
additionally locks the re-synthesized netlist, providing netlist
C. If an attacker re-synthesizes the final locked design one
more time, he/she will end up with netlist D. In such case, an
even more powerful attack must be developed to revert all the
changes, i.e., to go back from netlist D −→ C −→ B −→ A.

B. Impact of Layout Optimization on UNSAIL

We also compared the post-layout netlists to the pre-layout
(i.e., post-synthesis) netlists, to investigate whether the UN-
SAIL key-gate structures are carried over or resolved by layout-
level optimization techniques. On average, we note that 10% of

all key-gate structures are affected, i.e., they go through some
optimization. Still, we argue that such a transformation will
not affect the overall resilience offered by UNSAIL. This is
because an enhanced, yet-to-be-demonstrated two-step SAIL
attack, capable of working on post-layout designs, would have
to infer the additional changes incurred due to layout-level
optimizations. Even when assuming such a powerful attack
exists, the attacker would still be left only with the post-
synthesis netlist, which remains protected by UNSAIL.

C. Extended Threat Model

As discussed, various attacks have challenged logic locking
while leveraging an oracle [7]; this fact has resulted in
broad efforts to protect against such oracle-guided attacks.
However, recent ML-based, oracle-less attacks are considered
more powerful, as they have shown to undermine the security
promises of logic locking already during the early stages of
the IC supply chain, without requiring an oracle.

In this work, we have proposed and demonstrated UNSAIL
to protect logic locking against such potent oracle-less attacks.
Recall that UNSAIL is compatible with any traditional locking
scheme of choice. Given that traditional locking techniques
are often incorporated with locking solutions resilient against
SAT-based attacks, we argue that by integrating such a resilient
scheme also with UNSAIL, the design could be protected from
both oracle-guided and oracle-less attacks at once. Related
efforts shall, however, remain scope for future work.

Note that pairing UNSAIL with a SAT-resilient technique
would not compromise the resilience offered by UNSAIL
against SAIL. This is because any SAT-resilient technique
is independent and separate from the UNSAIL structures.
Furthermore, SAT-resilient techniques differ significantly from
traditional locking in terms of logic and structural properties.
Thus, in its current form, one cannot readily apply SAIL to
those resilient techniques, and it remains to be seen if SAIL
could be tailored for such SAT-resilient techniques at all.

IX. CONCLUSION

In this work, we initially implemented a reference platform
for the SAIL attack, to thoroughly investigate the security of
logic locking against such an oracle-less machine learning
(ML)-based attack. For the first time, our study considers
various key-sizes, key-gate structures, and key-gate inser-
tion heuristics. Among others, we find that compound logic
locking, i.e., where various key-gate structures are randomly
selected and used at once, tend to be more resilient. Second,
we presented a defense mechanism called UNSAIL, which
targets specifically at the training stage of such an ML-based
attack. The presented defense can be integrated with any
combinational logic locking scheme, and we have considered
various traditional logic locking schemes toward that end.

UNSAIL serves to confuse the SAIL models by introducing
additional structural transformations that these models cannot
distinguish from regular ones (i.e., those introduced by syn-
thesis tools for the sake of obfuscation, as is common practice
with logic locking). We have initially motivated the notion of
UNSAIL using Fisher’s discriminant ratio, which demonstrated
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more complex classification problems for SAIL in particular
and classification-based attacks in general. Besides SAIL, we
show that our defense can hinder another potent oracle-less,
ML-based attack, called SWEEP. For both SAIL and SWEEP,
we have performed a thorough evaluation when different
attack models and configurations are utilized. Reflection of
the results argues that UNSAIL degrades the accuracy of all
the stages/models of SAIL, achieving an overall reduction
of attack accuracy of 11 percentage points (pp); UNSAIL
also degrades the performance of the SWEEP attack by an
average of 15pp; all while inducing only marginal layout
overheads. We have demonstrated that UNSAIL is further
capable of thwarting non-ML-based oracle-less attacks, i.e.,
the redundancy attack specifically, which can recover the key-
bits of UNSAIL-locked designs only with a low accuracy
of 38% on average. Finally, UNSAIL-locked designs can be
activated post-testing, ensuring high fault coverage and test
quality all while additionally offering protection from an
untrusted test facility.
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