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Abstract—This work introduces a generic, machine learning
(ML)-based platform for functional reverse engineering (RE) of
circuits. Our proposed platform GNN-RE leverages the notion of
graph neural networks (GNNs) to (i) represent and analyze flat-
tened/unstructured gate-level netlists, (ii) automatically identify
the boundaries between the modules or sub-circuits implemented
in such netlists and (iii) classify the sub-circuits based on
their functionalities. For GNNs in general, each graph node
is tailored to learn about its own features and its neighboring
nodes, which is a powerful approach for the detection of any
kind of sub-graphs of interest. For GNN-RE, in particular, each
node represents a gate and is initialized with a feature vector
that reflects on the functional and structural properties of its
neighboring gates. GNN-RE also learns the global structure of the
circuit, which facilitates identifying the boundaries between sub-
circuits in a flattened netlist. Initially, to provide high-quality
data for training of GNN-RE, we deploy a comprehensive dataset
of foundational designs/components with differing functionalities,
implementation styles, bit-widths, and interconnections. GNN-RE
is then tested on the unseen shares of this custom dataset, as well
as the EPFL benchmarks, the ISCAS-85 benchmarks, and the
74X series benchmarks. GNN-RE achieves an average accuracy
of 98.82% in terms of mapping individual gates to modules,
all without any manual intervention or post-processing. We also
release our code and source data [1].

Index Terms—Graph neural networks, Reverse engineering,
Hardware security, Gate-level netlist, Machine learning
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W ITH the continuous escalation in complexity and costs
for integrated circuit (IC) fabrication, the semiconduc-

tor manufacturing process has become globalized, involving
numerous entities across the globe. Such a globalized supply
chain leads to a plethora of security-related concerns such
as illegal overproduction of ICs, piracy of design intellectual
property (IP), or implantation of malicious hardware Trojans
(HTs)1 [4], [5], any of which can cause financial loss to design
companies or IP owners and introduce potential risks to end
users. For example, the financial losses for US companies
due to infringement of design IP were estimated as $225–600
billion in 2017 [6]. To this end, researchers have proposed
various countermeasures; see [7] for a detailed review.

Reverse engineering (RE) of an IC is a process that aims
to obtain the IC/IP design, technology, or functionality by
analyzing the chip layer by layer [8]. RE of ICs can be
leveraged to detect IP infringement, verify IP implementation,
detect HTs, etc. A typical RE flow is illustrated in Fig. 1. The
first stage is to obtain the gate-level netlist from the physical
chip (Steps 1 – 5 in Fig. 1). See [9], [10] for more details.
Note that the netlist can also be reverse-engineered directly
from the layout data (GDSII file), as illustrated by the black
dashed lines in Fig. 1 [11]. The second stage is functional RE,
i.e., ascertaining the functionality of the chip/GDSII (Steps 6
and 7 in Fig. 1). Further details are discussed in [12]–[15].

In this work, we focus on functional RE (blue dashed
box in Fig. 1). Prior art typically applies the following work-
flow: first, a set of candidate sub-circuits is extracted, e.g., by
partitioning the netlist, and then each sub-circuit is labeled,
e.g., by performing exhaustive formal verification against
components from a golden library [16]–[19]. These works
have the following limitations: (i) Extracting all the relevant
candidate sub-circuits and checking each candidate by formal
verification is a time-consuming procedure. The performance
and accuracy of such an approach depend heavily on the
constructed golden library. (ii) Such techniques cannot identify
any variants of design components in the golden library [20].

Recently, machine learning (ML)-based approaches have
been proposed [20]–[22] to advance functional RE of digital
circuits.2 However, these recent studies are limited to classifica-

1HTs are malicious circuit modifications which can be introduced during
fabrication, through adversarial third-party IP cores, untrusted or “hacked”
design tools, or by malign employees during chip fabrication [2]. The general
objectives of HTs are to modify the chip’s functionality or steal critical
data/assets processed on the chip [3].

2Besides, a recent work [23] utilizes a graph convolutional network (GCN)
to classify analog circuits into sub-circuits and to create circuit hierarchy trees.
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Fig. 1: Generic flow for reverse engineering (RE) of an integrated circuit (IC). The blue and dashed box indicates the steps relevant for this work—functional
RE, i.e., to extract and label/recognize high-level components from the gate-level netlist. For the generic flow, the first stage is physical RE, i.e., to obtain the
gate-level netlist from the chip (or directly from the GDSII file). To that end, the IC is de-packaged and stepwise de-layered, to retrieve visual data from the
active layer and all metal layers [9]. Thereafter, all the logic gates are inferred from the visual data, e.g., using segmentation and feature extraction [10]. Note
that the images for Steps 2–4 are derived from [14], [24], [25]. SEM stands for scanning electron microscope.

tion at the sub-circuit level. That is, these works cannot handle
an unstructured, more complex gate-level netlist as obtained
from RE, but require dedicated pre-processing to partition the
netlist into sub-circuits and, foremost, to identify the related
boundaries of sub-circuits. The latter task is a considerable
challenge by itself, as studied in this work.

A. Key Research Challenges Targeted in This Work

1) Circuit Encoding: A netlist cannot be represented directly
in 2D image-like structures. Thus, it cannot be directly pro-
cessed by traditional ML models like convolutional neural
networks (CNNs), which handle pixels or other input data
rigidly organized in matrices. Thus the development of a
circuit encoding procedure is required.

2) Boundary Identification: The reverse-engineered netlist
may consist of a seemingly incomprehensible sea of
gates. This is because computer-aided design tools can
“flatten” the netlist, i.e., considering multiple sub-circuits
at once to gain more leverage for design optimization.
Such flattening implies that the layout is losing the
design hierarchy to some degree, rendering the subsequent
extraction of sub-circuits a difficult task. Thus, models that
can automatically and accurately detect the boundaries
between sub-circuits and further identify each sub-circuit’s
functionality are highly relevant, yet challenging to realize.
We motivate in more detail in Sec. II-A.

3) Dataset for Training: In general, the performance of any
ML model depends on the availability of a high-quality
training set with corresponding labels as ground truth (i.e.,
which gates belong to which sub-circuit). This set should
also contain variations within the considered sub-circuits
to ensure that the ML model learns on a wide range of
implementations and, thus, can become robust.

B. Our Concept and Novel Contributions

To address the above challenges, we propose GNN-RE, an
ML-based framework that can automatically and with high

GNN-RE Framework (Sec. III)
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Fig. 2: An overview of our novel contributions.

accuracy extract and label sub-circuits in a flattened netlist. The
main idea is to leverage graph neural networks (GNNs) that
can learn and reason on the structural and functional features
of various sub-circuits. This work is motivated by the fact that
a gate-level netlist can be represented as a graph, in which sub-
circuits/sub-graphs tend to exhibit distinctive functionalities
and structures.3 The contributions of our work are enumerate
as follows; see also Fig. 2.

1) Netlist-to-Graph Transformation and Feature Extrac-
tion: Existing ML-based approaches for functional reverse
engineering encode the circuits in fixed tensor format,
losing information that comes with the circuits’ natural
graph structures. In contrast, we employ a graph-based
learning approach and develop a netlist-to-graph trans-
formation that takes advantage of the circuits’ irregular
graph structure. GNN-RE learns not only from the graph
structure but also from explicit node (gate) features. Each
node/gate is associated with a feature vector that captures
the functionality of its neighborhood. Hence, GNN-RE
absorbs both the structural and functional attributes of any
given node and its surrounding circuitry.

2) Boundary Identification and Labeling using GNNs:
We utilize a GNN to partition and label the gates (nodes)
in a circuit (graph). As a result, GNN-RE identifies the

3GNNs have recently shown great potential for different hardware security
applications, such as evaluating the security of logic locking [26], [27] and
detecting HTs [28].
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Fig. 3: Proposed functional reverse engineering of gate-level netlists using a graph neural network (GNN).

boundaries between sub-circuits in a gate-level circuit,
i.e., the exact set of gates belonging to those sub-circuits,
as outlined in Fig. 3. It also recognizes the type of sub-
circuits. Unlike prior art, no pre-processing is required to
partition the netlist.

3) Dataset Generation: We generate a comprehensive
dataset of combinational and sequential circuits that
comprise several essential and interconnected components,
including adders, subtractors, multipliers, comparators,
shift registers, counters, finite state machines (FSMs)
and control logic, using different bit-widths and different
functional implementations. This dataset will be released
to the community [1].

Key Results: We test GNN-RE on our custom dataset, the
EPFL [29] benchmarks, the ISCAS-85 benchmarks, and the
74X series circuits [30]. When labeling gates, GNN-RE considers
the local neighborhood around each gate and the global
structure of the circuit. Therefore, in a given netlist, GNN-RE si-
multaneously identifies the boundaries between the sub-circuits
as well as their corresponding functionalities. GNN-RE achieves
an average accuracy of 98.82% while mapping individual
gates to sub-circuits, without any manual intervention or post-
processing. We also show that traditional logic locking [31],
which aims to prevent IP piracy and complicate RE, has no
meaningful impact on the accuracy of GNN-RE.

The organization of the paper is as follows. The motivation
and relevant prior art are discussed in Sec. II. The proposed
framework is presented in Sec. III and the experimental
evaluation is given in Sec. IV. We discuss further related
aspects in Sec. V and finally conclude in Sec. VI.

II. MOTIVATION AND BACKGROUND

In principle, ML models can generalize to previously
unseen data. Hence, if trained well, ML models should handle
variations present in the netlist during functional RE, which is
essential to overcome the main limitation of the prior art, i.e.,
searching for exact matches against components in a golden
library. However, this particularly promising capability of ML
has not been explored yet.

In this section, we first discuss the shortcomings of state-
of-the-art ML-based approaches for functional RE of gate-
level netlists; other, non-ML-based approaches are discussed
in Sec. V. Table I compares ours with prior ML-based RE
techniques. Then, we provide a brief background on GNNs
and logic locking.

A. Prior Art and Their Limitations
Sub-Circuit Classification: One major shortcoming of

prior ML-based approaches is that they focus on functional

TABLE I
STATE-OF-THE-ART MACHINE LEARNING-BASED TECHNIQUES FOR

REVERSE ENGINEERING OF GATE-LEVEL NETLISTS

Method ML Sub-Circuit Sub-Circuit Boundary Topology Order
Model Classification Identification Independent

HOST’17 [21] CNN 3 7 7

DATE’19 [22] CNN 3 7 7

Integration’20 [20] KNN 3 7 3

Proposed GNN-RE GNN 3 3 3

CNN is convolutional neural network, KNN is K-nearest neighbor, and GNN is graph
neural network.

identification/classification at the sub-circuit level. The ML
models are trained to identify the operation of the underlying
sub-circuit without considering the interconnections between
sub-circuits. For example, authors leverage a CNN in [21]
to perform such classification. The authors present a sliding
window-based approach to detect whether an entire circuit
(comprising multiple interconnected sub-circuits) contains a
multiplier or not. However, such a procedure must be repeated
for every sub-circuit in the golden library, to identify all
the high-level components within a given circuit, thereby
inducing an exhaustive verification problem as with the non-
ML-based approaches. Also, their approach performs sub-
circuit classification only on representative gates (due to the
sliding window-based netlist handling). Even in case the model
predicts the existence of a multiplier, one cannot directly and
accurately infer which gates form the multiplier, i.e., without
employing dedicated post-processing procedures.

Topology Order Dependency: Authors in [21] developed
an adaptive circuit-to-CNN transformation to delegate circuits
of different sizes (as Boolean-encoded matrices of fixed size) to
a CNN. Features are extracted for each gate in the netlist and,
subsequently, pooling is performed as follows. First, the gates
in a given netlist are divided into a fixed number of groups.
Second, the pooling operation selects a specific number of
representative nodes for each group, based on their extracted
features’ results, to construct a fixed-size matrix. Note that the
selection of the nodes and their topological order affect the
fixed-size matrix composition and, thus, the accuracy of the
model. The authors of [21] investigate this effect by comparing
the CNN performance for detecting the existence of a multiplier
when the gates are ordered using three different methods:
(i) as obtained from synthesis, (ii) depth-first search (DFS),
and (iii) breadth-first search (BFS). The authors note that, as
the size of the netlist increases, BFS was more suitable. The
authors argue that, when ordering using BFS, gates of the same
sub-circuit tend to be grouped together, allowing the pooling
operation to extract more prominent features. The authors
introduce a sparse mapping algorithm in [22], which helps to
compact the feature vectors extracted in [21]. Although the
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algorithm in [22] improves the overall accuracy of the CNN,
it still performs grouping and pooling on the netlist’s nodes,
and is thus affected by the topological order of gates.

In summary, these CNN-based works transform circuits into
fixed-size matrices, where topological dependencies matter.
Thus, the order by which representative nodes are selected
affects the performance of the RE model, directly impacting
accuracy and limiting applicability. Moreover, inducing topo-
logical dependencies is not appropriate for a gate-level netlist
as only the type and connectivity of gates, not their order in
the netlist, defines the functionality of the netlist.

Sub-Circuit Extraction (Boundary Identification): Con-
cerning scalability and computational cost, the works [21],
[22] perform sub-circuit matching, assuming the availability of
some techniques to efficiently derive more or less meaningful
sub-circuits from the unstructured netlist. In this context, the
work in [20] presents a fuzzy structural-similarity matching
technique based on K-nearest neighbor classification (KNN),
to account for partitioning errors in the extracted sub-circuits,
without proposing any partitioning algorithm.

B. Graph Neural Networks (GNNs)
GNNs capture the structure of graphs via message passing

between the nodes. Let G(V,E) be an undirected attributed
graph; V represents the set of nodes, and E represents the set
of edges. Each node v ∈ V is assigned a feature vector fv , also
referred to as initial embedding, capturing its properties. GNNs
perform neighborhood aggregation (AGG) in which each node
receives messages (embeddings) from its neighboring nodes
N(v) through the edges. A new embedding is computed for
each node by applying a learnable update function (Update) on
the node’s current embedding and the aggregated neighboring
embeddings. Thus, the nodes learn about their features and
that of their surrounding nodes, as also illustrated in Fig. 4.
After a few layers/iterations of aggregation, the nodes’ final
embeddings are extracted, to perform the desired task such as
node classification, graph classification, etc.

Note that, through aggregation, GNNs can color/label
vertices according to their structural roles in a given graph,
similarly to the Weisfeiler-Lehman test [32] illustrated in Fig. 5.
Such an approach is fitting for the detection of sub-graphs
(sub-circuits) as these tend to exhibit specific features (func-
tionalities) and connectivity (structure) that can be captured by
their nodes (gates) and their edges (interconnections).

Different GNN architectures, such as the inductive repre-
sentation learning on large graphs (GraphSAGE ) [33] platform,
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Fig. 5: Two iterations of the Weisfeiler-Lehman test [32] on an example
graph, starting with nodes of identical color/feature 1. The test performs graph
coloring by first aggregating the colors of nodes and their neighborhoods and
then generating unique new colors. The colors embed the structural roles of
vertices in the graph. For simplicity, we assign the same initial color for all the
nodes. However, if each node is assigned a unique feature vector that captures
other non-structural properties, such information will also be accounted for
when labeling the nodes.

graph attention network (GAT ) [34], gated attention networks
(GAAN ) [35], and jumping knowledge network (JK-net ) [36],
employ different AGG and Update functions. Thus, an impor-
tant part of our work is to study the various GNN architectures
and to identify the most suitable model for our task. Next, we
describe the different GNN architectures (mainly their AGG
and Update functions) as leveraged in this work.

1) GraphSAGE [33]: GraphSAGE computes embeddings by
aggregating features from the local neighborhood as follows:

h0
v = fv (1)

hl
v = σ([Wl ·AGG({hl−1

u ,∀u ∈ N(v)}),Blh
l−1
v ]) (2)

AGG =
∑

u∈N(v))

hl−1
u

|N(v)|
(3)

where σ(.) is an activation function (we use ReLU in our
experiments), Wl and Bl are trainable matrices (i.e., encod-
ing what the model learns), N(v) represents the first-order
neighbors of node v in the graph G, and hl

v represents the
lth layer embedding of node v. The initial embeddings h0

v are
equal to the node features fv. GraphSAGE concatenates the
self-embedding of the previous step hl−1

v with the neighbor
embedding (output of the AGG function) in order to update
the embedding of a node hl

v. The Wl transformation learns
the important components from the neighbors’ features and the
Bl transformation learns the important features of the node
itself. Note that individual weight parameters are defined for
each transformation and per layer l. GraphSAGE can consider
several AGG functions; in our experiments, we use the mean
aggregator function as described in Equation (3). The final
embedding vector of the node, after L layers, is as follows:

zv = hL
v (4)

2) Attention Networks [34], [35]: In GAT, an additional
neural network is utilized to calculate the weight of the edges
during aggregation. With multi-head attention of K, the layer
l − 1’s features propagate to layer l as follows:

hl
v =

∣∣∣∣∣∣∣∣K
k=1

σ
(∑

u∈N(v) α
k
u,vW

khl−1
v

)
(5)

αk
u,v = LeakyReLU

(
(ak)ᵀ[W khu ‖W khv]

)
(6)
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where αu,v specifies the weighting factor (i.e., importance) of
node u’s features for node v. Note that αu,v is computed as a
byproduct of an attentional mechanism a. More specifically,
multi-head attention is performed in which the operations of
the layer are independently replicated K times, each replica
with different parameters, and the outputs are feature-wise
aggregated. We use a concatenating operation as in Equation (5).
Then, αk

u,v are the attention coefficients derived by the k-th
replica, and W k is the weight matrix specifying the linear
transformation of the k-th replica.

GAAN builds on GAT’s attention, by inserting additional
gating mechanisms to impose different values for different
heads’ computations. Hence, an additional soft-gating function
is leveraged ranging from 0 (low importance) to 1 (high
importance), to assign different weights to each head.

3) Jumping Knowledge Network [36]: The JK-net model
learns an adaptive and structure-aware representation. Toward
that end, JK-net picks, for each node at the respective previous
layer, from all intermediate embeddings which requires to jump
to the last layer. This approach allows the model to adapt
to each node’s effective neighborhood size as needed. JK-
net considers three approaches for aggregation [36]; in our
experiments, we use the concatenation method as follows:

hJK = σ
(
W ᵀ

JK ·
fL
l=1 h

l
v

)
(7)

C. Logic Locking

Logic locking is a design-for-trust technique that can be
employed to protect the design IP throughout the supply
chain [31], [37]. More specifically, logic locking protects the
functionality of the design IP by inserting key-gates into the
design. The locked design functions correctly only when the
correct key is applied to the key-gates. The secret key is stored
in an on-chip tamper-proof memory and is only known to
the chip designer. Without easy access to the key, untrusted
entities in the supply chain (foundry, test facility) cannot infer
the functionality of the design even if they have access to the
reverse-engineered netlist. We illustrate the concept of logic
locking in Fig. 6.

III. PROPOSED GNN-RE METHODOLOGY

We now discuss our proposed GNN-RE methodology in detail.
The overall process is illustrated in Fig. 7.

A. Setting

We investigate the problem of reverse engineering gate-level
netlists under the following assumptions: the analyst has access
to (i) a reverse-engineered gate-level netlist and (ii) a high-level
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Fig. 7: Our proposed GNN-RE methodology. Initially, we train GNN-RE using
customized designs and then use it to extract and identify the high-level
components of previously unseen, unstructured netlists.
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description of the design’s functionality to construct a training
dataset suitable for the target design. The goal is to identify
all functional modules.

Unlike library-based prior art [16]–[19], we do not require
the exact implementation of modules within our training set,
and we only leverage the high-level description of the design
to incorporate functionally similar modules into the training set.
All circuits considered in this work are different in terms of
the types of their sub-circuits, interconnections, and bit-widths.
In fact, our GNN-RE model is tested/validated on previously
unseen designs, comprising specific modules not leveraged at
any time during training.

B. Netlist-to-Graph Transformation and Feature Extraction

In general, a gate-level netlist can be entirely represented
using a graph. Although logic circuits are inherently directional,
representing them as undirected graphs renders message passing
within the GNN more efficient. Note that circuits can be
represented as undirected graphs without loss of structural
or functional correctness, given that (i) any gate can only be
driven by a single other gate and (ii) input and output degree of
nodes/gates can be encoded as features. Hence, we represent a
netlist as an undirected graph G = (V,E), where V is the set
of nodes (gates), of length n, and E is the set of edges (wires)
connecting the nodes. The graph has node attributes where fv

is the feature vector of a node v, with length k. F ∈ Rn×k is
the two-dimensional matrix containing node features.

An example of a simple netlist and its corresponding graph
is shown in Fig. 8. Next, we explain the considered features
along this example. Note that we do not include the primary
inputs/outputs (PIs/POs) as nodes, as our goal is to classify
the gates, not PIs/POs. Nevertheless, a node’s connectivity to
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PIs/POs is captured in the feature vector, as highlighted as
feature category in white in Fig. 8. The vector also captures the
node’s fan-in/input degree IN and the fan-out/output degree
OUT , as highlighted as feature category in dark gray in
Fig. 8. Capturing both input and output degrees is important
as this structural information would otherwise be lost when
using an undirected graph. The feature vector contains a third
category that captures the gate’s functionality and those of
its neighbouring gates/nodes; see gates info highlighted in
gray in Fig. 8). To this end, k is largely dictated by the
number of gate types in the technology library. For sequential
designs, we employ an additional binary feature to indicate
whether a gate is combinational or sequential. Moreover, when
using GNN-RE to identify the functionality of a logic-locked
design, we employ an additional binary feature to indicate
whether a gate is controlled by a KI or not, so that the GNN
is made aware of key-gates versus regular gates. Each node’s
neighborhood up to two hops away are considered, i.e., gates
directly connected to the gate/node itself are considered and
also all gates connected in turn to those gates are considered.
Consideration of such neighborhood is essential to capture the
structural and functional properties of nodes in general and
sub-circuits in particular. More details on hop sizes and their
role for GNNs are also discussed in the next subsection. Note
that the sums for all encountered gate types up to two hops
away are included in the feature vector. Each encountered gate
type has an entry (categorical row) in the feature vector. For
example, the feature vector fg of node g in Fig. 8 describes
that the gate is connected to one PO, three XOR gates, one
AND gate, and two OR gates in its two-hop neighborhood
marked in blue. The vector also describes that the gate has an
input degree of IN = 3 and an output degree of OUT = 1.
The feature vectors are then standardized by removing the
mean and scaling to unit variance.

C. Model Building and Testing

1) GNN-RE Training Phase: Considering scalability is es-
sential for deep learning on graphs, due to an exponential
growth of the GNN computations for larger neighborhoods
being considered. The GNN depth L defines the size of
the neighborhood to be considered during aggregation. More
specifically, a depth of L for a given GNN layer implies
that this layer has to account for all L-hop neighbor features,
aside from its own/self features. Accordingly, the deeper the
GNN, the more multi-hop nodes are to be accounted for
when generating the root node’s embedding. As a result, more
messages are required for aggregation and, consequently, the
GNN performance suffers. Layer sampling methods can limit
the number of nodes aggregating their features per each hop
in the considered neighborhood. Although such approaches
reduce training time, they may suffer from scalability issues
nevertheless as they still operate on the full graph.

In our work, we leverage the graph sampling approach
GraphSAINT [38] to maintain scalability. In GraphSAINT, sub-
graphs are sampled from the original graph, and a full GNN
is constructed for each sub-graph. Hence, in GNN-RE, the sub-
graphs are sampled first using the random-walk sampler (RWS)

Algorithm 1 Random-walk sampling (RWS) algorithm by
GraphSAINT [38]
Input: Training graph G (V,E); number of roots r; walk length w
Output: Sub-graph Gs (Vs, Es)

1: Initiate Gs = (Vs, Es) with Vs ← {∅}
2: Vr ← r . Sample root nodes from V
3: Vs ← Vr
4: for v ∈ Vr do
5: u← v
6: for distance = 1 to w do
7: u← Node sampled at random from N(u)
8: Vs ← Vs ∪ {u} . Build the sub-graph
9: end for

10: end for
11: Gs ← Node induced sub-graph of G from Vs

Algorithm 2 GNN-RE training algorithm

Input: Training graph G (V,E, F ); Ground truth Y ; Sampler RWS
Output: Trained GNN

1: Compute normalization coefficients α, λ using RWS
2: for each mini-batch do
3: Gs (Vs, Es)← Sampled sub-graph of G using RWS
4: Build GNN on Gs

5: {yv | v ∈ Vs} ← Propagating α-normalized {fv | v ∈ Vs}
6: Propagating λ-normalized loss L (yv,yv) to update weights
7: end for

explained in Algorithm 1. The number of roots r and the
random-walk length w are adjustable parameters. Given a
training graph G, the first step is to sample the root nodes
Vr, uniformly at random and with replacement, from the set
of nodes V (Line 2). In Line 3, roots are added to the set of
sampled nodes Vs. Gs denotes the induced sub-graph of G
from Vs, and N(u) represents the outgoing edges at node u.
In Lines 4–10, a random-walk is performed from each root up
to distance w, building the sub-graph along the way.

During the training stage of GNN-RE, various designs are
fed to the GNN, including different sub-circuits with varying
interconnections and bit-width sizes, allowing the GNN to learn
on all the features of these different designs and sub-circuits.
The pseudocode for GNN-RE’s training procedure is shown in
Algorithm 2 and explained next. To ensure that GNN-RE is not
biased to nodes more frequently sampled by RWS, we follow the
normalization technique proposed in [38] as follows. In Line 1,
the probability values are estimated for a node pv and an edge
pu,v to be sampled by RWS, where v ∈ V and (u, v) ∈ E. The
probability is computed as pu,v ∝ Bu,v +Bv,u, where Bu,v is
the probability of a random-walk to start at u and end at v in L
hops (and vice-versa for Bv,u). The probability scores are used
to compute α and λ, required for aggregation normalization.
More details on the normalization method can be found in [38].
The training of GNN-RE follows a stochastic gradient-descent
procedure. For each mini-batch, a graph Gs is independently
sampled from G using RWS (Line 3). A GNN is built on Gs

(Line 4) to perform neighborhood aggregation and compute
nodes’ embeddings (Line 5). The ground-truth labels are used
to calculate the loss for every v ∈ Vs (Line 6), and the GNN
weights are updated accordingly.

2) GNN-RE Inference Phase: The high-level inference algo-
rithm of GNN-RE is summarized in Algorithm 3. The target



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 7

Algorithm 3 GNN-RE inference algorithm
Input: Flattened netlist N ; Trained GNN
Output: High-level components

1: Initiate G = (V,E, F ) with V ← netlist to graph(N)
2: for each v ∈ V do
3: zv ← GNN(v) . Compute embedding
4: cv ← fc(zv) . Classify node v
5: end for

netlist is converted to a graph (Line 1). Then, for each gate,
the embeddings are computed using the trained GNN (Line 3).
The final representations are passed to a fully-connected (fc)
layer with softmax activation function to classify each node
v into its class cv , i.e., sub-circuit type (Line 4).

D. Dataset Generation

GNN-RE can operate under two settings, depending on
whether boundary identification and sub-circuit extraction
is required (Case II) or not (Case I). Note that GNN-RE is
developed with the specific aim of operating under the realistic
scenario of Case II. However, Case I is still considered, to be
able to compare with the prior art which fails to generalize to
Case II. Next, we describe the datasets used for both settings.
The summary of these datasets is listed in Table II.

1) Case Study I: Sub-Circuit Classification: We generate a
dataset called Single-Modules that contains designs consist-
ing of single modules. Each design in the dataset is either an
adder, subtractor, multiplier, or a comparator. The generated
designs vary in terms of their bit-width; designs with bit-widths
of {2, 4, 32, 64} are used for training, and designs with bit-
width of 8 are used for validation. To evaluate our proposed
model, we test on a 128-bit adder and a 64-bit multiplier
(not included in the testing set) from the EPFL benchmark
suite [29]. We also test our model on the 74283 4-bit adder
and the 74L85 4-bit magnitude comparator from the 74X
series combinational benchmarks [30]. We further test the
model on a synthetic 128-bit comparator and a synthetic 128-
bit subtractor, and we test on the c6288 benchmark, which is
a 16× 16 multiplier from the ISCAS-85 suite. It is important
to note that the proposed GNN-RE model is tested on more
complex structures—in terms of circuit size and/or bit-widths—
than than those considered during training. As an advance
note, our model performs node (gate) classification with an
accuracy of 99.28%. That is, our model successfully learns
from less complex samples the relevant structural and functional
properties and is able to always correctly classify more complex
circuits using those high-accuracy node (gate) inferences.

To showcase the advantage of utilizing an ML model to
perform functional RE over a library-based approach, we
furthermore introduce some functional variations for the adder
designs in the training set, including a carry-look-ahead adder,
a carry-select adder, and a ripple-carry adder. We then test
GNN-RE on a carry-skip adder, which the model had no access to
during training. The same experiment is repeated for the ripple-
carry adder (i.e., excluding it from the training set but including
all other variations). The Verilog implementations of all the
adders are obtained from [39]. We provide the corresponding

(a) Carry-Skip Adder (b) Ripple-Carry Adder (c) Customized Adder

Fig. 9: Graph visualization of the different 64-bit adder designs. Each design
has a different structural implementation.

graphs of the different adders in Fig. 9, which clearly visualizes
the diversity between the graphs and the underlying adders.

To demonstrate the applicability of GNN-RE for RE of
sequential designs, we also construct a database of sequential
designs, called Sequential-Modules, which include counters,
shift registers, and FSMs. The database consists of 29 circuits
in total, out of which 9 are counters, 9 are sequence detector
FSMs, and 11 are shift registers. While the number of designs
considered may appear small for ML applications, each design
holds a large number of gates/nodes to consider. We use 19
modules for training, which include 5 8-bit shift-left/shift-right
registers, {16, 32, 64}-bit free-running shift registers, 4 3-
bit FSMs (Mealy and Moore), etc. We validate GNN-RE on 6
graphs, which include various FSMs, 8-bit shift registers, and
4-bit clock-enabled up/down-counters. We then test GNN-RE on
4 graphs, which include an 8-bit up-counter with controllable
inputs and an 8-bit shift register with controllable inputs. The
controllable inputs, using MUXes, were not seen by GNN-RE
during training or validation. We also test on a 3-bit Moore
FSM and a 3-bit Mealy FSM.

2) Case Study II: Sub-Circuit Extraction (Boundary Identifi-
cation) and Labeling: Here, GNN-RE is expected to perform sub-
circuit extraction and labeling without relying on any other tool
for boundary identification. To train GNN-RE for identification of
interconnected components underlying an unstructured netlist,
we create different datasets, representing several interconnected
designs. A visualization of some selected designs from the
customized datasets is illustrated in Fig. 10. We consider the
following types of sub-circuits in these experiments: adders,
subtractors, comparators, multipliers, and control logic. More
specifically, we generate 8 datasets as follows:

1) The Add-Mul-Mux dataset contains designs consisting of
one adder, one multiplier, and control logic to perform
some arithmetic operation based on the inputs (see Fig. 10a
for a sample graph). It can be inferred from the figure
that the adder (red) and multiplier (purple) sub-circuits
are only connected via some control logic (green). While
the adder and multiplier share the same PIs in the designs,
recall that we do not represent the PIs/POs as nodes in the
graphs, hence the separation between the two sub-circuits
becomes more pronounced in the graph.

2) The Add-Mul-Mix dataset contains designs with two
adders whose outputs feed into a multiplier (see Fig. 10b).
Hence, this dataset serves to study the effect of different
types of interconnections between the adder and multiplier
sub-circuits for the proposed GNN-RE model.

3) The Add-Mul-Combine dataset contains designs with one
adder and one multiplier sharing the same PIs but affecting
different POs (see Fig. 10c). Therefore, aside from the PI
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TABLE II
GENERATED DATASETS

Case Study Datasets #Classes #Features #Nodes #Circuits #Training Nodes #Validation Nodes #Testing Nodes

I
Single-Modules 4 33 32,528 27 6,318 357 25,853

Sequential-Modules 3 39 841 29 700 69 72

II

Add-Mul-Mux 3

33

15,582 7 14,467 239 876
Add-Mul-Mix 2 21,602 6 19,377 576 1,649

Add-Mul-Combine 2 14,288 6 13,256 217 815
Add-Mul-All 3 51,472 19 47,100 1,032 3,340
Add-Mul-Comp 4 15,898 6 14,717 255 926
Add-Mul-Sub 4 18,206 6 16,786 309 1,111

Add-Mul-Comp-Sub 5 19,151 6 17,648 342 1,161
Interconnected-Modules 5 104,727 37 96,251 1,938 6,538

(a) Add-Mul-Mux (b) Add-Mul-Mix (c) Add-Mul-Combine (d) Add-Mul-Comp (f) Add-Mul-Comp-Sub(e) Add-Mul-Sub

Adder Multiplier Control logicSubtractor Comparator

Fig. 10: Visualization of the graphs with a bit-width of 4 for the underlying circuits. Note that each type of sub-circuit exhibits a distinctive structure, which is
learned by the GNN (in addition to the functionality of the sub-circuits).

Fig. 11: Visualization of a design from the Add-Mul-Comp-Sub dataset with
bit-width of 64. We follow the same color-coding of that in Fig. 10.

connections, which are not captured in the graph, these
two sub-circuits remain separated.

4) The Add-Mul-All dataset combines all designs from the
Add-Mul-Mux, Add-Mul-Mix, and Add-Mul-Combine
datasets.

5) The Add-Mul-Comp dataset contains designs with a single
adder, a single multiplier, and a comparator (see Fig. 10d).
The comparator logic takes in two PIs and compares
their magnitude. The comparison result dictates whether
addition or multiplication is performed on the inputs.
Hence, in this dataset, there is no external control input. As
can be seen in Fig. 10d, the comparator block (orange), the
adder (red), and the multiplier (purple) feed the control
logic (green), which drives the POs depending on the
comparison result.

6) The Add-Mul-Sub dataset includes designs containing
a single adder, a single multiplier, two subtractors, and
control logic (see Fig. 10e). An external control signal
dictates the readout of each design. As can be seen in
Fig. 10e, the adder (red), subtractors (blue), and multiplier
all feed the control logic (green).

7) The Add-Mul-Comp-Sub dataset includes designs in
which a comparator block dictates the operation to be
carried out by the main module (see Fig. 10f and Fig. 11).

8) Finally, all the generated designs are combined into one
single dataset, called Interconnected-Modules. Note
that converting the full dataset, which contains 37 designs
and a total of 104, 727 gates, to graphs and extracting the
features for all the nodes takes 1, 090s in total.

IV. EXPERIMENTAL EVALUATION

We evaluate our model’s capability in performing two
independent tasks: (i) sub-circuit classification and (ii) sub-
circuit extraction (boundary identification) and labeling.

The setup for the first task assumes that the sub-circuits’
boundaries in a given design are already known, and we are
only left to identify their functionalities. We perform such
experiments primarily to compare our model’s performance
with the state-of-the-art ML-based approaches for sub-circuit
classification. However, our primary objective is to perform sub-
circuit extraction (boundary identification) and labeling (Task
(ii)), in which a flattened netlist with several interconnected sub-
circuits is fed to GNN-RE for identifying both the boundaries
and functionalities of these sub-circuits.

A. Setup, Evaluation Methods, and Metrics

We verify all designs via functional simulation using Syn-
opsys VCS and synthesize the designs using Synopsys Design
Compiler for the 65nm GlobalFoundries LPe technology.

We evaluate GNN-RE for (i) sub-circuit classification on the
customized designs, selected EPFL modules, selected ISCAS-
85 benchmarks, and selected 74X series benchmarks, and
for (ii) sub-circuit extraction and labeling on the customized
designs. We implement the netlist-to-graph transformation
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in Perl/Python3 and utilize the Tensorflow Python3 imple-
mentation of GraphSAINT for GNN training [38]. Training
is conducted on a single computer with 24 cores (2x Intel
Xeon CPUs E5-2695 v2@2.4 GHz, 256GB RAM), and one
NVIDIA Tesla K20m GPU (2,496 CUDA cores, 5GB of
GDDR5 memory).

The performance of GNN-RE is measured by comparing the
node predictions to the ground-truth labels associated with the
corresponding databases. To this end, we report four different
metrics: accuracy, non-averaged precision, non-averaged recall,
and non-averaged F1-Score.

B. Optimization of GNN Model for Functional RE

Our work is the first to leverage GNNs for functional RE of
digital circuits. Thus, we initially study the impact of different
GNN structures and corresponding hyper-parameters on the
accuracy and training time for the main objectives of our work
(i.e., sub-circuit extraction and labeling).

We organize this part of our study as follows. The overall
process for selecting and optimizing the GNN model is
illustrated in Fig. 12. GraphSAGE is the first stage that we
investigate by varying the hidden dimension h, the GNN depth
L, and the number of GNN layers. Next, we investigate the
effect of different propagation layers such as GAT, GAAN, and JK-
net. The analysis will show that the GAT architecture provides
the best performance for our customized datasets.

More specifics for the experiment setup are as follows.
Initially, we consider the Add-Mul-All dataset; the best model
configuration is then evaluated further on the rest of the
considered datasets. We use the GraphSAINT graph sampling
to construct mini-batches (i.e., sampled sub-graphs) for training.
The RWS sampler of GraphSAINT (see Algorithm 1) is used
with a walk length of w = 2, sample coverage of 50, and
r = 3, 000 root nodes. Note that we have also investigated the
effect of increasing the depth of the sampler to 4, where we
found that it degraded the performance of the model in general.
Forward and backward propagation is performed iteratively
for each mini-batch, to update weights via stochastic gradient
descent. The Adam optimization algorithm is utilized during
training, with a learning rate of 0.01 and a dropout rate of
0.1. The final layer is a fully-connected layer of size h with a
softmax activation function in all our experiments. All runs
are terminated after 2, 000 epochs. In each epoch (training
cycle), the full training set is used. In GraphSAINT, an epoch
consists of |V |/|Vs| weight update steps, where |V | denotes
the number of training nodes and |Vs| denotes the average
number of nodes in sampled sub-graphs. After each epoch, the
GNN model is evaluated on the graphs in the validation set to
estimate its performance on unseen data. The best performing
model on the validation set is restored at the end of training
and subsequently used to evaluate the GNN on the testing set.

Effect of the hidden dimension: We construct a two-
layer GNN using the GraphSAGE architecture with a mean
aggregator function. The GNN depth is set to L = 1 (i.e.,
self features and one-hop neighbors’ features). We study the
effect of varying the hidden dimension h : {128, 256, 512} on
the Micro-F1 and Macro-F1 scores. Our experiments indicate

GNN Depth

GNN Layers
Hidden 

Dimension

GAT
GAAN

JK-net 

Sampling GNN Model Design Propagation

Sampler

Coverage

Depth
Skip Connection

AttentionGraphSAGEGraphSAINT

Fig. 12: Steps involved in the process of selecting and optimizing the GNN
model for GNN-RE. We evaluate the performance of GNN-RE under different
sampling parameters, different GNN designs, and different propagation layers.
We report the experimental results for the blocks colored in gray. Our analysis
demonstrates that the GraphSAINT sampling approach based on the GAT GNN
architecture provides the best performance for our desired task.
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Fig. 13: Effect of the GNN depth considering the Add-Mul-All dataset.

that the proposed GNN-RE platform based on the GraphSAGE
architecture performs best when the hidden dimension is set
to h = 256, with a Macro-F1 of 95.99% and a Micro-F1 of
90.87%. Achieving such F1 scores means that GNN-RE has
achieved a high predictive accuracy and was able to separate
between the adder nodes, multiplier nodes, and control nodes,
although the related sub-circuits are highly interconnected.

Effect of the GNN depth: Setting the hidden dimension
to h = 256, here we explore the effect of increasing the
GNN depth L (i.e., extending the neighborhood of each node
to the Lth layer). As explained before, the higher L is, the
more multi-hop nodes are accounted for when computing the
embedding of the root node. The GNN depth is varied between
L : {1, 2, 4} and the results are reported in Fig. 13. The figure
shows that increasing the depth improves Micro-F1 scores
but at the cost of longer training time. Migrating from depth
of 1 to depth of 2 improves the overall performance of the
model; for L = 2, we report a Micro-F1 score of 96.65% and
a Macro-F1 score of 91.84%. However, migrating from depth
2 to depth of 4 degrades the Macro-F1 ratio again, to 90.48%.
We find that the model for L = 4 performs well on the more
common classes (adders and multipliers) while performing
worse on the more rare classes (control). This is because the
control sub-circuit is small in size when compared to the adder
and multiplier sub-circuits; by increasing the GNN depth to
4, the control nodes can also capture information from more
distant neighbors, which may be adders or multipliers, thereby
overwriting the information they learn about the control sub-
circuit. This problem is known as over-smoothing [40]–[42].

Effect of the GNN layers: Setting h = 256 and L = 1,
here we study the effect of the number of GNN layers. The
number of layers is varied between {2, 3, 4}. We notice that an
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TABLE III
GNN CONFIGURATION AND SAMPLING DETAILS

Architecture Training and Sampling
Total # Layers 5 Optimizer Adam

GNN Depth 1 Dropout 0.1

Input Layer [33, 256] Attention 8

Hidden Layers 1-4 [512, 256] Learning Rate 0.01

Output Layer [256,#classes] Sampler Random Walk

Aggregation Attention aggregator
with multi-head concatenation

Walk Length 2

Activation ReLU Root Nodes 3, 000

Classification softmax Max # Epochs 2, 000

increase in the number of layers improves the model’s overall
performance, with an approximately linear increase in training
time. With layers set to 4, the model achieves a Micro-F1 score
of 97.54% and a Macro-F1 score of 91.83%, respectively, and
training time is 6, 213.58s.

Effect of GNN structure/architecture: After evaluating
several hyper-parameter combinations on the GraphSAGE
structure above, we next study the effect of the GNN structure
itself on the performance of GNN-RE. To that end, we switch
between the following backbone architectures: GraphSAGE, JK-
net, GAT, and GAAN. For GAT and GAAN, we use K = 8 for
the multi-head computations.4 We observe that the GAT-based
GNN-RE platform achieves the best performance reaching a
Micro-F1 score of 97.84% and a Macro-F1 score of 95.99%.
Hence, for the remainder of our study, we fix the GNN structure
to GAT, with the parameters listed in Table III.

Evaluation of the GNN-RE method: After studying the
hyper-parameters and structures of the GNN model in de-
tail considering the Add-Mul-All dataset, we next evaluate
GNN-RE on all the other datasets as well. As indicated, here
we use the GAT structure with parameters listed in Table III.
We summarize the related results in Table IV and discuss the
findings in the following subsections.

C. Case I: Sub-Circuit Classification

For the Single-Modules dataset, we note that GNN-RE
achieves a classification accuracy of 99.28% with precision
and recall values ranging from 87.29% to 100% (Table IV). It
is essential to note that these metrics are evaluated at the node
level (i.e., the proposed GNN-RE model assigns a label to every
node in a given graph). For this case study here, however, we
are interested in the full graph- or circuit-level classification,
where the sub-circuits are assumed to be extracted in advance.
Thus, we re-tailor GNN-RE to perform such a graph labeling
as follows. We deploy a simple post-processing stage that
checks the percentage of predicted node classes and then labels
the graph based on the most predicted class; we refer to this
proposed approach as majority vote classification.

This re-tailored setup of GNN-RE (see Fig. 14) achieves a
sub-circuit classification accuracy of 100% for all the tested
designs, including those of the EPFL and 74X benchmark suites.
Moreover, GNN-RE classified the c6288 ISCAS benchmark as
a multiplier with 89% node classification accuracy, leading to

4Note that, in the GraphSAINT implementation of GAT, the α coefficient
is not normalized by a softmax function across all the neighbors N(v), as
during mini-batches extraction a node might not see all its neighbors due to
graph sampling.

Sub-circuit GNN-RE Node Classification
Max-percentage

Pooling
Circuit Classification

89% of nodes: Multiplier
11% of node: Adder

!6288 GNN-RE Multiplier
100% Circuit

Classification Acc.

Example: Decision:

Fig. 14: Proposed majority vote classification for circuit classification.

100% circuit classification accuracy, as demonstrated in Fig. 14.
Next, we provide some more detailed findings.

Classification of sequential designs: For the Sequential-
Modules dataset, GNN-RE achieves an accuracy of 88%, with
precision up to 100%, while classifying nodes for their circuit
type. All the gates, be they sequential or combinational, were
correctly classified for the FSM circuits. Almost all other
nodes in the test set were correctly classified as well, except
for 9 nodes of counter circuits that were misclassified as shift-
register nodes. Still, applying our majority vote classification,
each design was correctly classified (as either counter, shift
register, or FSM circuit).

Detection of different adder architectures: GNN-RE labels
the ripple-carry and the carry-skip adder designs (Fig. 9)
with node classification accuracies of 99.62% and 87.28%,
respectively. Given that the vast majority of nodes were cor-
rectly classified as adder nodes for both designs, GNN-RE also
achieves a 100% graph/sub-circuit classification accuracy for
both designs. Recall that GNN-RE was trained on different adder
architectures (Sec. III-D1), and it was applied successfully to
generalize to these previously unseen adder architectures.

Comparison with state-of-the-art ML-based techniques:
To ensure fairness of comparison, we test the same benchmarks
considered by the prior art and perform the task of circuit
classification without having to perform boundary identification.

The CNN-based techniques in [21], [22] achieve an average
accuracy of 88.2% and 99% for labeling the sub-circuit
functionality when tested on the EPFL and the 74X benchmarks,
as reported in [22]. In contrast, GNN-RE achieves a 100%
accuracy for the same scenario. We also note that the CNN
training time in [21] is reported to range between 254.24s and
501.48s for 20 training rounds on a dataset containing 100
designs. Training the CNN model appears to be faster than
training the GNN used in GNN-RE. Still, the training time for
GNN-RE is by no means prohibitively long for this or any other
scenario considered in this work (see Table IV).

D. Case II: Sub-Circuit Extraction and Labeling

Recall that this case forms the main objective for this work
and that it is more challenging than the circuit identification
considered above. When testing GNN-RE on the datasets with
interconnected sub-circuits, the highest performance (in terms
of node classification accuracy) was achieved for the Add-Mul-
Mux dataset, namely 99.45%; the lowest performance, still
97.75%, was achieved for the Add-Mul-All dataset.

Effect of the number of classes: Increasing the number of
considered classes from three (for dataset Add-Mul-All) to
five (for dataset Interconnected-Modules) did not hamper
the performance of the model. We found that GNN-RE was rather
able to improve the F1-Score by 4.14% for the ADD classifier
and by 0.66% for the MUL classifier. Note that increasing the
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TABLE IV
GNN-RE NODE CLASSIFICATION RESULTS WHEN ADOPTING THE GAT GNN STRUCTURE WITH GraphSAINT MINI-BATCH CONSTRUCTION METHOD. A “-”

INDICATES THAT THE CORRESPONDING CLASS IS NOT INCLUDED IN THE DATASET

Case Dataset GNN Precision (%) Recall (%) F1-Score (%) Training
Study Accuracy (%) ADD MUL CTRL COMP SUB ADD MUL CTRL COMP SUB ADD MUL CTRL COMP SUB Time (s)

I Single-Modules 99.28 95.15 99.99 - 98.35 87.29 100 99.34 - 98.73 97.75 97.52 99.67 - 92.66 98.05 1,282.05

II

Add-Mul-Mux 99.32 97.43 99.60 97.50 - - 96.20 99.60 100 - - 96.82 99.60 98.77 - - 2,289.13
Add-Mul-Mix 99.45 99.37 99.47 - - - 98.43 99.85 - - - 98.9 99.66 - - - 3,119.42

Add-Mul-Combine 99.02 90.12 100 - - - 100 98.92 - - - 94.87 99.45 - - - 2,297.50
Add-Mul-All 97.75 88.61 99.5 95 - - 97.25 98.23 88.37 - - 92.73 98.72 92.68 - - 6,838.18
Add-Mul-Sub 98.02 86.42 99.61 90.91 - 100 93.33 99.74 98.77 - 92.55 89.74 99.67 94.67 - 96.13 2,296.61
Add-Mul-Comp 99.35 94.59 99.87 97.06 100 - 100 100 97.06 89.13 - 97.22 99.94 97.06 94.25 - 2,275.00

Add-Mul-Comp-Sub 98.28 100 97.42 100 100 100 100 100 91.14 92.9 100 100 98.69 95.36 96.32 100 2,308.70
Interconnected-Modules 98.87 97.51 99.14 94.74 100 100 96.24 99.61 97.5 97.39 94.88 96.87 99.38 96.1 98.68 97.37 16,317.44

number of classes degrades the performance of the CNN-based
platform presented in [21].

Scalability: Increase in dataset size correlates with improved
performance of GNN-RE. At the same time, the training efforts
for GNN-RE increase linearly with the number of training nodes,
which is supported by utilizing the GraphSAGE graph sampling
approach. More specifically, comparing the results of GNN-RE
for the Add-Mul-Comp-Sub dataset where the total number of
nodes is 19, 151 with that for the Interconnected-Modules
dataset where the total number of nodes is 104, 727 (i.e.,
5.5× that of Add-Mul-Comp-Sub), the accuracy increases from
98.28% to 98.87%. We also note that the training time increases
from 2, 308.70s for 17, 648 training nodes to 16, 317.44s for
96, 251 training nodes, or 5.5× as well.

E. Misclassification Analysis

Next, we discuss the misclassification of nodes incurred
by GNN-RE in some detail. The most frequent cases were
mispredicting multiplication nodes as adder nodes (40% of
all misclassification cases), followed by mispredicting adder
nodes as multiplication nodes (18% of all misclassification
cases). This is not a surprising finding; while multiplication
operations can be implemented in various designs, the process
in general requires the summing of terms of partial products.
We also note that particular misclassification cases are unlikely.
For example, comparator nodes were never mispredicted as
multiplier nodes and only rarely misclassified as adder nodes.

To ascertain the root-cause for misclassification, we study
the features of sub-circuits for two selected datasets, Single-
Modules and Interconnected-Modules. We are reporting
the average input degree IN and output degree OUT of the
nodes, the percentage of nodes connected to PIs and POs,
and the most common types of gates appearing in each sub-
circuit (Table V). When comparing the adder, subtractor, and
multiplier sub-circuits, we note that all three are primarily
implemented using the same common types of gates, namely
NAND and INV. In contrast, the control sub-circuit has a
unique MUXes-centric structure, a larger percentage of nodes
connected to POs, and a larger average node degree. Similarly,
the comparator sub-circuit comprises AOI gates, which are
only sparsely used in other sub-circuits, and hold a relatively
large share of nodes connected to POs.

In short, sub-circuits with more unique feature profiles
are seldom misclassified, whereas sub-circuits with similar
feature profiles may be misclassified with each other. In
any case, GNN-RE is still quite accurate overall; the rate of

TABLE V
EXTRACTED FEATURES FOR THE CONSIDERED SUB-CIRCUITS

Dataset Module Avg IN Avg OUT
Nodes

Connected
to PIs

Nodes
Connected

to POs
Common

Gates

Case Study I,
Single-Modules

ADD 2.02 1.62 27.09% 14.09% 25% NAND
20% INV

MUL 2.33 2.12 15.68% 0.92% 25% NAND
19% INV

SUB 1.89 1.65 35.65% 12.23% 29% INV
25% NAND

COMP 2.51 1.89 58.88% 1.69% 25% INV
21% AOI

Case Study II,
Interconnected-

Modules

ADD 2 1.7 25.39% 1.86% 25% NAND
20% INV

MUL 2.48 2.16 17.45% 0.55% 25% NAND
19% INV

SUB 1.88 1.63 38.09% 0% 29% INV
25% NAND

CTRL 2.5 1.82 11.05% 47.04% 37% MUXes
25% INV

COMP 2.7 1.8 83.52% 0% 25% INV
21% AOI

node misclassification is not exceeding 2.25% for any dataset.
Furthermore, it is important to recall that, for the main focus
of this work (sub-circuit extraction and labeling), GNN-RE
succeeds with correct inference for all considered test cases.

F. GNN-RE on Logic Locking
To demonstrate the applicability of GNN-RE on obfuscated

designs, we investigate the following setting. Taking the
Single-Modules dataset of Case I, we lock all the circuits
(including training and validation circuits) using random
X(N)OR logic locking [31], with a key-size of K = 64
and random secret keys. These locked circuits are grouped to
construct the Obfuscated-Single-Modules dataset.

In the presence of logic locking in Obfuscated-Single-
Modules, GNN-RE achieves a node classification accuracy
of 93.83%. This corresponds to a performance loss of 5.45
percentage points when compared to the accuracy of 99.28%
obtained without obfuscation in place. Thus, although logic
locking causes a more challenging problem for RE at the node
level, GNN-RE was still able to predict the large majority of
gates correctly, allowing to infer the design’s functionality with
100% accuracy. This indicates that traditional logic locking
may not be sufficient to obfuscate the structure of a netlist. This
gives also rise to an intuition that GNN-RE could be tailored
to detect IP piracy, where designs are copied and potentially
modified by the adversary, to mask the piracy act.

G. Superiority of GNN Model
To demonstrate the strength of the GNN model in the context

of functional RE over other ML models, we implement another
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supervised classification method using support vector machines
(SVM). We train the SVM model using the same feature vectors
for nodes as with the GNN model. Unlike the GNN approach,
however, the SVM model allows for each node/gate to only
reason about its own features and has no access or information
to its neighbors’ features. Still, our proposed feature vector does
capture the functionality of gates in the local neighborhood.
Hence, we ask here if such functional information is sufficient
to achieve high-accuracy node classification.

A linear kernel is used for the SVM model with c = 1,
and the model’s performance is evaluated by accuracy, Macro-
F1 score, and the training time required, all considering our
customized datasets. The results are summarized in Table VI
and discussed next. First, the SVM approach takes less
training time, e.g., it requires only 1, 636.43s to train on the
Interconnected-Modules dataset whereas the GNN method
requires 16, 317.44s for training that dataset. Second, the
performance of the SVM model is, however, much lower;
the SVM classifier achieves an accuracy of 81.43%, while the
GNN’s accuracy reaches 98.87%. More importantly, the SVM
classifier achieves a Macro-F1 score of merely 47.38%, clearly
indicating that the SVM model could not learn how to separate
the classes correctly. In contrast, the GNN model consistently
achieves a Macro-F1 score above 90%.

V. DISCUSSION

A. Non-ML-Based Approaches for Functional RE

The behavioral pattern mining approach by Li et al. [17]
infers sub-circuits by matching against a set of known models.
However, it is assumed that sub-circuits are extracted in
advance. The word-level reconstruction approach in [16] is
capable of deriving the word-level dataflow of a flattened netlist.
However, the performance of this approach is easily hampered
by various optimizations that could be leveraged during logic
synthesis. In [43], the authors follow a graph embedding
approach to infer the sub-circuits in a netlist that match with
the high-level blocks of a reference design description. Unlike
GNN-RE, such technique requires the golden register-transfer
level (RTL) description. Subramanyan et al. [18] perform
structural and functional analyses on both the individual gates
and aggregated sub-circuits. Functional identification of a
component presumes the correctly inferred order of input
bits [18]; a brute-force approach is required to obtain the
correct permutation of input bits. Gascon et al. [19] proposed
a template-based solution to solve this problem of finding the
correspondence between the sub-circuit under investigation
and the reference model. Fyrbiak et al. [44] present a library-
agnostic platform, called HAL, which can be used for functional
RE of both FPGAs and ASICs. HAL explicitly supports
extensibility by allowing integration with custom tools and
provides a graphical user interface that aids the RE analysis.

B. Functional RE for Detection of Hardware Trojans (HTs)

Functional RE of gate-level netlists could aid in the de-
tection of HTs. Note that the various prior HT detection
techniques assume different threat models. For most side-
channel-analysis methods to work, a golden version of the

TABLE VI
PERFORMANCE OF THE SVM MODEL IN NODE CLASSIFICATION

Case Study Dataset Accuracy
(%)

Macro-F1
(%)

Training
Time (s)

I Single-Modules 63.64 35.44 2.50

II

Add-Mul-Mux 90.63 68.85 2.40
Add-Mul-Mix 85.68 45.16 22.43

Add-Mul-Combine 90.67 47.55 5.60
Add-Mul-All 88.32 66.37 117.52
Add-Mul-Comp 91.14 71.21 2.63
Add-Mul-Sub 79.83 62.01 11.58

Add-Mul-Comp-Sub 79.93 66.21 11.71
Interconnected-Modules 81.43 47.38 1,636.43

IC must be available [45]–[48]. Such an assumption is difficult
to satisfy when third-party IPs are integrated into the design.
For testing-based detection techniques, a golden RTL source
is assumed for verification [49], [50]. Additionally, the threats
of having a Trojan implanted either through design tools or
during fabrication cannot be handled; only malicious RTL can
be detected. In contrast, functional RE does not make such
assumptions, and it does not limit the threat model [18].

As discussed, our proposed GNN-RE method can accu-
rately extract and label sub-circuits from unstructured netlists.
However, determining whether the identified components are
malicious or not is reserved for future work.

VI. CONCLUSION

We have presented GNN-RE, a novel platform for functional
reverse engineering that operates on flattened gate-level netlists,
leveraging graph neural networks (GNNs) for sub-circuit
identification and labeling. By representing circuits as graphs,
GNN-RE naturally accounts for both the netlist’s global structure
and each gate’s local neighborhood. In addition to the structural
information inherently embedded in the GNN model, our
feature vector captures the functionality of each gate’s neigh-
borhood. Our extensive evaluation studies hyper-parameters,
various GNN backbone architectures, and other aspects in detail.
Throughout all the experiments, GNN-RE shows high accuracy
while automatically extracting and labeling sub-circuits. The
GNN model can also detect previously unseen variants of
the baseline designs it was trained on. In the promise of our
findings, we believe that our proposed platform opens a new
pathway for hardware security and other applications in need
of sub-circuit extraction and identification.
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