
© 2022 IEEE. This is the author’s version of the work. It is posted here for personal use. Not for redistribution. The definitive
Version of Record is published in IEEE TCAD, DOI 10.1109/TCAD.2022.3197521

GNN4REL: Graph Neural Networks for Predicting
Circuit Reliability Degradation

Lilas Alrahis, Member, IEEE, Johann Knechtel, Member, IEEE, Florian Klemme, Member, IEEE,
Hussam Amrouch, Member, IEEE, and Ozgur Sinanoglu, Senior Member, IEEE

Abstract—Process variations and device aging impose profound
challenges for circuit designers. Without a precise understanding
of the impact of variations on the delay of circuit paths, guard-
bands, which keep timing violations at bay, cannot be correctly
estimated. This problem is exacerbated for advanced technology
nodes, where transistor dimensions reach atomic levels and
established margins are severely constrained. Hence, traditional
worst-case analysis becomes impractical, resulting in intolerable
performance overheads. Contrarily, process-variation/aging-aware
static timing analysis (STA) equips designers with accurate
statistical delay distributions. Timing guardbands that are small,
yet sufficient, can then be effectively estimated. However, such
analysis is costly as it requires intensive Monte-Carlo simulations.
Further, it necessitates access to confidential physics-based aging
models to generate the standard-cell libraries required for STA.

In this work, we employ graph neural networks (GNNs) to
accurately estimate the impact of process variations and device
aging on the delay of any path within a circuit. Our proposed
GNN4REL framework empowers designers to perform rapid
and accurate reliability estimations without accessing transistor
models, standard-cell libraries, or even STA; these components are
all incorporated into the GNN model via training by the foundry.
Specifically, GNN4REL is trained on a FinFET technology
model that is calibrated against industrial 14nm measurement
data. Through our extensive experiments on EPFL and ITC-
99 benchmarks, as well as RISC-V processors, we successfully
estimate delay degradations of all paths – notably within seconds
– with a mean absolute error down to 0.01 percentage points.

Index Terms—Graph neural networks, Standard-cell libraries,
Static timing analysis, Transistor aging, Reliability estimation

I. INTRODUCTION

The rapid semiconductor-technology scaling has been a
primary driver for the industry and an essential factor for
making high-performance electronics widely available. How-
ever, technology scaling imposes enormous challenges when it
comes to ensuring the reliability of integrated circuits (ICs) over
the projected device lifetime. Advanced technology nodes show
significant increase in the manufacturing process variability
(process variation), making it challenging to predict, for any
given IC, the timing guardband that is required to protect the

Manuscript received April 07, 2022; revised June 11, 2022; accepted July 05,
2022. This article was presented in the International Conference on Compilers,
Architectures, and Synthesis for Embedded Systems (CASES) 2022 and appears
as part of the ESWEEK-TCAD special issue.

Lilas Alrahis, Johann Knechtel and Ozgur Sinanoglu are with the Division
of Engineering, New York University Abu Dhabi, Abu Dhabi 129188, UAE
(e-mail: lma387@nyu.edu; johann@nyu.edu; ozgursin@nyu.edu).

Florian Klemme and Hussam Amrouch are with the Department of Computer
Science, University of Stuttgart, Stuttgart 70174, Germany (e-mail: klemme,
amrouch@iti.uni-stuttgart.de).

TABLE I
COMPARISON OF GUARDBAND ESTIMATION METHODS

Requirements Capabilities

Method
Cell Libraries

Transistor Timing Process
Aging

Models Analysis Variation

Conventional STA One1 No Yes No No
Statistical STA One (LVF)2 No Yes Yes No

Monte-Carlo STA [3] Many Yes3 Yes Yes Yes
GNN4REL No No No Yes Yes

1For instance, worst-case corner library. 2Liberty variation format.
3To generate the required libraries under variation.

design against timing violations [1].1 Furthermore, device aging
(runtime variation), which significantly degrades circuit lifetime
and performance, becomes more dominant in nanoscale nodes.
Without accounting for the impact of variation on the delay
of circuit timing paths,2 designers cannot guarantee a reliable
circuit operation over the desired lifespan [2].

A. State-of-the-Art (SOTA) and Their Limitations

Next we outline some general limitations for existing pre-
silicon methods for guardband estimation (See Table I).

Performance Overheads: In the worst-case scenario, design-
ers may add pessimistic guardbands (i.e., worst-case margins),
which results in excessive performance overheads and does not
allow the circuit to operate at its full potential.

Lack of Consideration for Variations in STA: Static
timing analysis (STA) serves to obtain the longest path within
a circuit, in terms of signal propagation delay, considering a
constant delay value per cell. Such a critical path defines
the maximum clock speed the circuit can be operated at
without causing timing violations. However, conventional STA
cannot account for variation due to multiple reasons. First,
the impact of variation on the delay of each cell strongly
varies, as demonstrated in Fig. 1. As a result, variation cannot
be sufficiently modeled by simply increasing the critical-path
delay by a fixed amount. Second, since the additional delay
due to variation will impact each path differently, the critical
path needs to be determined with variation in mind. Neglecting

1A timing guardband acts as safety margin to prevent timing violations.
It imposes an additional slack on top of the critical path delay. Hence, the
circuit is clocked at a lower frequency leading to performance “loss”. Note that
guardbands are required, thus the related impact on performance should not
be considered a loss a priori. Rather the value of the guardband is important
here: one wants a margin as small as possible, yet sufficient. Obtaining such
optimized value is a challenge especially under the presence of variations.

2A timing path is a path between a start point (i.e., a netlist’s input port or
the clock pin of a sequential element) and an end point (i.e., an output port
or a data input pin of a sequential element).

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 2

2% 4% 6% 8% 10% 12% 14% 16% 18% 20%
0

20

40

Delay variability (σ/µ)

Fr
eq

ue
nc

y
(n

or
m

al
iz

ed
) Distribution of standard cell delay variability

Fig. 1: Process variation causes different delay variations for different standard-
cells, switching transition times, and net capacitances. This distribution is
extracted from 1, 000 cell libs, characterized for different instances of process
variation. µ and σ denote the mean and standard deviation, respectively.

variation when analysing the delay of circuit imposes the risk
of not correctly identifying the critical path, as the example
in Fig. 2 illustrates. Since the aforementioned effects are not
captured by traditional STA methods, variations cannot be
accounted for, and thus, relying on STA standalone leads to
estimating overly optimistic timing analysis. Hence, errors due
to timing violations can appear during the circuit operation.

Computational Cost and Other Limitations of SSTA:
Statistical STA (SSTA) handles process variation by con-
sidering statistical delay distributions rather than constant
delay values [4], [5]. To enable SSTA, cell libraries (libs)
containing variability information are required.3 Hence, SSTA
can determine the critical path with respect to its sensitivity
to variation. However, SSTA entails significant computational
complexity, e.g., Monte-Carlo SPICE simulations to obtain the
variability information for the process technology. Although
SSTA is a significant step towards better timing guardbands,
it still holds some limitations: (i) with only the average (µ)
and standard deviation (σ) information stored in the lib, SSTA
can only model Gaussian variability distributions; (ii) only the
critical path and its variability is examined and then reported,
although the actual critical path (in the presence of variability)
is likely to change from a circuit instance to another. This will
give a limited/skewed perspective when investigating the actual
distribution of critical-path delays under process variation [3].

Need for Standard (Std)-Cell Libs and Transistor Models:
To realize small, yet sufficient, practically relevant guardbands,
note that both STA and SSTA require the generation of
variation- and aging-aware std-cell libs. In other words, only
once variation-aware libs are employed, then STA can evaluate
the delay of paths under the effects that such degradations
have. In turn, this requirement necessitates that designers have
access to confidential transistor models from the foundry (i.e.,
physics-based aging models that well describe the impact of
aging on the transistor parameters). Such access is not always
attainable, especially not for advanced nodes.

B. Key Research Challenges

The above review (Sec. I-A) raises an important question:
how to predict process variation- and aging-induced degra-
dation in an efficient manner without relying on std-cell libs,

3Variability denotes the σ of the delay distribution of a given cell divided
by µ. The liberty variation format (LVF) extends the industry-standard liberty
format with corresponding σ for each contained timing information.

Q

D Q

in OAI21
out

3.3ps 9.4ps
23.8ps

17.3ps
30.9ps

Critical path, delay: 84.821ps

Q

D Q

in

out

5.1ps 10.2ps 12.0ps
14.5ps

38.4ps

Path 1, total delay: 80.158ps

Q

D Q

in
out

2.9ps 9.9ps 11.2ps
10.3ps

11.0ps
11.7ps

28.8ps

Path 2, total delay: 85.884ps

Chip 1
under

process
variation

Q

D Q

in

out

5.1ps 11.4ps 12.9ps
16.5ps

39.4ps

Path 1, total delay: 85.333ps

Q

D Q

in
out

3.0ps 11.1ps 9.8ps
10.1ps

12.0ps
11.4ps

26.1ps

Path 2, total delay: 83.548ps

Chip 2
under

process
variation

Design
without
process

variation

Fig. 2: Process variation and aging impact the location of the critical path.
Even in a small circuit such as b01 from ITC-99, the critical path can change
rapidly and differently for each chip. The delay analysis here was done using
variation-aware libs characterized using SPICE simulations.

transistor models, or even STA? Developing such a versatile
reliability assessment framework is an open research problem
that poses the following research challenges.
1) Extensive full-circuit analysis: The delay variation for each

cell is impacted, among others, by its driving cell and load
capacitances, i.e., by its location within the netlist. Thus,
delay variation is not easy to account for, e.g., neither using
a fixed delay increase per cell nor with a narrow analysis of
a single critical path. Fig. 2 depicts how the critical path of
a circuit can change due to variations, as in featuring a path
that was originally critical and then becomes non-critical
whereas another path becomes critical instead.

2) Handling different types of degradation: Depending on the
type of considered degradation, different cell libs capturing
the corresponding effects need to be generated first. The
methods of characterizing process variation and aging-
induced degradations are very different, challenging to set
up, and expensive in terms of required simulation runtime.
Thus, a generic framework that can handle various types
of degradation, without requiring the designer to generate
specific cell libs beforehand, is desired.

C. Our Novel Concept and Contributions within this Work

To address the challenges outlined above, we propose
GNN4REL, a generic circuit-reliability assessment framework
based on graph learning, which is the first of its kind.
Graph learning and related graph neural networks (GNNs)
are particularly promising here, as this general approach

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 3

leverages a naturally matching representation of circuits,
unlike other traditional approaches for machine learning. It
is noteworthy that graph learning and GNNs have shown
remarkable achievements for other tasks related to circuits, e.g.,
reverse engineering of unknown designs [6] and evaluation of
different design-for-trust techniques [7]–[11].

The key goal of this work is to train a GNN to predict
delay degradations induced by process variation as well as
aging for any given timing path within a circuit. We formulate
the problem of estimating delay degradations as a regression
problem and solve the problem using a GNN, as outlined in
Fig. 3. This novel framework and its important contributions
are supported by the following technical contributions:

1) We develop a framework for the path-to-graph conversion
(Sec. III-A), which extracts timing paths from any gate-
level netlist and represents each path as a subgraph. These
subgraphs capture the Boolean functionalities of gates and
their directed connectivity within the path. As a result, our
platform captures and accounts for the driving cells, load
capacitances, and the position/integration of gates in the
netlist when making model predictions.

2) We build a GNN-based regression model that learns on
subgraphs extracted around timing paths (Sec. III-B), which
automatically extracts the relevant features of paths that
help in estimating the delay degradation. The model can
be trained by the foundry itself, thereby accounting for the
manufacturing procedure and aging parameters, and then
be shared with the designers to predict the performance
degradations of their circuits. Thus, our platform simplifies
the reliability assessment procedure for the designers (i.e.,
eliminating the need to build std-cell libs and run STA),
while protecting confidential foundry information.

We demonstrate the effectiveness of GNN4REL on selected
ITC-99 and EPFL benchmarks as well as RISC-V processors.
Without loss of generality, our GNN framework is trained on
a FinFET technology model that is carefully calibrated against
14nm measurement data from Intel obtained from [12]. Note
that the calibrations were done for both transistor characteristics
as well as variation. Our extensive experiments considering
different variation sources and various dataset scenarios show
that GNN4REL achieves excellent prediction performance
when predicting delay degradations, reporting a mean absolute
error (MAE) down to 0.01 percentage points (average of 0.76).
We further release GNN4REL [13].

The remainder of the paper is organized as follows. Sec. II
presents the background information, while Sec. III presents the
concept and implementation details of GNN4REL. In Sec. IV,
the technology calibration and std-cell libs generation (required
for training GNN4REL) are presented. Sec. V discusses the
experiments and results, while Sec. VI covers the related work.
Finally, Sec. VII presents the conclusions.

II. BACKGROUND

In this section, we present the necessary background infor-
mation about process variation, device aging, and GNNs.

Path Graph

Ou
tp

ut
: D

el
ay

De

gr
ad

at
io

n

Input: Timing Path Trained GNN

Fig. 3: Predicting path delay degradation using graph neural networks (GNNs).

A. Process Variation and Device Aging

Process variation occurs due to imperfections in the manu-
facturing process of the chip. It is a time-independent source
of variation that differs for each fabricated chip (and even
within the chip itself). Random dopant fluctuation, metal gate
granularity, and line-edge roughness are among the typical
sources of variation that are considered for state-of-the-art Fin-
FET devices [14]. An accurate estimation of process variation
is prerequisite to ensure high yield at high performance. If the
impact of process variation is underestimated, many fabricated
chips will not pass chip testing and the yield is reduced.

In addition to process variation, transistors will also suffer
from aging-induced degradation. Transistor aging is a time-
dependent source of variation that depends on many conditions
such as temperature, workload, and projected lifetime. Physical
effects that lead to transistor aging include hot-carrier injection
(HCI), and importantly, bias temperature instability (BTI) [2].
BTI is one of the dominant contributors to aging-induced
degradations. Over the lifetime of the chip, electrical charges
get trapped in the gate oxide of transistors, resulting in increased
threshold voltages. In addition, interface traps can be generated
at the Si-SiO2 layer resulting in more undesired charges and
hence further increase in the threshold voltage. Consequently,
transistor switching times and circuit path delays increase.

We model and include both types of variation (i.e., pro-
cess variation and aging) in the standard electronic design
automation (EDA) tool flows, as later described in Sec. IV.

B. Graph Neural Networks (GNNs)

The GNN formalism is a dominant paradigm for deep
learning with graph structured data. GNNs take a graph as an
input and generate an embedding (1D vector) for each node in
the graph through neighborhood aggregation/message passing.
The key concept is that the generated embeddings depend on
(i) the structure of the graph and (ii) any feature information
associated with the nodes. Similar nodes in the graph should
be close in terms of distance in the embedding space.

Let G(V,E) be a directed attributed graph; V denotes the set
of nodes, and E denotes the set of edges. Each node in the graph
v ∈ V is associated with a feature vector (xv) that captures its
properties. During neighborhood aggregation (aggregate), each
node receives information (messages) from its neighboring
nodes N(v), and a new embedding is computed for each
node by applying a learnable update function (update) on the
node’s current embedding and the aggregated messages. After
L aggregation rounds, each node in the graph is represented by
an embedding that captures its properties, the properties of its
neighborhood, and its position/integration within the graph. The
final node embeddings are then utilized to perform the desired

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 4

Degradation Estimation
for Timing Paths

Under-evaluation Netlist

Path-to-subgraph
Transformation

Benchmark Netlists

Training Set

Training Phase

Inference Phase

❶ Dataset Generation

❷ Path-to-subgraph
Transformation

❸ GNN Training

Fig. 4: The different steps of the proposed GNN4REL framework.

Algorithm 1 Pseudo-code for the proposed GNN4REL platform
Require: Netlist N , hop-size h
Ensure: Delay Degradation (D)
1: P ← PathExtraction(N)
2: D ← {∅} ▷ Predicted degradation
3: for p ∈ P do
4: Sp ← (v ∈ p) ▷ Path target gates
5: G(Sp,h) ←SAMPLE(G, h, Sp) ▷ Get G(Sp,h)

6: D.append(GNN(G(Sp,h))) ▷ Get the predictions
7: end for
8: return D ▷ Degradation
9: procedure GNN(G)

10: Z(L) ← PNA(G)
11: yG ← READOUT (Z(L))
12: ŷ ← MLP(yG)
13: return ŷ ▷ Prediction
14: end procedure

task, such as node classification, graph classification, etc. The
neighborhood aggregation procedure is abstracted as follows,
where z

(l)
v ∈ Rf indicates the embedding of node v at the l-th

aggregation round, and a
(l)
v denotes the aggregated information

from N(v) at the l-th layer. Z(L) ∈ Rn×f indicates the final
2D node embedding matrix, where n = |V |.

a(l)
v = aggregate(l)

({
z(l−1)
u : u ∈ N(v)

})
(1)

z(l)
v = update(l)

(
z(l−1)
v ,a(l)

v

)
(2)

For graph-level tasks, a graph embedding yG that captures
the underlying properties of the graph is obtained by applying a
readout function to the node embeddings. The readout function
is typically an order-invariant function such as summing up
the node embeddings (i.e., row-wise additions on Z(L)).

GNN models mainly differ based on their aggregation
and update functions, with the mean, sum, and maximum
aggregation functions being the most adopted in the state-of-
the-art architectures [15]–[18]. Different aggregation functions
perform better on different tasks [15]. Therefore, in our
work, we employ the state-of-the-art principal neighborhood
aggregation (PNA) model that implements multiple aggregation
strategies instead of a single aggregation function to improve
the performance of the GNN model [19]. More details regarding
the employed PNA architecture are given in Sec. III-B.

III. OUR PROPOSED GNN4REL FRAMEWORK

In this section, we provide an overview of the GNN4REL
framework (summarized in Fig. 4 and Algorithm 1).

!5

!1

!2
!3

!4
'((1

'((2

'((3
!2 !3

!5

!4

!1

Feature Vector of Node !4
PI PO XOR OR NAND AND
0 0 0 0 1 0

❶ Path Extraction ❷1-hop Subgraph Extraction

Fig. 5: Proposed path-to-subgraph transformation.

A. Path-to-Subgraph Transformation

We represent each gate-level netlist as a directed graph
G = (V,E), where V represents the set of nodes (i.e., gates,
primary inputs (PIs), and primary outputs (POs)), while E
represents the set of edges (i.e., interconnects). We chose a
directed representation to capture the direction of the timing
paths (i.e., start point, end point, and order of gates). Each
node in the graph v ∈ V is initialized with a feature vector
xv that captures its properties (more on that in Sec. III-A2).
X ∈ Zn×k is the 2D matrix containing node features, where
k denotes the length of the feature vector.

1) Subgraph Extraction: First, timing paths are extracted
from the gate-level netlist and grouped into set P (line 1 in
Algorithm 1). Then, the nodes forming a specific path p ∈ P
are grouped into set Sp (i.e., ∪{v ∈ p}) (line 4). We refer to
the path nodes as target nodes.

Given the netlist graph G, an h-hop enclosing subgraph
G(Sp,h) is extracted around the target nodes (line 5). Let d(i, j)
represent the shortest path distance between nodes i and j, then
G(Sp,h) is extracted from G by ∪j∈Sp

{i | d(i, j) ≤ h}. We
extract an h-hop subgraph around the target path to capture the
position of the path within the netlist and collect information
regarding the driving cell and load capacitance of the gates in
the path, which all impacts delay.

An example of 1-hop subgraph extraction is illustrated in
Fig. 5. The extracted timing path highlighted with a dashed
green line includes the gates {G2, G3, G4}, which form the
set Sp (see 1). To extract a 1-hop subgraph around the target
path, all the 1-hop neighbors of the gates in Sp are included
in the subgraph, alongside the target gates (see 2). The list of
1-hop neighbors includes {DFF1, DFF2, G5, G1}.

2) Feature Vector: xv is a one-hot encoded vector that
represents the node’s Boolean functionality, or, indicates, if
applicable, that it is a PI or a PO. The length of the feature
vector k depends on the number of Boolean functions available
in the target std-cell lib. The feature vector example in Fig. 5
indicates that node G4 is a NAND gate.

B. Employed Graph Neural Network Model

We employ the state-of-the-art PNA GNN model to perform
graph-level regression [19] (line 6 in Algorithm 1). In this con-
text, a graph represents the extracted subgraph around a target
timing path. The PNA employs four statistical aggregators, i.e.,
µ, maximum (max), minimum (min), and σ, so that each node
is aware of the distribution of its incoming messages.

The aggregation functions are listed below. Z(l) are the
nodes’ embeddings at layer l. ReLU is the rectified linear unit

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 5

MLPScalersAggregators

Mean
Max
Min
Std

Identity
Amplification
Attenuation

Fig. 6: The principal neighborhood aggregation (PNA) architecture employs
four statical aggregators and three degree scalers [19].

used to avoid negative values caused by numerical errors and
ϵ is a small positive number to ensure σ is differentiable.

µv(Z
(l)) =

1

|N(v)|
∑

u∈N(v)

z(l)
u (3)

maxv(Z
(l)) = max

u∈N(v)
z(l)
u (4)

minv(Z
(l)) = min

u∈N(v)
z(l)
u (5)

σv(Z
(l)) =

√
ReLU

(
µv(Z(l)2)− µv(Z(l))

2
)
+ ϵ (6)

Degree scalers allow the network to attenuate or amplify
signals based on the degree of each node, i.e., the number of
messages being aggregated. PNA uses the logarithmic scaler
S(d, α) presented below, where α is a variable parameter that
is positive for amplification, negative for attenuation, or zero
for no scaling. δ is a normalization parameter computed over
the training set, and d denotes the degree of the target node.

S(d, α) =

(
log(d+ 1)

δ

)α

, d > 0, −1 ≤ α ≤ 1 (7)

Note that the PNA model employs a logarithmic scaler
instead of a linear scaler since the latter would cause an expo-
nential amplification of both the aggregated information and
the gradients after multiple GNN layers. Such an exponential
amplification, in turn, would reduce the ability of a GNN to
generalize to unseen, possibly larger graphs [19].

The degree scalers are combined with the aggregator
functions as follows, where ⊗ represents the tensor product
and I represents the identity matrix (i.e., no scaling).

⊕
=

 I
S(D,α = 1)
S(D,α = −1)

︸ ︷︷ ︸

scalers

⊗

µ
σ

max
min

︸ ︷︷ ︸
aggregators

(8)

A PNA layer used in GNN4REL can be abstracted as follows,
where M and U are linear layers.

z(l+1)
v = U

z(l)
v ,

⊕
(u,v)∈E

M
(
z(l)
v ,z(l)

u

) (9)

A diagram for the PNA layer is illustrated in Fig. 6, where
MLP represent a multi-layer perceptron. After L PNA layers
(line 10 in Algorithm 1), a readout layer is added to obtain a
graph-level embedding yG (line 11), which gets passed to an
MLP to generate the prediction ŷ (line 12). Details regarding
the number and dimension of layers are included in Sec. V-A3.

C. Dataset Generation

We consider three scenarios of dataset generation to demon-
strate the generic nature of our proposed platform. In all
scenarios, the setup requires the generation of a dataset from
which a training and a validation set are extracted. A dataset
contains a list of timing paths extracted from gate-level netlists.
The training and validation sets include labeled timing paths
(i.e., known delay-degradation percentages), while the testing
set includes unlabelled timing paths.

1) Self-Referencing: The timing paths of a single design are
split based on an 81:10:9 training:validation:testing ratio. We
expect GNN4REL to achieve the best prediction performance
in this setup as it captures the design characteristics during
training (without seeing the exact testing paths).

2) Single-Design: The timing paths of a specific design,
referred to as X , are used for training and validation based
on a 90:10 training:validation ratio, and the timing paths of
another design, referred to as Y , are used for testing. The goal
is to show that GNN4REL can generalize to unseen designs.
For example, GNN4REL can be trained on the b14 benchmark
and then evaluated on the rest of the ITC-99 benchmarks.

3) Design Dataset: We further consider a design dataset (i.e.,
a collection of gate-level netlists) for training GNN4REL. The
design dataset does not include the target design but includes
designs with a similar design structure. For example, when
predicting the degradation of the b17 benchmark from ITC-99,
only the timing paths of b14, b15, b20, b21, and b22 are used
for training:validation based on a 90:10 ratio.

IV. TECHNOLOGY CALIBRATION
AND STD-CELL LIBRARIES CREATION

We utilize mature 14 nm FinFET technology and commercial
std-cell characterization tool flows to ensure the generation of
accurate training data for realistic circuit timing analysis. This
requires careful calibration of the underlying transistor model
against silicon measurements, as well as the characterization
a wide variety of std-cell libs to capture the technology for
different operating conditions. As a result, we generate std-cell
libs for the technology under typical conditions, under the
impact of process variation, and under the impact of transistor
aging as exhibited at the end of the lifetime of a chip.

A. Technology Calibration

For our analog SPICE simulations, the industry-standard
compact model for FinFET technology (BSIM-CMG) [21] is
used as underlying transistor model. All parameters of the
compact model are carefully calibrated to reproduce measure-
ments of the Intel production-quality 14 nm manufacturing
process. Transistor measurements for validation are extracted
from [12]. Fig. 7 demonstrates the excellent agreement between
SPICE simulation results obtained with our calibrated transistor
model and Intel measurement data. As can be seen from the
figure, validation is performed for both n-type and p-type
FinFET transistors, as well as for multiple Ids-Vgs and Ids-Vds

biases, to ensure a holistic representation of the technology
and accurate simulation for all required corner cases. In
addition, the compact model is further calibrated to reflect

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 6

−0.7 −0.5 −0.3 −0.1 0.1 0.3 0.5 0.7

0

10

20

30

40

50

10−4

10−3

10−2

10−1

100

101

102

Gate voltage Vgs [V]

D
ra

in
cu

rr
en

t
I d

s
[µ
A

]

D
ra

in
cu

rr
en

t
I d

s
[µ
A

]

nFinFETpFinFET

linear (a)

log

SPICE |Vds| = 0.7V Intel |Vds| = 0.7V

SPICE |Vds| = 0.05V Intel |Vds| = 0.05V

−0.7 −0.5 −0.3 −0.1 0.1 0.3 0.5 0.7

0

10

20

30

40

50

Drain voltage Vds [V]

D
ra

in
cu

rr
en

t
I d

s
[µ
A

]

nFinFETpFinFET

(b)

|Vgs|

SPICE data
0.7V

0.6V

0.5V

0.4V

0.3V

Intel data
0.7V

0.6V

0.5V

0.4V

0.3V

Fig. 7: The industry compact model for FinFET (BSIM-CMG) is carefully
calibrated to reproduce Intel 14nm measurement data extracted from [12].
As demonstrated in the plots, SPICE simulations (using our calibrated models)
achieve an excellent agreement with the measurement data for both nFinFET
and pFinFET devices. The top figure (a) shows the validation for the case
of Ids-Vgs at high and low Vds biases. The arrows in the figure indicate
which curves belong to which y-axis. Bottom figure (b) shows the validation
of Ids-Vds at various Vgs biases. Details on our calibration available in [20].

the technology under process variation. The considered sources
of variation include the gate length (Lg), fin thickness (Tfin), fin
height (Hfin), SiO2 equivalent gate dielectric thickness (EOT),
and the work-function of the gate (ϕg). Fig. 8 demonstrates
the variability calibration as an Ion-Ioff plot with regression
lines obtained from Monte-Carlo SPICE simulations. The Intel
reference regression line is once again extracted from [12]. As
shown, our calibrated variability parameters are in excellent
agreement with measurements of 14 nm FinFET variability.

B. Std-Cell Library Generation

With an accurately calibrated transistor model, we can
characterize a full std-cell lib using accurate SPICE simulations.
To this end, the commercial HSPICE from Synopsys tool flows
was used. The required std-cell netlists are obtained from the
NanGate 15 nm open-source cell lib [22]. All std-cell netlists
are also annotated with post-layout parasitic resistances and
capacitances. A commercial characterization tool flow [23]
is then employed to instruct extensive SPICE simulations,
determining all characteristics of the std-cells, including signal

0.8 0.9 1 1.1 1.2 1.3
100

101

102

103

0.7 0.8 0.9 1 1.1 1.2

Ion [mAnm−1]

I o
ff

[n
A
n
m

−
1

]

Ion [mAnm−1]

nFinFET pFinFET

Regression line (SPICE) Regression line (Intel)
Monte-Carlo simulations

Fig. 8: Variability calibration of our FinFET compact model against Intel
14nm measurement data [12]. The regression line obtained from Monte-Carlo
SPICE simulations on the transistor model is in good agreement with the data
from the variability measurements. Details on our calibration available in [20].

Std-cell characterization

Calibration
parameters

14 nm FinFET
compact model

SPICE
simulations

Operating
conditions

(temp, #!!)

Std-cell lib

Logic synthesis

Gate-level circuit netlist

Aging-aware
std-cell lib Merge MC results

Randomly insert cell versions into netlist

Std-cell netlists

Annotate netlists with aging/process variation parameters

Std-cell netlists Std-cell netlists

Process-variation-aware
std-cell libs

Process-variation-aware
std-cell lib

Fig. 9: Cell library generation workflow for process variation and aging.

propagation delays, transition times, pin capacitances, switching
power, and leakage power. The resulting std-cell lib is stored
in the non-linear delay model (NLDM)-format, in which each
data point is represented by a 7× 7-matrix to account for the
different input signal slews and output load capacitances an
std-cell can experience, depending on its position in the circuit.
Without any further adjustments to the transistor model or cell
netlists, the resulting cell lib reflects the manufacturing process
under typical conditions and is suitable for circuit synthesis.

To generate std-cells for different instances of process
variation, the transistor model and the std-cell netlists are
prepared to accept parameter overwrites for each individual
transistor instance. Afterward, each transistor in each cell netlist
is annotated with a random set of variability parameters (Lg,
Tfin, Hfin, EOT , ϕg) following the expected distribution of the
parameters under process variation. With the annotated cell
netlists, std-cell lib characterization is performed as usual. The
obtained cell lib reflects each std-cell under the impact of one
instance of process variation. Afterward, the aforementioned
steps are repeated in a Monte-Carlo fashion, applying new
random variability parameters to the std-cell netlists in each
iteration. The resulting set of cell libs form a collection of
std-cells, characterized under different instances of process
variation. With such a collection, accurate STA for entire
circuits under process variation can be achieved.

The gate-level netlist of a circuit is obtained by performing
logic synthesis with the baseline std-cell lib (i.e., the reference

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 7

TABLE II
PROPERTIES FOR GRAPH REPRESENTATION OF EACH NETLIST

Dataset ITC-99 EPFL RISC-V
Benchmark b14 b15 b20 b21 b22 b17 adder max bar square multiplier divisor zero-riscy RI5CY

Edges (# Interconnects) 9,630 13,627 21,442 21,268 32,711 39,774 3,126 4,530 5,028 23,739 52,123 143,261 35,718 83,652
Nodes (# Gates + PIs + POs) 4,569 5,790 10,090 9,921 15,236 16,296 1,846 2,730 1,748 13,687 25,265 72,823 15,032 35,648

Timing Constraint (ns) 0.46 0.54 0.53 0.53 0.51 0.7 0.42 1 0.35 1.3 3 25 1.2 1.2

Ba
tc

hN
or

m
 La

ye
r

Re
LU

Gr
ap

h
Re

ad
ou

t

Ba
tc

hN
or

m
 La

ye
r

Re
LU

Embedding !

Linear Layers

De
gr

ad
at

io
n

Extracted Path
Subgraph

Node Features "

4th PNAConv
Layer

1st PNAConv
Layer

ReLU ReLU

Fig. 10: The overall architecture of GNN4REL for reliability-degradation prediction. We utilize 4 PNA graph convolution layers [19], separated by batch
normalization and ReLU. A set of linear layers translates the hidden PNA output to a single value that resembles the predicted delay degradation.

lib in which neither process variation nor transistor aging is
applied). Afterward, each cell instance in the gate-level netlists
is replaced by a random version of that cell under process
variation. All characterized cells under process variation are
suffixed with an individual index and merged into one large
cell lib. The entire workflow is also outlined in Fig. 9.

For aging-aware std-cell libs, the approach is very similar to
the above. However, instead of the variability parameters, the
threshold voltage (Vth) of each transistor is increased, to reflect
the impact of aging. In the industry-standard compact model
for FinFET transistors (BSIM-CMG), the dvtshift parameter
is used to model the major impact of aging. In addition, we
also adjust the Cit parameter to control capacitance change
due to interface traps. This is, in fact, needed to also reflect
the aging-induced degradation in the sub-threshold swing (SS)
of the transistor. With all parameters annotated in the cell
netlists, cell lib characterization is performed to generate the
corresponding aging-aware cell libs. These cells can be inserted
into gate-level netlists to enable accurate STA for circuits under
the impact of aging.

V. EVALUATION AND COMPARISONS

A. Experimental Setup

Next, we describe the experimental setup in detail.
1) Benchmark Designs: We evaluate GNN4REL on selected

ITC-99 and EPFL benchmarks, alongside RISC-V proces-
sors [24], [25]. For the latter, we consider two different
configurations of an in-order central processing unit (CPU)
as obtained using the open-source RISC-V core generator: a
baseline CPU RI5CY as well as a lighter version zero-riscy.
RI5CY implements a 32bit, 4-stage CPU, while zero-riscy
features a 32bit, 2-stage CPU.

2) Synthesis and Generation of Datasets: Benchmarks are
synthesized using Synopsys Design Compiler (DC) considering
the “fresh std-cell lib” (i.e., the lib that has been characterized in
the absence of variation). Such synthesis setup provides us with
“fresh netlist” of every benchmark. We employ std-cell libs for
the 14nm FinFET technology node calibrated with Intel 14nm
FinFET measurements [12] (see Sec. IV). During synthesis,
highest efforts for delay minimization have been targeted by
using “compile ultra” for Synopsys DC. The properties for

the graph representations of the synthesized gate-level netlists,
alongside the timing constraints, are listed in Table II. Synopsys
PrimeTime is used to perform STA to generate the required
datasets for GNN training. The aging-aware and variation-aware
std-cell libs are generated as discussed in Sec. IV.

3) Subgraph Extraction and GNN Training: We implement
the netlist-to-subgraph conversion in Perl scripts and the
subgraph extraction in Python scripts. The overall architecture
of GNN4REL is illustrated in Fig. 10.

We use the PyTorch Geometric implementation of PNA
for graph-level regression, using four PNA GNN layers
(PNAConv) with an input/output channel size of 75 each. A
batch normalization layer (BatchNorm) follows each PNAConv
layer to standardize the embeddings to a mean of zero and
a variance of one. A ReLU layer follows each BatchNorm
layer. Following the sequence of graph convolution layers, the
global add pool Torch function is used to generate a batch-
wise graph-level representation by averaging node features
across the node dimension. The graph representation is then
passed to the following sequence of layers to obtain the final
prediction: Linear(75, 50), ReLU, Linear(50, 25), ReLU, and
Linear(25, 1). The Linear(input size, output size) layers
apply a linear transformation to the incoming data. For the
PNAConv layers, we set the aggregators to {µ, σ,max,min}
and the scalers to {identity, amplification, attenuation}.

To reduce the computational complexity of GNN4REL, the
concept of towers is employed in PNA as in the message
passing neural networks (MPNNs) [17]. Using towers, the
f -dimensional node embedding z

(l)
v is broken down into

t different f/t-dimensional embeddings z
(l,f)
v . We set the

number of towers to 5. We train GNN4REL on the 1-hop
subgraphs for 500 epochs using Adam optimizer with a learning
rate of 0.001 and batch size of 32. The model with the lowest
MAE loss on the validation set is selected as the final model.

Hyperparameters: Since we propose a generic reliability
assessment approach, we like to avoid fine-tuning/over-tuning
the GNN model parameters such as the hidden dimensions,
learning rate, etc., to obtain best performance for some given
benchmarks. Instead, the robust results are obtained using the
original parameter values of the PNA network proposed in [19].
Upon the release of our GNN4REL model, readers/users may

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 8

25 300

100

200

300

#P
at

hs
b14

25 30

b15

20 30

b20

20 30

b21

25 30

b22

20 40

b17

Path Length (#Gates)

Fig. 11: Path-lengths distributions for the ITC-99 benchmarks. The dashed
line represents the average value.

10 150
100
200
300
400

#P
at

hs

adder

25 26 27

max

8 10 12

bar

25 30

square

70 80

multiplier

645 650

divisor

Path Length (#Gates)

Fig. 12: Path-lengths distributions for the EPFL benchmarks. The dashed line
represents the average value.

tune the parameters as interesting to them. Note that we study
the effect of h on the performance of GNN4REL in Sec. V-E.

Fixed Architecture: The PNA GNN shows sound perfor-
mance while analyzing the circuits (represented as graphs) and
automatically extracting features that are suitable for the desired
tasks. Therefore, we do not need to perform any manual feature
engineering or modify the network model, when considering
different regression tasks (i.e., aging-induced versus process-
variation-induced degradation). Rather, we only change the
output information (i.e., label) and let the GNN framework
perform feature engineering. We argue that this simple approach
highlights the generic nature of our proposed method; the
GNN4REL model can be easily trained to solve different tasks.

4) Dataset Generation and Evaluation for Prediction of
Process Variation: We consider selected ITC-99 and EPFL
benchmarks (total of 12 netlists). Using STA, we obtain the
required timings for 1, 000 extracted timing paths from each
synthesized netlist – which form the reference for delay-
degradation computations. The timing paths are extracted based
on the 1, 000 endpoint flip-flops with the worst slack. Note
that we limit the number of extracted timing paths to 1, 000
for simplicity. However, more or less timing paths can be
extracted from a design based on its size and the requirements
of the designer. The distributions of path lengths (#gates) for
the ITC-99 and EPFL benchmarks are shown in Fig. 11 and
Fig. 12, respectively.

Using an in-house Perl script, we generate 100 versions
of each netlist by replacing each std-cell in the netlist with
random and uniform sampling across the corresponding (i.e.,
functionally equivalent) options in the variation-aware std-cell
lib (see Sec. IV), resulting in 1, 200 netlists and 120, 000 timing
paths in total. Next, we perform STA for the same 1, 000 timing
paths in the variation-affected netlists and compute the delay-
degradation percentages (i.e., the relative delay increase) by
comparing the required timings after variation with the baseline
timings of the paths. The average (µ), standard deviation (σ),
and the maximum (max) delay-degradation percentages are
computed based on the STA results for a given netlist.

For an illustrative example, we randomly select six timing
paths for the ITC b14 benchmark and plot the paths’ delay
distributions caused by process variation in Fig. 13. As can be

2.5 0.0 2.50

20

40

60

#P
at

h
Ve

rs
io

ns

b14 Path 1

2 0 2

b14 Path 2

2.5 0.0 2.5

b14 Path 3

5 0 5

b14 Path 4

0 5

b14 Path 5

2.5 0.0 2.5

b14 Path 6

Degradation Percentage

Fig. 13: Distributions of process-variation-induced delay degradations for
selected paths of b14. The dashed line represents the average value.

observed, each path has a unique distribution, evidencing the
need for degradation prediction per path basis.

We evaluate the prediction performance of GNN4REL based
on the three dataset generation scenarios discussed in Sec. III-C.
The related setup specifics are as follows:

• Regarding the self-referencing scenario (Sec. III-C1), the
1, 000 timing paths of each design are split into 810
training paths, 100 validation paths, and 90 testing paths.

• For the training on a single-design scenario (Sec. III-C2),
we consider the ITC-99 benchmarks and train GNN4REL
using the b14 benchmark (without loss of generality). In
this case, 900 paths are used for training and 100 paths are
used for validation (both sets of paths extracted from b14).
The 1, 000 timing paths of the design under-evaluation
(e.g., b15, b20, etc.) are used for testing. In this case,
the b14 benchmark is excluded from the evaluation since
GNN4REL is trained on all its extracted timing paths.

• For the design-dataset scenario (Sec. III-C3), one of the
considered ITC-99 benchmarks will be kept for testing
(i.e., 1, 000 testing paths), while the rest of the considered
ITC benchmarks are used for training/validation, resulting
in 4, 500 training paths and 500 validation paths.

5) Dataset Generation and Evaluation for Prediction of
Aging: We consider the ITC-99, EPFL, and RISC-V bench-
marks for this experiment. We extract 1, 000 timing paths
from each netlist along with the baseline delay values. We
run STA considering the aging-aware std-cell lib for all the
benchmarks and obtain the delay-degradation percentage for
each timing path. As with the case of process variation, we
evaluate the prediction performance of GNN4REL based on
the three dataset generation scenarios discussed in Sec. III-C.

6) Evaluation Metric: For all experiments, the prediction
performance of GNN4REL is reported using the MAE and
mean absolute percentage error (MAPE) metrics, where
MAE = 1

N

∑N
i=1 |yi − ŷi| and MAPE = 1

N

∑N
i=1 |

yi−ŷi

yi
|,

where N (#testing paths) and y (true degradation%).

B. Prediction of Process Variation

The µ-degradation predictions by GNN4REL for every path
per selected designs in the self-referencing scenario are shown
in Fig. 14. The predictions are scatter-plotted versus the actual
degradation percentages obtained from the accurate STA results.
A line representing the outcome of an ideal regression model
is plotted to visualize the MAE error. Here, the MAE error
denotes the average distance between the prediction points to
the regression line (i.e., average absolute residual error).

GNN4REL predicts the µ-degradation with an average
MAE of 0.3, where the actual degradation percentages range
from −0.5% to 2%. In the case of the ITC-99 benchmarks,

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 9

De
gr

ad
at

io
n

Pe
rc

en
ta

ge
(P

re
d)

Degradation Percentage (True)

b17
MAE=0.25

b15
MAE=0.22

MAE
adder
MAE=0.22

max
MAE=0.06

multiplier
MAE=0.02

Degradation Percentage (True) Degradation Percentage (True) Degradation Percentage (True) Degradation Percentage (True)

Prediction
Ideal Performance

Fig. 14: Path-level regression for the average (µ) process variation degradation of selected ITC-99 and EPFL benchmarks under the self-referencing scenario.
Note that the ideal-performance curve is obtained using the Monte-Carlo STA [3].

TABLE III
MAE OF PATH-LEVEL REGRESSION FOR PROCESS VARIATIONS ON ITC-99

BENCHMARKS, DIFFERENT TRAINING DATASETS. NA: NOT APPLICABLE

Self-Referencing Training on b14 Design DatasetBenchmark
µ σ max µ σ max µ σ max

b14 0.58 0.15 0.94 NA NA NA 0.65 0.30 1.34
b15 0.22 0.07 0.51 0.76 0.18 1.88 0.53 0.15 1.32
b20 0.56 0.09 0.93 0.71 0.29 1.36 0.61 0.14 1.13
b21 0.46 0.07 0.67 0.75 0.26 1.32 0.57 0.14 1.13
b22 0.50 0.07 0.59 0.85 0.19 1.60 0.63 0.15 1.02
b17 0.25 0.05 0.35 0.72 0.96 1.97 0.43 0.97 2.13

TABLE IV
MAE OF PATH-LEVEL REGRESSION FOR PROCESS VARIATIONS ON EPFL

BENCHMARKS. SELF-REFERENCING SCENARIO

Benchmark adder multiplier square bar max divisor
µ 0.22 0.02 0.23 0.35 0.06 0.15
σ 0.07 0.01 0.05 0.08 0.04 0.04

max 0.59 0.13 0.55 0.23 0.19 0.33

GNN4REL performs particularly well for the cases of b15
and b17 benchmarks, reaching an MAE of 0.22 and 0.25,
respectively, and showing a strong correlation between the
predictions and the actual results. The MAE values of the µ-,
σ-, and max-degradation predictions by GNN4REL for the
ITC-99 benchmarks under all dataset generation scenarios are
listed in Table III. Further, the MAE values of the µ-, σ-, and
max-degradation predictions for the EPFL benchmarks under
the self-referencing scenario are listed in Table IV.

Considering the ITC-99 benchmarks and the self-referencing
scenario, GNN4REL achieves excellent prediction performance
concerning σ-degradation, with an average MAE of 0.08, where
the actual σ values range between 0.92 to 3.05 (average MAPE
error of 4%). GNN4REL predicts the max-degradation with
an average MAE of 0.66, where the actual max values range
between 1.92 and 9.09 (average MAPE error of 12%).

Regarding the single-design scenario (b14 benchmark in
this study, without loss of generality), GNN4REL achieves
an average MAE of 0.75, 0.37, and 1.62 when predicting the
µ, σ, and max values, respectively. This experiment shows
that, even if the GNN does not utilize the under-evaluation
design during training, it can make valuable predictions. Such
capabilities are essential in practice, where training data for
the design under-evaluation may not be available. However,
considering only a single design for training does limit the
type of samples the model sees and can lead to high variance.

Therefore, we further evaluate GNN4REL when using a
design dataset for training; such approach is equally valid for
scenarios where training data for the design under-evaluation
itself are not available. For this case (training on a design

TABLE V
MAE PATH-LEVEL REGRESSION RESULTS FOR AGING-INDUCED

DEGRADATION ON SELECTED ITC-99 BENCHMARKS, DIFFERENT TRAINING
DATASETS. NA MEANS NOT APPLICABLE

Benchmark Self-Referencing Training on b14 Design Dataset
b14 0.39 NA 2.63
b15 0.55 3.38 1.46
b20 1.12 3.52 1.62
b21 1.15 3.52 1.47
b22 0.39 1.77 1.48
b17 0.31 8.10 4.29

TABLE VI
MAE PATH-LEVEL REGRESSION RESULTS FOR AGING-INDUCED

DEGRADATION OF EPFL BENCHMARKS. SELF-REFERENCING SCENARIO

Benchmark adder multiplier square bar max divisor
Self-Referencing 0.37 0.03 0.51 1.71 0.18 0.61

dataset), GNN4REL achieves an average MAE of 0.56, 0.3,
and 1.34 for predicting the µ, σ, and max values, respectively.
The results show that this scenario achieves better prediction
performance compared with the single-design scenario. In short,
in case where training data for the design-under-evaluation are
unavailable, the designer/foundry can (i) utilize a generic design
dataset for training or (ii) track the properties of the timing
paths in the testing set and accordingly train the model on
similar paths, to enhance the prediction performance as needed.

C. Aging Prediction

The predictions for runtime-variation degradation for every
path and selected designs in the self-referencing scenario are
shown in Fig. 15. The predictions are again scatter-plotted
versus the actual degradation percentages. The outcomes of an
ideal regression model are also scatter-plotted, to visualize
the MAE error. GNN4REL predicts the runtime-variation
degradation percentages with an average MAE of 0.65, where
the actual degradation percentages fall between 15% and 26%.
The average MAPE value reported by GNN4REL is 3.17%,
which indicates an excellent prediction performance.

The MAE values for the runtime-variation degradations
predicted by GNN4REL under all dataset scenarios are listed
in Table V. We can observe the same trend as with the process
variation prediction: GNN4REL performs best in case of the
self-referencing scenario (average MAE of 0.65) and worst in
the single-design dataset scenario (average MAE of 4). Still,
even in this relative worst-case scenario, GNN4REL achieves
an average MAPE value of 20%, which indicates that it is
performing “good forecasting” according to the study in [26].

For the design-dataset scenario, which “sits” between the
other two scenarios in terms of prediction performance,

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 10

De
gr

ad
at

io
n

Pe
rc

en
ta

ge
(P

re
d)

Degradation Percentage (True)

b17
MAE=0.25

b15
MAE=0.22

MAE
adder
MAE=0.22

max
MAE=0.06

multiplier
MAE=0.02

Degradation Percentage (True) Degradation Percentage (True) Degradation Percentage (True) Degradation Percentage (True)

Prediction
Ideal Performance

b17
MAE=0.31

b15
MAE=0.55

adder
MAE=0.37

max
MAE=0.18

multiplier
MAE=0.03

De
gr

ad
at

io
n

Pe
rc

en
ta

ge
(P

re
d)

Degradation Percentage (True) Degradation Percentage (True) Degradation Percentage (True) Degradation Percentage (True) Degradation Percentage (True)

Predictions
Ideal Performance

Fig. 15: Path-level regression for aging-induced degradation of selected ITC-99 and EPFL benchmarks under the self-referencing scenario. Note that the
ideal-performance data points are obtained using the Monte-Carlo STA [3].

GNN4REL achieves an average MAE of 2.15 and an average
MAPE of 9.7%, indicating on highly accurate forecasting.

We further evaluate GNN4REL under the self-referencing
scenario on the EPFL benchmarks and report the MAE results
in Table VI. GNN4REL achieves an average MAE of 0.64.
This experiment shows that our platform can be generally
applied to different types of designs.

For the RISC-V processors, we extract 1, 000 timing paths
from the RI5CY processor and train GNN4REL accordingly.
Then, 1, 000 timing paths are extracted from the zero-riscy
processor to estimate their delay degradation.4 GNN4REL
reports an MAE of 3, demonstrating the scalability of the
platform also for such more complex designs.

D. Scalability Analysis

We demonstrated the scalability of GNN4REL on complex
designs such as RISC-V processors represented using graphs
with up to 35,648 nodes and 3,652 edges. Moreover, we
considered EPFL benchmarks represented using graphs with up
to 72,823 nodes and 143,261 edges, as summarized in Table II.
Recall that the number of nodes represents the total number
of gates, PIs and POs in the corresponding design.

Increasing the size of the design does not undermine the
performance of GNN4REL. Even on the contrary, larger designs
can improve the prediction performance. E.g., predicting
the average process-variation-induced delay degradation on
the smallest considered ITC-99 benchmark, b14 with 9,630
nodes, GNN4REL achieves an MAE of 0.58, whereas when
performing the same task on the largest considered ITC-99
benchmark, b17 with 39,774 (4× larger than b14), GNN4REL
achieves the best performance with an MAE of 0.25.

Further, the training time incurred by GNN4REL grows only
linearly (with factor < 1) with the size of the considered design.
For example, training on b14 takes 01:42:18 (h:m:s) while
training on b17 takes 02:36:42, i.e., a factor only 1.6× training
time although the circuit size increased to 4×. Additionally, in
case longer training times are not desired, we have demonstrated
how GNN4REL can also be trained on small designs such as
b14 and perform inference on larger designs such as b17. In
such as setup, GNN4REL reported an MAE of 0.72, which is
2.9× higher than the MAE observed for self-reference training.

E. Effect of the Extracted Subgraph Size h

We study the effect of h-hop sampling on the performance
of GNN4REL. We repeat the experiments for predicting the

4Thus, we consider the design-dataset scenario here, but specifically for
RISC-V designs with a model trained separately from those used for the earlier
experiments on ITC and EPFL benchmarks.

TABLE VII
GNN4REL PREDICTION PERFORMANCE IN TERMS OF MAE FOR

DIFFERENT h-HOP NUMBERS UNDER THE SELF-REFERENCING SCENARIO

Benchmark µ of Design-Time Degradation Runtime Degradation
h=0 h=1 h=2 h=0 h=1 h=2

b14 0.60 0.58 0.59 0.40 0.39 0.75
b15 0.37 0.22 0.44 0.69 0.55 0.71
b20 0.56 0.56 0.58 1.11 1.12 1.18
b21 0.53 0.46 0.55 1.13 1.15 1.18
b22 0.54 0.50 0.66 0.32 0.39 0.79
b17 0.21 0.25 0.35 0.59 0.31 0.57

Average 0.47 0.43 0.53 0.71 0.65 0.87

TABLE VIII
TRAINING TIME OF THE PROPOSED GNN4REL PLATFORM

ITC Benchmark b14 b15 b20 b21 b22 b17
Training Time 01:42:18 01:37:37 01:45:59 01:49:33 01:48:19 02:36:42

EPFL Benchmark adder multiplier square bar max divisor
Training Time 03:07:19 19:24:36 06:43:34 04:31:17 07:31:42 120:01:05

µ delay degradation (due to process variation) and predicting
the end-of-life delay degradation (due to aging) for varying
h ∈ [0, 2] with a step size of 1. We consider the ITC-99
benchmarks for this experiment under the self-referencing
scenario. See Table VII for the MAE results. A hop size of
h = 0 indicates that only the gates within each timing path itself
are represented in the extracted subgraphs. As can be observed
from Table VII, the prediction performance of GNN4REL
improves by increasing h from 0 to 1. We argue that more
information regarding the fan-in and fan-out structures of the
timing path gates get captured in the 1-hop subgraphs allowing
for a better estimate of the delay degradation. However, moving
to a hop size of h = 2, the prediction performance drops. With
the increase in subgraph size, the properties of the timing path
can get lost in the vast information captured by the graph,
degrading the performance of the prediction.

F. Runtime Analysis

Std-Cell Lib Generation: Each cell in the std-cell lib is
characterized under different input-signal slews and output-
load capacitances settings, typically 7× 7. Further, each rise
and fall condition for every input pin is considered. Hence,
characterizing the entire std-cell lib involves a huge number of
SPICE simulations, which is a very time-consuming process.
This challenge is exacerbated when having to repeat the process
for Monte-Carlo-like std-cell characterization under variations.
For instance, characterizing 100 std-cell libs takes ≈ 48 hours
on a modern high-capacity server (using one SPICE license).

STA: Run on the 1,000 paths extracted for the largest
considered design (i.e., the divisor benchmark with 143, 261
gates, PIs and POs) takes 80 seconds. Running STA to compute

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 11

the delay degradation (due to process variation) considering
the 100 libs takes up to 2.2 hours for each design.

Training and Inference: We report the training time of
GNN4REL on the ITC-99 and EPFL benchmarks (the details of
the benchmarks are summarized in Table II) for predicting the
delay degradation caused by aging under the self-referencing
scenario in Table VIII – GNN4REL takes merely ≈ 2 hours
to train. Recall that in the self-referencing scenario, the 1, 000
timing paths of each design are split into 810 training paths, 100
validation paths, and 90 testing paths. Also recall that training
GNN4REL is a one-time effort. The subgraph-extraction time
is part of the total training time, which could be sped up using
parallelism. Once GNN4REL is trained, it can be used to assess
the reliability of any given design in the considered testing set.
The inference stage of GNN4REL, i.e., the actual reliability
prediction, takes a few seconds. The experiments are performed
on an Intel(R) Xeon(R) CPU X5680 with 64GB of RAM.

VI. RELATED WORK

A. Learning-based Delay Degradation Prediction

Recently, different machine learning (ML)-based methods
were developed to estimate delay degradation. However, these
methods are limited in their capabilities, as we showcase next.

S. M. Ebrahimipour et al. [27] proposed an aging-aware delay
model, termed Aadam, tailored for generic cell libs. In Aadam, a
separate feed-forward, fully-connected neural network (FFNN)
is trained for each cell in the lib, to capture the relation between
a number of aging factors and the cell’s delay degradation.
During both the training and inference stages, Aadam first
passes the gate-level netlist to a logic simulator to compute the
signal probabilities for each transistor inside each gate. Then,
the respective FFNN networks are invoked inside an STA tool,
to infer the aging-induced delay of the circuit. Thus, Aadam
eliminates the need for the generation of aging-aware std-cell
libs. The main shortcomings of Aadam compared to GNN4REL
are as follows. First, in GNN4REL, a single model is trained
to predict degradation for different circuits containing various
std-cells, unlike for Aadam, which requires training of as many
networks as cells are in the lib. Second, GNN4REL eliminates
the need for STA during inference, unlike Aadam. Third, Aadam
requires invoking circuit simulations during inference, unlike
for GNN4REL, which passes the netlist directly to the trained
model, without requiring any simulations during inference.
Fourth, process variations are not considered in [27].

F. Klemme et al. [3], [28] proposed ML-based cell-lib
characterization methods, which can be invoked by STA
tools, to obtain aging-induced and process-variation-induced
degradation. Similar to Aadam, these methods do not eliminate
the need for STA to compute the degradation. More recently,
J. Guo et al. [29] proposed an ML-based platform for predicting
path-delay variations. Their platform requires the user to first
compute the nominal delay for each path in the netlist and then
uses this data for an input feature. Thus, similar to the other
SOTA methods above, their platform also requires conventional
STA methods at inference time, unlike GNN4REL.

VII. CONCLUSION

We present GNN4REL, a machine learning-based generic
platform for circuit-reliability assessment. GNN4REL empow-
ers circuit designers to obtain fast and accurate estimations
of the delay degradation imposed on their designs due to
process variation and device aging. Further, GNN4REL takes
the burden of generating variation-aware standard-cell libraries
and running static timing analysis off the designer’s shoulders,
while protecting confidential foundry information.

Our experimental evaluation on selected ITC-99 and EPFL
benchmarks, alongside RISC-V processors, shows that given a
timing path, GNN4REL accurately predicts the delay degra-
dation distributions’ measures (i.e., mean, standard deviation,
maximum) caused by process variation and device aging –
with a mean absolute error down to 0.01 percentage points –
within few seconds. Considering different dataset and training
scenarios, we show that GNN4REL can operate under various
setups based on the requirements of the designer. All in all, we
believe that GNN4REL opens up new frontiers in advancing
design-time reliability assessment methods. We will release
GNN4REL as open-source framework to the community.

ACKNOWLEDGMENT

This work is supported in part by the Center for Cyber
Security (CCS) at New York University Abu Dhabi (NYUAD).
Besides, this work is also supported by Advantest as part
of the Graduate School “Intelligent Methods for Test and
Reliability” (GS-IMTR) at the University of Stuttgart. We
would like to thank Sami Salamin for his valuable support the
RISC-V processor experiments.

REFERENCES

[1] K. J. Kuhn et al., “Process technology variation,” IEEE Transactions on
Electron Devices, vol. 58, no. 8, pp. 2197–2208, 2011.

[2] H. Amrouch et al., “Reliability-aware design to suppress aging,” in
ACM/IEEE Design Automation Conference (DAC), 2016, pp. 1–6.

[3] F. Klemme and H. Amrouch, “Machine learning for on-the-fly reliability-
aware cell library characterization,” IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 68, no. 6, pp. 2569–2579, 2021.

[4] B. Li et al., “On timing model extraction and hierarchical statistical timing
analysis,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 32, no. 3, pp. 367–380, 2013.

[5] V. Khandelwal and A. Srivastava, “A quadratic modeling-based framework
for accurate statistical timing analysis considering correlations,” IEEE
transactions on very large scale integration (VLSI) systems, vol. 15,
no. 2, pp. 206–215, 2007.

[6] L. Alrahis et al., “GNN-RE: Graph neural networks for reverse engi-
neering of gate-level netlists,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, pp. 1–1, 2021.

[7] ——, “MuxLink: Circumventing learning-resilient MUX-locking using
graph neural network-based link prediction,” IEEE Design, Automation
& Test in Europe Conference & Exhibition (DATE), 2022.

[8] ——, “UNTANGLE: Unlocking routing and logic obfuscation using
graph neural networks-based link prediction,” in IEEE/ACM International
Conference On Computer Aided Design (ICCAD), 2021, pp. 1–9.

[9] ——, “OMLA: An oracle-less machine learning-based attack on logic
locking,” IEEE Transactions on Circuits and Systems II: Express Briefs,
2021.

[10] ——, “GNNUnlock+: A systematic methodology for designing graph
neural networks-based oracle-less unlocking schemes for provably secure
logic locking,” IEEE Transactions on Emerging Topics in Computing,
no. 01, pp. 1–1, 2021.

[11] L. Alrahis, S. Patnaik, F. Khalid, M. A. Hanif, H. Saleh, M. Shafique
et al., “Gnnunlock: Graph neural networks-based oracle-less unlocking
scheme for provably secure logic locking,” in IEEE Design, Automation
& Test in Europe Conference & Exhibition (DATE), 2021, pp. 780–785.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 12

[12] S. Natarajan, M. Agostinelli, S. Akbar, M. Bost, A. Bowonder, V. Chikar-
mane et al., “A 14nm logic technology featuring 2 nd-generation finfet,
air-gapped interconnects, self-aligned double patterning and a 0.0588
µm 2 sram cell size,” in IEEE International Electron Devices Meeting,
2014, pp. 3–7.

[13] L. Alrahis. (2022) GNN4REL datasets. [Online]. Available: https:
//github.com/lilasrahis/GNN4REL

[14] Z. Zhang et al., “Extraction of process variation parameters in finfet
technology based on compact modeling and characterization,” IEEE
Transactions on Electron Devices, vol. 65, no. 3, pp. 847–854, 2018.

[15] K. Xu et al., “How powerful are graph neural networks?” arXiv preprint
arXiv:1810.00826, 2018.

[16] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[17] J. Gilmer et al., “Neural message passing for quantum chemistry,” in
International Conference on Machine Learning-Volume. JMLR. org,
2017, pp. 1263–1272.

[18] P. Veličković et al., “Neural execution of graph algorithms,” arXiv preprint
arXiv:1910.10593, 2019.

[19] G. Corso et al., “Principal neighbourhood aggregation for graph nets,”
Advances in Neural Information Processing Systems, vol. 33, pp. 13 260–
13 271, 2020.

[20] H. Amrouch, G. Pahwa, A. D. Gaidhane, C. K. Dabhi, F. Klemme,
O. Prakash et al., “Impact of variability on processor performance in
negative capacitance finfet technology,” IEEE Transactions on Circuits
and Systems I: Regular Papers, vol. 67, no. 9, pp. 3127–3137, 2020.

[21] S. Venugopalan et al., “Bsim-cmg 110,” 2016. [Online]. Available:
http://bsim.berkeley.edu/models/bsimcmg/

[22] Silvaco, Inc., “Silvaco and si2 release unique, free 15nm open-source
digital cell library,” 2019. [Online]. Available: https://www.silvaco.com/
news/pressreleases/2019 05 30 01.html

[23] Synopsys, Inc., “Primelib user guide,” 2022.
[24] “Chipyard’s documentation.” [Online]. Available: https://

chipyard.readthedocs.io/
[25] “PULP Platform.” [Online]. Available: https://pulp-platform.org/

implementation.html
[26] C. D. Lewis, Industrial and business forecasting methods: A practical

guide to exponential smoothing and curve fitting. Butterworth-
Heinemann, 1982.

[27] S. M. Ebrahimipour et al., “Aadam: A fast, accurate, and versatile
aging-aware cell library delay model using feed-forward neural network,”
in IEEE/ACM International Conference On Computer Aided Design
(ICCAD), 2020, pp. 1–9.

[28] F. Klemme, Y. Chauhan, J. Henkel, and H. Amrouch, “Cell library
characterization using machine learning for design technology co-
optimization,” in IEEE/ACM International Conference On Computer
Aided Design (ICCAD), 2020, pp. 1–9.

[29] J. Guo et al., “Novel prediction framework for path delay variation based
on learning method,” Electronics, vol. 9, no. 1, p. 157, 2020.

Lilas Alrahis is a Postdoctoral Associate at New
York University Abu Dhabi. She received the M.Sc.
degree and the Ph.D. degree in electrical and com-
puter engineering from Khalifa University, UAE, in
2016 and 2021, respectively. Her research interests
include Hardware Security, Design for Trust, Logic
Locking, and Applied Machine Learning. She won
the MWSCAS Myril B. Reed Best Paper Award
in 2016 and the Best Paper Award at the Applied
Research Competition held in conjunction with Cyber
Security Awareness Week, in 2019. Dr. Alrahis is

currently serving as Associate Editor of the Integration, the VLSI Journal.

Johann Knechtel is a Research Scientist with New
York University Abu Dhabi, United Arab Emirates.
He received the M.Sc. degree in Information Sys-
tems Engineering (Dipl.-Ing.) and the Ph.D. degree
in Computer Engineering (Dr.-Ing., summa cum
laude) from TU Dresden, Germany, in 2010 and
2014, respectively. His research interests cover VLSI
physical design automation, with particular focus on
emerging technologies and hardware security. He was
a Postdoctoral Researcher with the Masdar Institute
of Science and Technology, Abu Dhabi, from 2015–

2016. From 2010 to 2014, he was a Ph.D. Scholar with the DFG Graduate
School on “Nano- and Biotechnologies for Packaging of Electronic Systems” at
TU Dresden. In 2012, he was a Research Assistant with the Chinese University
of Hong Kong, Hong Kong. In 2010, he was a Visiting Research Student with
the University of Michigan at Ann Arbor, MI, USA.

Florian Klemme (M’20) is a Doctoral Researcher
at the Chair of Semiconductor Test and Reliability
(STAR), University of Stuttgart. He received the
B.Sc. in System Integration from the University
of Applied Sciences Bremerhaven, Germany, in
2014 and the M.Sc. in Computer Science from the
Karlsruhe Institute of Technology, Germany, in 2018.
He is currently working towards the Ph.D. degree
at the Chair of Semiconductor Test and Reliability,
University of Stuttgart. His research interests include
cell library characterization and machine learning

techniques in electronic design automation and computer-aided design. He is
a member of the IEEE. ORCID 0000-0002-0148-0523.

Hussam Amrouch (S’11-M’15) is a Jun.-Professor
heading the Chair of Semiconductor Test and Reliabil-
ity (STAR) within the Computer Science, Electrical
Engineering Faculty at the University of Stuttgart as
well as a Research Group Leader at the Karlsruhe
Institute of Technology (KIT), Germany. He currently
serves as Editor at the Nature Scientific Reports
Journal. He received his Ph.D. degree with the
highest distinction (Summa cum laude) from KIT
in 2015. His main research interests are design
for reliability and testing from device physics to

systems, machine learning for CAD, HW security, approximate computing,
and emerging technologies with a special focus on ferroelectric devices. He
holds eight HiPEAC Paper Awards and three best paper nominations at top
EDA conferences: DAC’16, DAC’17 and DATE’17 for his work on reliability.
He has served in the technical program committees of many major EDA
conferences such as DAC, ASP-DAC, ICCAD, etc. and as a reviewer in many
top journals like Nature Electronics, T-ED, TCAS-I, TVLSI, TCAD, TC, etc.
He has around 185 publications (including 74 journals) in multidisciplinary
research areas across the entire computing stack, starting from semiconductor
physics to circuit design all the way up to computer-aided design and computer
architecture. His research in HW security and reliability have been funded by
the German Research Foundation (DFG), Advantest Corporation, and the U.S.
Office of Naval Research (ONR).

Ozgur Sinanoglu is a professor of electrical and
computer engineering at New York University Abu
Dhabi. He obtained his Ph.D. in Computer Science
and Engineering from University of California San
Diego. He has industry experience at TI, IBM and
Qualcomm, and has been with NYU Abu Dhabi
since 2010. During his Ph.D. he won the IBM Ph.D.
fellowship award twice. He is also the recipient of
the best paper awards at IEEE VLSI Test Symposium
2011 and ACM Conference on Computer and Com-
munication Security 2013. Prof. Sinanoglu’s research

interests include design-for-test, design-for-security and design-for-trust for
VLSI circuits, where he has more than 200 conference and journal papers,
and 20 issued and pending US Patents. Prof. Sinanoglu is the director of the
Center for CyberSecurity at NYU Abu Dhabi. His recent research in hardware
security and trust is being funded by US National Science Foundation, US
Department of Defense, Semiconductor Research Corporation, Intel Corp, and
Mubadala Technology.

https://github.com/lilasrahis/GNN4REL
https://github.com/lilasrahis/GNN4REL
http://bsim.berkeley.edu/models/bsimcmg/
https://www.silvaco.com/news/pressreleases/2019_05_30_01.html
https://www.silvaco.com/news/pressreleases/2019_05_30_01.html
https://chipyard.readthedocs.io/
https://chipyard.readthedocs.io/
https://pulp-platform.org/implementation.html
https://pulp-platform.org/implementation.html

	Introduction
	State-of-the-Art (SOTA) and Their Limitations
	Key Research Challenges
	Our Novel Concept and Contributions within this Work

	Background
	Process Variation and Device Aging
	Graph Neural Networks (GNNs)

	Our Proposed GNN4REL Framework
	Path-to-Subgraph Transformation
	Subgraph Extraction
	Feature Vector

	Employed Graph Neural Network Model
	Dataset Generation
	Self-Referencing
	Single-Design
	Design Dataset

	Technology Calibration and Std-Cell Libraries Creation
	Technology Calibration
	Std-Cell Library Generation

	Evaluation and Comparisons
	Experimental Setup
	Benchmark Designs
	Synthesis and Generation of Datasets
	Subgraph Extraction and GNN Training
	Dataset Generation and Evaluation for Prediction of Process Variation
	Dataset Generation and Evaluation for Prediction of Aging
	Evaluation Metric

	Prediction of Process Variation
	Aging Prediction
	Scalability Analysis
	Effect of the Extracted Subgraph Size h
	Runtime Analysis

	Related Work
	Learning-based Delay Degradation Prediction

	Conclusion
	References
	Biographies
	Lilas Alrahis
	Johann Knechtel
	Florian Klemme
	Hussam Amrouch
	Ozgur Sinanoglu

