
© 2022 IEEE. This is the author’s version of the work. It is posted here for personal use. Not for redistribution. The
definitive Version of Record is published in IEEE TIFS, DOI 10.1109/TIFS.2022.3218429

Titan: Security Analysis of Large-Scale Hardware
Obfuscation Using Graph Neural Networks

Likhitha Mankali, Lilas Alrahis, Member, IEEE, Satwik Patnaik, Member, IEEE, Johann Knechtel, Member, IEEE,
and Ozgur Sinanoglu, Senior Member, IEEE

Abstract—Hardware obfuscation is a prominent design-for-
trust solution that thwarts intellectual property (IP) piracy
and reverse-engineering of integrated circuits (ICs). Researchers
have proposed several large-scale obfuscation techniques that
achieve high output corruption—thus offering resilience against
seminal attacks along with acceptable power, performance, and
area overheads. However, the research community has primarily
evaluated hardware obfuscation on relatively small scales of
obfuscation (i.e., a fixed number of obfuscated components).
Moreover, prior art caters toward specific schemes based either
on gate obfuscation or interconnect obfuscation, i.e., two promi-
nent types of hardware obfuscation. The former shortcoming
suggests focusing on large-scale obfuscation schemes, and the
latter suggests the need for a holistic assessment framework.

In this work, we propose Titan, a holistic framework con-
sidering large-scale gate and interconnect obfuscation schemes.
More specifically, we propose a graph neural network (GNN)-
based attack framework that is trained to exploit structural
and functional properties of any secured circuit to recover its
obfuscated components. We evaluate Titan on various obfuscation
schemes, considering selected ITC-99 benchmarks with up to
50% obfuscation scale, i.e., up to 21,326 obfuscated components.
We observe a substantial information leakage through structural
and functional properties of secured designs even for large-scale
obfuscation. We quantify the information leakage in two ways:
first, an average reduction of Hamming distance (HD, a well-
established metric for attack evaluation) by 23.27 and 16.19
percentage points over the baseline of random guessing for gate
and interconnect obfuscation, respectively; second, an average
recovery of 63.40% and 77.94% of obfuscated components
for gate and interconnect obfuscation, respectively. Importantly,
these results are superior to six state-of-the-art attacks. We will
open-source our framework and associated artifacts to enable
reproducibility and foster future work.

Index Terms—Hardware Obfuscation, Graph Neural Networks

Manuscript received April 20, 2022; revised September 18, 2022; accepted
October 19, 2022. The work of Likhitha Mankali was supported by the
Global Ph.D. Fellowship at New York University/New York University Abu
Dhabi (NYUAD). This work is supported in part by the Center for Cyber
Security at NYUAD. Besides, this work was carried out in part at the High
Performance Computing facility at NYUAD. The associate editor coordinating
the review of this manuscript and approving it for publication was Prof.
Debdeep Mukhopadhyay. (Corresponding author: Likhitha Mankali)

Likhitha Mankali is with the Department of Electrical and Computer
Engineering, Tandon School of Engineering, New York University, USA
(email: lm4344@nyu.edu).

Lilas Alrahis, Johann Knechtel, and Ozgur Sinanoglu are with the Di-
vision of Engineering, New York University Abu Dhabi, UAE (email:
lma387@nyu.edu; johann@nyu.edu; ozgursin@nyu.edu).

Satwik Patnaik is with the Department of Electrical and Com-
puter Engineering, Texas A&M University, College Station, USA (email:
satwik.patnaik@tamu.edu).

Digital Object Identifier 10.1109/TIFS.2022.XXXXXXX

TABLE I
CAPABILITIES OF STATE-OF-THE-ART ATTACKS ON HARDWARE

OBFUSCATION AND OUR PROPOSED ATTACK

Unscalable Obfuscated
Type-Specific

Restricted
Capabilities

Returns Invalid
Netlist

SAT [5] 3 7 7 7
AppSAT [6] 3 7 7 7

Redundancy [7] 3 7 7 7
SWEEP [8] 7 3 3 7
SCOPE [9] 7 3 3 7

UNTANGLE [10] 7 3 3 7
OMLA [11] 7 3 3 3

Proposed Attack (Titan) 7 7 7 7

Note that 7 indicates no related limitation for the attack, whereas 3
indicates some limitation.

I. INTRODUCTION

A. Globalization of IC Supply Chain and Design-for-Trust

INTEGRATED circuit (IC) manufacturing costs have sky-
rocketed with aggressive miniaturization of advanced tech-

nology nodes. Recently TSMC announced an investment of
$23 billion for commissioning a foundry for the state-of-the-
art 3nm technology node [1]. The inability to commission
and maintain foundries for advanced technology nodes have
driven many semiconductor design companies (e.g., Apple,
Qualcomm) into adopting a fabless business model [2]. In
such a business model, the design of intellectual property
(IP) is carried out by a trustworthy design house, while the
fabrication, testing, and packaging are outsourced to third-
party entities located in different geographical locations. Out-
sourcing of critical steps of the IC supply chain to poten-
tially untrustworthy entities enables attackers to gain access
to the underlying design, either in the form of a design
netlist, physical layout, or a packaged IC. Consequently, a
plethora of security issues emerged, ranging from design IP
piracy, unauthorized overproduction of ICs, to implantation
of malicious logic [3]. Over the past decade, researchers
proposed several design-for-trust techniques to address the
aforementioned security concerns [4]. Hardware obfuscation
is one such technique that protects an IC against design IP
piracy and reverse-engineering.

B. Hardware Obfuscation

Hardware obfuscation structurally modifies the underlying
design to make it unintelligible (to an adversary) while main-
taining the intended functionality [12]. The security goal of
hardware obfuscation is to ensure that an adversary recovers
an erroneous design that deviates from the original design in

2 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

terms of output corruptibility.1 Generally, hardware obfusca-
tion is categorized into gate versus wire/interconnect obfus-
cation. In gate obfuscation, a logic gate is obfuscated using
look-alike gates [13], [14] or by threshold voltage-dependent
configuration of gates [15]. In interconnect obfuscation, the
inputs of a logic gate are obfuscated using some dummy wires
or vias [16], [17].

The research community has proposed various attacks
questioning the efficacy of hardware obfuscation techniques.
However, most of these attacks specifically target one of the
obfuscation types (i.e., gate or interconnect obfuscation). More
importantly, although existing attacks deobfuscate specific
instances of hardware obfuscation,2 they have been evaluated
primarily on small-scale obfuscation, where only a limited set
of gates/interconnects are obfuscated in a design. Attacking
large-scale obfuscation where most of the design-related in-
formation (i.e., topology and functionality) poses significant
challenges and remains an open problem for the hardware
security community.

C. Limitations of State-of-the-Art Attacks

Now, we discuss the limitations of the state-of-the-art at-
tacks on hardware obfuscation which serve as the motivation
of our work. We review the attacks in Section II-B and
highlight the limitations of state-of-the-art attacks in Table I.
Unscalable Attacks. Existing attacks such as the Boolean
satisfiability (SAT)-based attack [5], approximate satisfiability-
based attack (AppSAT) [6], and the redundancy attack [7] fail
to deobfuscate designs within a limited time (e.g., 48 hours)
due to scalability issues. This is especially true for large-scale
obfuscation (e.g., 30–50% of gates or interconnects being ob-
fuscated). Our experiments on obfuscated ITC-99 benchmarks
for 30–50% obfuscation highlight that state-of-the-art attacks
do not scale for large-scale obfuscation (Section V-D).
Obfuscation Type-Specific Attacks. Existing attacks like
SWEEP [8], SCOPE [9] and UNTANGLE [10] specifically
target interconnect obfuscation. On the other hand, an attack
like OMLA [11] specifically targets gate obfuscation. These
attacks have not been extended to other types of obfuscation.
More importantly, neither of these state-of-the-art attacks
applies to unified obfuscated designs, i.e., designs where both
gate and interconnect obfuscation are applied together.
Restricted Capabilities. Existing attacks against interconnect
obfuscation have restricted capabilities, limiting their appli-
cability. For instance, SWEEP and SCOPE are designed to
consider only two possible wires (i.e., one dummy wire and
one true wire) for every obfuscated interconnect. UNTAN-
GLE [10] attacks obfuscation techniques where only a single
input is obfuscated for a given logic gate. However, advanced
interconnect obfuscation schemes obfuscate all the inputs of a
given gate, i.e., not only a single input [16].

1Output corruptibility, quantified by Hamming distance (HD), represents the
average bit-level mismatch between the outputs of the original and erroneous
design recovered by an adversary on the application of a large (e.g., 50,000)
set of input patterns.

2Deobfuscation is defined as inferring the true functionality of the logic
gate (for gate obfuscation) or the true connections between logic gates (for
interconnect obfuscation).

(a) Attacking Gate Obfuscation

Input Subgraph

? GNN
XOR
AND
OR
NAND

...
Known gate type
Unknown gate type

Output Predictions
(Gate Type)

?

Input Subgraph

(b) Attacking Interconnect Obfuscation

Known link
Possible link

GNN

Output Predictions
(Link Formation)

Link
No Link..

.

Fig. 1. High-level overview of our holistic attack framework (Titan) that is
capable of tackling large-scale gate and interconnect obfuscation.

Returns Invalid Netlist. Existing attack on gate obfuscation,
such as OMLA, considers either only two-input gates or only
single-input gates to be possible options for an obfuscated gate.
Consequently, an invalid netlist is returned when both two-
input and single-input gates are used for obfuscating gates.
For example, OMLA may predict a two-input gate, such as
NAND, NOR, etc., in place of a one-input gate, such as INV.
This misprediction results in floating nets in the design and
results in an invalid netlist.

D. Research Challenges

The above discussion on limitations shows that there is
a need for a generic attack framework that can evaluate
the security of large-scale hardware obfuscation using any
kind of obfuscation and any kind of practical gates and
interconnections. Developing such an automated and practical
attack poses the following research challenges (RC).

RC1 Handling complex obfuscation. As discussed earlier, ex-
isting attacks can tackle only specific instances of small-
scale obfuscation. However, with the increased com-
plexity of obfuscation, the attacks demonstrate several
scalability issues. Hence, a scalable attack is required to
evaluate the security of large-scale obfuscation.

RC2 Exploiting a common vulnerability. Gate and interconnect
obfuscation schemes share a common goal but follow dif-
ferent implementation strategies. Therefore, developing a
generalized attack methodology requires the identification
(and exploitation) of common vulnerabilities to both
types of obfuscation, especially for challenging attack
scenarios where both types are applied together.

MANKALI et al. : TITAN: SECURITY ANALYSIS OF LARGE-SCALE HARDWARE OBFUSCATION USING GRAPH NEURAL NETWORKS 3

RC3 Handling a variable number of plausible Boolean func-
tions/interconnects. An attack that can consider an ar-
bitrary number of plausible nets/Boolean functions is
required to handle different obfuscation implementations.

E. Our Research Contributions
We address the aforementioned research challenges by

devising and implementing a unified attack framework, Titan,
to tackle large-scale interconnect and gate obfuscation. We
recover portions of the obfuscated design by either predicting
the type of the logic gate (for gate obfuscation) or the true
connections to a logic gate (for interconnect obfuscation). To
that end, we use graph neural networks (GNNs) to capture
structural and functional hints in a design. The GNN learns
the topology and composition of gates and interconnects to
predict the obfuscated nets/gates of some design under attack.
Predicting the true connections for interconnect obfuscation
can be mapped to link prediction whereas predicting the
gate type can be mapped to node classification. The primary
contributions of our work are as follows.
• We devise, implement, and evaluate a framework for GNN-

based subgraph classification that helps in predicting the
type of gate (for gate obfuscation) and the missing con-
nections (for interconnect obfuscation), as shown in Fig. 1.
We develop a unified subgraph-based learning method to
solve both the tasks of link prediction and node classification
within a single framework (Section IV-D). We incorporate
tailored techniques to predict challenging obfuscation cases.

• We implement an oracle (working chip)-guided greedy
algorithm as a post-processing step to enhance further the
accuracy of GNN outputs (Section IV-F).

• We analyze and evaluate the state-of-the-art attacks on
selected ITC-99 benchmarks for varying degrees of ob-
fuscation (10%–50%) and provide a comprehensive com-
parison of their performance with our proposed attack
(Section V-D). We obtained an average HD of 15.71%
for the attack on interconnect obfuscation and 18.84% for
the attack on gate obfuscation, which indicates that we
recovered the partially functional netlist. We recovered an
average of 77.94% and 63.40% of obfuscated components in
interconnect and gate obfuscation, respectively. Our results
are superior than the considered state-of-the-art attacks.

• We will open-source Titan and associated artifacts to enable
reproducibility and foster future research.3

Paper Outline. The organization of the paper is as follows. We
review prior obfuscation techniques and attacks and provide
a background on GNNs in Section II. We present the threat
model in Section III and expound on the proposed attack
framework in Section IV. We discuss experimental results
in Section V, provide some discussion in Section VI and
conclude our work in Section VII.

II. BACKGROUND AND PRELIMINARIES

Here, we discuss the background related to hardware obfus-
cation techniques, state-of-the-art attacks, and GNNs. Also, we
list the commonly used notations and abbreviations in Table II.

3https://github.com/DfX-NYUAD/Titan

𝑎

𝑏
𝑦k:1𝑚

k:1𝑝

(b) Interconnect Obfuscation

𝑑

𝑏 𝑦
?

c

(a) Gate Obfuscation

𝑎

Fig. 2. Illustration of (a) gate and (b) interconnect obfuscation.

TABLE II
COMMONLY USED ABBREVIATIONS AND NOTATIONS

Term Definition Term Definition
POs Primary outputs G A graph
PIs Primary inputs G

′
A subgraph induced from G

IN In-degree X
′

Feature matrix of G
′

GNN Graph neural network V Set of nodes in G

GIN Graph isomorphic network V
′

Set of nodes in G
′

MLP Multi-layer perceptron r #Hops
Xf Functionality feature matrix of G X

′
f Functionality feature matrix of G

′

E Observed links in G n #Nodes in graph G

hl
v Embedding of v in lth layer h

[0:L]

G
′ Final embedding of G

′

L #GNN layers K Key
N (v) Neighborhood of node v p #Target nodes in a G

′

s Query to GNN L Likelihood
HD Hamming distance X

′
d Distance labeling matrix of G

′

E
′

Observed links in subgraph G
′

A Adjacency matrix of G
N #Obfuscated gates/nets S Set of predict. for obfus. gates/nets
O Oracle R Obfuscated design
Y Final recovered design W.l.o.g Without loss of generality

𝑎
𝑦 𝑎

1
𝑦Transform Obfuscate 𝑎

1

1𝑚 0

𝑐0
𝑛

𝑎 𝑦
𝑎
0

Transform Obfuscate 𝑎
0

1𝑚 0

𝑐1
𝑛

𝑦

(a) Transformation of INV gate using TIEHI

(b) Transformation of BUF gate using TIELO

ⓐ Attacking Gate Obfuscation ⓑ Attacking Interconnect Obfuscation

𝑦1

𝑦

𝑦

Fig. 3. Illustration of conversion of an inverter gate (INV) and a buffer gate
(BUF) to other two-input gates using TIEHI and TIELO signals. The inputs
highlighted in green represent the true connections.

A. Prior Hardware Obfuscation Techniques

Gate Obfuscation. Researchers have proposed various gate
obfuscation a.k.a. gate camouflaging techniques [13]–[15]. For
example, researchers utilized dummy contacts to construct
look-alike gates [14]. These look-alike gates can implement
three Boolean functions (NAND, NOR, or XOR) as shown
in Fig. 2(a). Researchers utilized threshold voltage-based
switches which can implement six Boolean functions (NAND,
AND, NOR, OR, XOR, and XNOR) [15].
Interconnect Obfuscation. Researchers proposed a tech-
nique [16], where each to-be-obfuscated interconnect/wire is
obfuscated by three additional dummy wires [16]. An example
of interconnect obfuscation is illustrated in Fig. 2(b). The
technique in [16] considers four nets for obfuscation, where
two dummy nets are fixed to logic 0 and 1 using TIELO and
TIEHI cells, respectively, to manage power, performance, and

4 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

area overheads. Since designs inherently do not contain many
TIEHI or TIELO cells, the authors convert some inverters
(INV) and buffers (BUF) to two-input gates with one input
fixed/tied to logic 0 or 1, as shown in Fig. 3. In [17], two types
of vias/contacts are used: (i) conductive vias/contacts based on
magnesium (Mg), and (ii) non-conductive vias/contacts based
on magnesium oxide (MgO). The authors demonstrate that Mg
oxidizes to MgO during the delayering of the IC (a common
step in IC reverse-engineering), thereby transforming the Mg
vias to MgO vias. Such a transformation makes it difficult for
an adversary to distinguish between real and dummy vias.
Logic Locking. Initially proposed in [18], logic locking is
a type of hardware obfuscation that inserts additional logic,
i.e., key-gates controlled by a secret key. The locked design
functions correctly only upon applying the correct secret key.
With an incorrect key, a locked design generates incorrect
functionality and produces corrupted outputs. Initially, re-
searchers proposed logic locking techniques that augmented
key-gates to facilitate high output corruption [18], [19]. How-
ever, these techniques were circumvented by the SAT-based
attack [5]. Subsequently, researchers proposed various tech-
niques to thwart SAT-based attacks.

Such techniques, also known as SAT-resilient techniques,
are categorized into: (i) point function-based locking or
provably-secure logic locking (PSLL), (ii) SAT-hard locking,
(iii) cyclic locking, and (iv) scan locking. In (i), researchers
augmented the design with point functions that restrict the
SAT-based attacks to prune incorrect keys in every attack
iteration [20], [21]. In techniques under (ii), researchers locked
the design using SAT-hard instances, such as switch-box-
based routing networks [22], [23], that increase the time taken
by each iteration of the SAT-based attack. The techniques
under (iii) introduce combinational loops to hinder SAT-based
attacks [24]. Finally, the techniques under (iv) obfuscate the
scan data, limiting the controllability and observability of
internal nets, thereby hindering oracle access [25].

However, all the aforementioned locking techniques are
vulnerable to attacks. PSLL techniques are vulnerable to struc-
tural attacks [26]. SAT-hard techniques such as Full-Lock [22]
and InterLock [27] have been thwarted by machine learning
(ML)-based attacks such as neural network-guided SAT [28]
or UNTANGLE [10]. Cyclic locking has been broken by
advanced SAT-based attacks tailored for cyclic structures [29].
Finally, scan-locking techniques have also been broken by
other SAT-based attacks, such as ScanSAT [30].

Apart from the aforementioned (and broken) techniques,
we note that large-scale obfuscation is inherently resilient to
SAT-based attacks, as shown in Sec. V-D. However, security
analysis of large-scale obfuscation against structural or ML-
based attacks remains an open problem for the hardware
security community, and our work attempts to close this gap.

B. Prior Attacks on Hardware Obfuscation

Various attacks targeting hardware obfuscation schemes
consider a logic locking scheme for modeling. For instance,
state-of-the-art attacks [5]–[9] model hardware obfuscation as
multiplexer (MUX)-based locking. We model obfuscation as

MUX-based locking [31], where the possible nets/gates for
each obfuscated component are connected to a MUX and the
select lines of MUX are connected to so-called key-bits.
SAT-Based Attack [5] constructs a miter circuit using two
copies of the obfuscated design with different key-bits. This
miter circuit is fed to a SAT solver to produce a distinguishing
input pattern (DIP), a special input pattern that generates
differing outputs for at least two different keys. The DIP is
provided as an input to a working chip (a.k.a. an oracle)
and the corresponding outputs are recorded, which help in
pruning the incorrect keys. AppSAT [6] is a modified ver-
sion of the SAT-based attack that returns an approximately
deobfuscated design. SAIL [32] is a ML-based attack that
exploits the localized structural changes in the design (caused
by deterministic procedures invoked by synthesis) to recover
obfuscated components. SWEEP [8] and SCOPE [9] are
constant-propagation attacks that exploit synthesis-based in-
formation (e.g., area, power) to recover the obfuscated design.
Redundancy attack [7] is based on the premise that the to-
be-protected design should be completely testable, i.e., without
untestable faults.4 The attack retrieves obfuscated components
by checking for untestable faults. UNTANGLE [10] is an ML-
based attack targeting the Interlock obfuscation [27]. UNTAN-
GLE uses GNN-based link prediction to predict the correct
connections in obfuscated designs. OMLA [11] is another
ML-based attack that uses GNN-based subgraph classification
to predict the correct functionality of the obfuscated gates.

C. Graph Neural Networks (GNNs)

GNNs are the preferred choice for deep learning on graph-
structured data. A GNN takes a graph as an input, performs
neighborhood aggregation, and generates a vector representa-
tion (embedding) for each node in the graph [34]. The obtained
embeddings capture the structure of the graph, the position
of each node within the graph, and initial node features. Let
G(V,E) denote a graph with node set V and edge set E.
Further, A denotes the n× n adjacency matrix of G where n
represents the total number of nodes in G. Each node v ∈ V is
assigned an initial feature vector xv that captures its properties.
A round of neighborhood aggregation can be abstracted as
follows, where N (v) denotes the direct neighborhood of a
node v, and hlv represents the embedding of v at the lth round.
h0v is initialized with xv .

alv = Aggregatel({hl−1u : u ∈ N (v)}) (1)

hlv = Updatel(hl−1v , alv) (2)

First, the information from N (v) is collected using the
Aggregate function to generate an embedding alv for the layer
l. Next, the Update function updates the embedding of v by
combining its previous state hl−1v with alv . After L rounds of
neighborhood aggregation, the obtained node embeddings can
be used to perform multiple tasks such as node classification,
(sub)graph classification, link prediction, etc. In our work, we

4Untestable faults correspond to the faults in a design that cannot be
propagated or excited to an observable point in the design [33].

MANKALI et al. : TITAN: SECURITY ANALYSIS OF LARGE-SCALE HARDWARE OBFUSCATION USING GRAPH NEURAL NETWORKS 5

In
te

rc
on

ne
ct

O

bf
us

ca
tio

n

Gate Obfuscation

Fa
br

ica
tio

n

Ph
ys

ica
l S

yn
th

es
is

Gate-level Netlist

Obfuscated
Layout

Re
ve

rs
e

En
gi

ne
er

in
g

Protected
Chip

Gate-level Netlist with Missing Information

I1
I3

I4

I5

I2

O2

O1
I1
I3

I4

I5

I2

O2

O1

Recovered Gate-level Netlist

I1
I3

I4

I5

I2

O2

O1

Ti
ta

n

Adversary
(End-user)

Oracle

Fig. 4. A designer obfuscates the design either using gate obfuscation, interconnect obfuscation, or both. Gate obfuscation is implemented at the logic
synthesis step, while interconnect obfuscation is implemented at the physical synthesis step. Finally, the obfuscated layout is sent to the trusted foundry for
fabrication. The end-user procures the IC from the open market and reverse-engineers it to obtain a gate-level netlist with some missing obfuscated gates
and/or wires. An adversary aims to recover the missing information using hints from the non-obfuscated parts in the design and the working chip (oracle).

employ GNNs to perform node classification as well as link
prediction, as discussed in the subsequent subsections.
Subgraph-Based Learning for Node Classification. Re-
searchers demonstrated that subgraph-based learning achieves
better node classification performance than methods operating
on single nodes [35]. In such a formalism, a subgraph G

′

is first extracted around v. Then, traditional neighborhood
aggregation on G

′
generates an embedding for each node in

the subgraph. Next, a Read-out function extracts a subgraph-
level embedding which represents the subgraph as a whole
and employs it as the target node embedding. In short, the
problem of classifying a node v gets mapped to classifying
the subgraph surrounding the node, i.e., G

′
.

Subgraph-Based Learning for Link Prediction. Given a
subset of observed links E ∈ D, the goal of link prediction
is to identify the unobserved true connections S referred to as
target links, where D = E+S. Link prediction methods assign
scores to all possible links to determine the possibility of those
edges belonging to D. The GNN learns link formation by
extracting subgraphs around the target links, which capture the
structure and properties of the nodes surrounding the link and
automatically generates a vector representation that embeds the
properties of the link. The obtained representation can then be
used for link prediction [36].

III. ADVERSARIAL MODEL AND GOALS

We illustrate the threat model of Titan in Fig. 4. We outline
the resources and capabilities available to an adversary, which
have been widely adopted by researchers in the hardware
obfuscation community [14], [37]. We also state here that the
adversary in this work is the end-user.

• An adversary obtains the obfuscated design by reverse-
engineering the chip. They can either perform the reverse-
engineering on their own or delegate the task to compa-
nies that perform on-demand reverse-engineering [38]. We
consider that the end-user is equipped with state-of-the-art
reverse-engineering tools and can procure multiple copies
of the to-be-attacked chip from the open market.

• An adversary possesses a working chip (a.k.a. oracle)
procured from open market. An adversary can apply any
number of inputs to the chip and record the corresponding
outputs. Additionally, an adversary is not restricted in the
number of queries they can make to an oracle.

• An adversary has the knowledge of the targeted obfuscation
technique which is consistent with Kerckhoff’s principle and
all prior work on hardware obfuscation [14], [37].

• An adversary can distinguish between regular and obfus-
cated gates. Obfuscated gates have distinguishable lithogra-
phy patterns and dimensions which can be captured during
the reverse-engineering process [14], [37]. Similarly, obfus-
cated interconnects exhibit distinct physical patterns [16].
To summarize, an adversary readily understands the type

and number of obfuscated components in the design under
attack, but not their true functionality or connectivity. Thus,
the goal of an adversary is to infer the true functionalities of
obfuscated gates/interconnects.

IV. TITAN: A GNN-BASED ATTACK FRAMEWORK
AGAINST LARGE-SCALE HARDWARE OBFUSCATION

A. Why Graph Neural Networks?

Due to the increasing complexity of circuit design, the
industry follows design practices that facilitate the concept of
reuse, commonly known as system-on-chip (SoC) design [39].
Different ICs utilize reusable components called IP cores to
speed up the design and development stages. IP reuse can be
implemented at the platform, chip, or block level. Therefore,
one can observe repeated sub-circuits across and even within
ICs. Based on this reality, we argue that hints about the struc-
ture and functionality of an obfuscated circuit can be inferred
from a library of similar designs. We further argue that one can
leverage ML algorithms to capture and learn the composition
of gates and interconnects in a design (or design library) to
decipher information regarding the obfuscated design.

A circuit must be represented either in a structured data
form (i.e., vector, matrix, etc.) for traditional ML techniques
or as a graph for GNNs. For the former, feature engineering is
needed to convert the circuit format into a fixed tensor form.
However, for the latter, the circuit can be naturally represented
as a graph and processed by a GNN. A GNN model takes
the graph (i.e., circuit), automatically generates an embedding
that captures its properties (topology and functionality), and
performs classification tasks in an end-to-end manner.

B. Modeling Netlists as Graphs

The first step of Titan is to represent the gate-level netlists of
obfuscated designs as graphs to facilitate GNN-based learning.

6 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

Feature
Embedding GNN LikelihoodG2

G4
I1

I3

I4

I2

O1

G3

TIE HI
TIE LO
TIE HI
TIE LO I1

I4

I3

I2
G2

G5 O1G1

G3

HILO

I1

I4

I3

I2
G2

G4 O1G1

G3

LO

I1

I4

I3

I2
G2

G4 O1G1

G3

Circuit to
Graph

Subgraph
Extraction ...

I1
I3 G1

I4 G2

I2 G3

G4 O1
TIEHI
TIELO
TIEHI
TIELO

I1
I3 G1

I4 G2
I2

G4 O1

(a) Obfuscated Designs

I2

I1
G1

G4I3

G2
I4

O1
?

HI

O1

I2

G4

LO

G3
G2

G1
I1

I3

I4

(b) Circuit to Graph

O1

I2

G4

LO

G3
G2

G1
I1

I3

I4

O1

I2

G4

G3
G2

G1
I1

I3

I4

. ..

I2

G4

G2
?

(c) Subgraph Extraction (d) Feature Extraction

GNN
+

Likelihood
Analysis

(e) Subgraph Classification

Links

Gate-type
label

Interconnect Obfuscation

Gate Obfuscation

Interconnect Obfuscation

Gate Obfuscation

?

?

?

??

?

?

?

?

Fig. 5. Overall flow of the subgraph-classification-based attack on interconnect and gate obfuscation. The links in green and red color indicate true and
dummy connections respectively.

We model a netlist as an undirected graph G(V,E). Note
that we use an undirected format for better representation
capability [40]. Here, V denotes the set of vertices, i.e.,
gates, primary inputs (PIs), primary outputs (POs), TIEHI cells
(providing logic 1 signals), and TIELO cells (providing logic
0 signals) in the circuit, and E denotes the set of edges, i.e.,
the wires. In the case of interconnect obfuscation, E does not
include the obfuscated nets; the true nature or connectivity
has to be predicted. Therefore, the obtained graph of an
interconnect-obfuscated design is considered an incomplete
graph with missing links.

C. Problem Formulation
Attack on Interconnect Obfuscation. An adversary aims
to predict the correct connectivity in the obfuscated design
(i.e., the missing links in the graph) based on the available
connections among the nodes. As discussed in Section II-C,
the prediction of missing links in an incomplete graph (i.e.,
link prediction) can be solved using subgraph classification.
Thus, we formulate the problem of reverse-engineering the
obfuscated interconnects as a subgraph classification task.
Attack on Gate Obfuscation. The attacker aims to predict
the true type of obfuscated gates based on the available
information of other gates and the structure of the design. As
discussed in Section II-C, this problem is equivalent to node
classification and can be tackled using subgraph classification.

D. GNN-Based Attack Framework: Subgraph Classification
We develop a framework for GNN-based subgraph classifi-

cation applicable to interconnect and gate deobfuscation. Fig. 5
summarizes the steps of the attack. First, we extract subgraphs
around the target nodes (for gate obfuscation) or target links
(for interconnect obfuscation). Later, these subgraphs are given
as input to the GNN for subgraph classification. For each query
s of the obfuscated gates/nets, the subgraph-classification
framework outputs the likelihood for each corresponding class
`s ∈ R1×m. Here, m represents the number of classes, and
each likelihood score ranges between 0 to 1. For interconnect
obfuscation, two classes are considered, i.e., link or no link.
In the case of gate obfuscation, without loss of general-
ity (w.l.o.g.) but accounting for state-of-the-art obfuscation
schemes [15], eight exemplary classes are considered, i.e.,
INV, BUF, AND, NAND, NOR, XOR, OR, and XNOR.

Algorithm 1: Inference for Subgraph Classification
Input: G(V,E);Xf ; obfuscated components S, #hops r;
Output: Likelihood L for the obfuscated components S;

1 for s ∈ S do
/* Subgraph extraction */

2 G
′
(V

′
, E

′
) ← EXTRACT(G(V,E), s, r)

/* Functionality feature vector extraction

for the nodes in subgraph V
′

*/

3 X
′
f ← Xf [V

′
]

/* Distance labeling for nodes in subgraph
for gate and interconnect obfuscation,
respectively */

4 X
′
d ← DISTANCE-LABEL

(
G

′
, s
)

/* Final feature vector for the subgraph */

5 X
′ ← CONCATENATE

(
X

′
d, X

′
f

)
/* Initializing the nodes with feature

vector */

6 for v ∈ V
′

do
7 h0

v ← x
′
v

/* Passing the node information through L
GNN layers */

8 for l = 1 to L do
9 for v ∈ V

′
do

10 N ← NEIGHBORS(v)

11 hl
v ← MLPl

(
hl−1
v +

∑
u∈N hl−1

u

)
/* Passing the node information at each

layer through READOUT */

12 hl
G

′ ← READOUT
(
hl
v |v ∈ G

′
)

/* Concatenate all the outputs of GNN layers
*/

13 h
[0:L]

G
′ ←

[
h0
G

′ , h
1
G

′ ,, h
L
G

′

]
/* Final GNN likelihood output */

14 `s ← DENSE LAYER
(
h
[0:L]

G
′

)
15 L.APPEND(`s)

16 return L

Algorithm 1 describes the pseudo-code of the subgraph
classification. As indicated, we propose a unified attack frame-
work for interconnect and gate obfuscation, but it is important
to note that devising such a framework entails additional
challenges, especially when tackling state-of-the-art obfus-
cation schemes. Hence, we devise and implement dedicated
techniques for the subgraph and feature extraction steps of the
framework. These steps are discussed in detail next.

MANKALI et al. : TITAN: SECURITY ANALYSIS OF LARGE-SCALE HARDWARE OBFUSCATION USING GRAPH NEURAL NETWORKS 7

TABLE III
COMPARISON OF GNN-BASED LINK-PREDICTION PRECISION WITH AND

WITHOUT CONSIDERING COMBINATIONS OF LINKS FOR 10%
INTERCONNECT-OBFUSCATED DESIGNS

Technique b14 C b15 C b20 C b21 C b22 C
Without combination of links 54.72 71.03 72.77 71.978 74.38

With combination of links 63.75 77.95 77.12 79.48 80.97

Attack on Interconnect Obfuscation. First, note that in
traditional GNN-based link-prediction methods, subgraphs are
extracted around the two ends of a link in question. During
GNN testing, all test examples do not contain the target links
as they are unknown beforehand. Thus, even during training,
target links are removed from the graph to prevent the GNN
from over-fitting the training data by only checking whether
some target link exists or not. Second, for our objective,
traditional link prediction is not sufficient, as explained next.
Challenges. There are dedicated challenges for tackling
interconnect-obfuscation schemes [16], as follows.
Challenge 1. Analyzing multiple obfuscated links for a single
node. In the state-of-the-art interconnect-obfuscation scheme
of interest [16], all the inputs to a gate are obfuscated. Thus,
when the GNN extracts a subgraph for a missing link that is
an input to a gate, it is unaware of the other input connections
to this gate as they are obfuscated as well. We solve this
challenge by considering all the possible combinations of
obfuscated input links to a given gate.

For example, consider the circuit in Fig. 6(a). Here, a two-
input gate has its inputs obfuscated using a total of 4 nets each;
hence, we have to consider 16 possibilities, i.e., subgraphs.
For 10% interconnect obfuscation for instance, by training the
GNN on the combination of links, we observe an improvement
of 6.88 percentage points (pp) for average precision over the
results obtained by training the GNN only on a single link
(Table III).
Challenge 2. Analyzing connections from TIE cells. As we
indicate in Fig. 6(a), TIEHI and TIELO nodes, or TIEHI/LO
nodes for short, are possible candidates for obfuscated links.
To predict whether a TIEHI/LO node is a likely input for a
given obfuscated node, a subgraph around the obfuscated node
and the TIEHI/LO node must be extracted (see s16). However,
the TIEHI/LO nodes do not provide the GNN with meaningful
structural information. Further, whenever a TIEHI/LO node
is utilized as input to a gate, the type of the gate (i.e.,
Boolean functionality) is possibly transformed due to such
constant logic 0 or 1 connection. For example, when logic
1 is connected as an input to a NAND gate, the gate operates
as an inverter. Therefore, to capture these two properties of
the TIEHI/LO connections (i.e., lack of structural information
and possible transformation of gate-types), we transform the
obfuscated node-type based on the type of TIE node, when
applicable, as demonstrated in the figure.
Subgraph Extraction. Consider an input graph G with nodes
{s1, s2, ..sp} as targets for the combination of missing links
s for which the likelihood is to be predicted. G

′
denotes the

enclosed subgraph (line 2 in Algorithm 1) within the r-hops
neighborhood around the target nodes (i.e., all the nodes that

are r hops away from any of the targets). Let V
′

represents
the set of vertices in G

′
, where any node v ∈ V ′

follows the
condition d(v, st) <= r and where st is the target node and d
is the shortest distance between nodes v and st. An example
of one-hop subgraphs is illustrated in Fig. 6(a).
Feature Embedding. Fig. 6(b) illustrates the feature vector
extraction for a given node v ∈ V

′
(i.e., x

′

v). The features
capture the function and structure of the nodes in subgraphs
(lines 3–6 in Algorithm 1) as follows.
• Functionality: The feature vector for each node in the graph

is one-hot encoded with the gate type (AND, NAND, NOR,
etc) or PI/PO or TIEHI/LO pin. W.l.o.g., the length of the
feature vector is 12 bits.

• Distance Labeling: This technique is used to distinguish
the target nodes from their surrounding nodes in the sub-
graph. Consider p targets, s1, s2, s3, ...sp in a subgraph,
the distance-labeling vector for a node v in the subgraph
is represented as (d(v, s1), d(v, s2), ...d(v, sp)). The target
nodes are encoded as (0, 0, ...0). W.l.o.g., we set the max-
imum distance value to 10 (i.e., any node at a distance
> 10 is encoded as 10). Each distance value is one-hot
encoded using 11 bits, where each bit represents a value
from 0 to 10. The length of the feature vector depends on
the maximum number of inputs to any gate in design, e.g.,
for a maximum of p− 1 inputs to some gate in design, the
length is 11×p. The final node feature matrix X

′
is obtained

by concatenating the functionality feature vector matrix X
′

f

and the distance labeling vector matrix X
′

d, where xd
′

v , xf
′

v ,
and x

′

v denote the corresponding feature vectors for node v.
Attack on Gate Obfuscation. In gate obfuscation, each
subgraph captures the localities around the obfuscated node,
i.e., the node for which the type is to be predicted. The
GNN learns the meaningful information about the node in
question through its locality (i.e., extracted subgraphs; line 2 in
Algorithm 1). We follow the same subgraph-extraction process
as in interconnect deobfuscation, except that we only consider
a single target node s here, representing the obfuscated gate.
Challenge 3. Distinguishing between single-input and multi-
input gates. For an obfuscated gate, the true function could
be either a single-input gate (INV, BUF) or a multiple-input
gate (AND, NAND, etc). Naturally, in case the GNN predicts
a single-input gate for an obfuscated gate that is, in reality, a
multiple-input gate, or vice versa, the recovered netlist would
be invalid. Hence, in our proposed attack framework (Titan),
for the GNN to distinguish between single-input and multiple-
input gates, we embed the input degree (IN) of the obfuscated
(target) node to all the nodes in its enclosing subgraph.
Incorporation of Features. Fig. 7 illustrates the feature-vector
representation of a node in an extracted subgraph (lines 3–7
in Algorithm 1). The features are as follows.
• Functionality: The feature vector is one-hot encoded with

the gate type. For an obfuscated node, the gate type is
encoded as obfuscated, whereas for a non-obfuscated gate,
the gate type could be (AND, NAND, etc) or PI/PO.
W.l.o.g., the feature vector consists of 11 bits.

• Distance Labeling: We assign, to each node in the subgraph,
its distance from the target node. This helps the GNN to

8 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

Target Combination of Links 𝒮

(a) Illustration of the Combination of Links and TIEHI/LO Encoding (b) Feature Vector Extraction

I1
I2

I3

G1

G2 G3

G4
I1

G1

0 1

G2

I3 0 1

G3

G2

G1
G3

0

I1
G3

1

I1

Gate-Level Netlist

G3
G1 I1

1
G3 G4

𝓈!

𝓈"

𝓈!#

𝓈!

𝓈!#

I1

I2
G1 G3

G4

I3G2

NAND
G1 I1 G3 G4

INV

1

Extracted Subgraphs

XOR INV AND PI PO NAND NOR BUF XNOR OR TIEHI TIELO

Feature vector of G4 (𝑥!") in 𝓈#$
Gate type (𝑥%")

Distance Labeling (𝑥&")
G3
I1

0 1 2 3 4 5 6 7 8 9 10

0 1

Interconnect Obfuscation

TIEHI/LO Encoding

𝓈!#

1 =

Fig. 6. (a) Sampling of possible combination for missing connections as input for a gate in interconnect obfuscation scheme [16] and TIEHI/LO encoding.
(b) Feature vector representation x

′
v for a node v in the subgraph enclosing an obfuscated link in interconnect obfuscation.

Gate type

Distance
labeling

Feature vector of G4 (

XOR INV AND PI PO NAND NOR BUF XNOR OR OB -1 0 1 IN

0 1

G4

G2
?

PI

~&

~&
OB

I

1

−1
0

−1

I2

𝑥-.)

Fig. 7. Illustration of the feature extraction (x
′
v) for a node v in the subgraph

enclosing an obfuscated gate in gate obfuscation.

learn about the structural information of the subgraph. Note
that, since the extracted subgraphs are undirected, the GNN
cannot learn about input and output to a node. Hence, we
utilize + and - notation (positive and negative ranges) for the
distance values to differentiate between input and output.

• IN: This feature is a one-bit vector where 0 indicates a
single-input gate, whereas 1 indicates a multiple-input gate,
thus helping the GNN to distinguish between them.

E. GNN Topology

There are various GNN architectures available in the lit-
erature. We have tested our platform using different state-
of-the-art models, such as line GNN [41], graph isomorphic
network (GIN) [34], and deep graph convolutional neural
network (DGCNN) [42]. We have chosen GIN since it is more
expressive than other state-of-the-art models—line GNN and
DGCNN (further details in Appendix). Furthermore, GIN has
shown the best results for the required task, i.e., interconnect
and gate deobfuscation (lines 8–14 in Algorithm 1).

The GIN architecture performs neighborhood aggregation
on G

′
as follows, where MLP refers to a multi-layer percep-

tion.

hlv = MLPl

hl−1v +
∑

u∈N (v)

hl−1u

 (3)

A READOUT function adds all the node embeddings from
the same layer (i.e., performs vector addition). The obtained
layer-wise representations are then concatenated together, as
below, to obtain the overall subgraph representation.

h
[0:L]

G′ = CONCAT
(

READOUT
(
hlv

∣∣∣v ∈ G′
) ∣∣∣∣l = 0, ..., L

)
(4)

The subgraph embedding h
[0:L]

G′ gets passed through a dense
layer to obtain the likelihood scores for the different classes.

F. Post-Processing

Likelihood Analysis. Recall that the GNN returns the likeli-
hood of each possible combination of links (for interconnect
obfuscation) or the likelihood of each possible gate/node-type
(for gate obfuscation). Hence, we perform an initial likelihood
analysis to obtain the final set of links or node types.
Analysis for Interconnect Obfuscation. We train the GNN
on hop sizes of r = {2, 3, 4}. During the evaluation, the
GNN reports the likelihood of each combination of links
considering each hop size r. From the likelihoods obtained
for each combination of links returned for different hop sizes,
we do not directly choose the combination with the highest
likelihood. Rather, we check for the likelihood of any given
link in each combination that it occurs in and compute the
average of all the related likelihoods and hops. This approach
renders the selection more robust in the presence of variations
in the predicted likelihoods. In other words, we determine
the average likelihood for each link across all combinations
and hop sizes and choose the final links based on the highest
average likelihood.
Analysis for Gate Obfuscation. Here, we have a likelihood
of each possible gate-type for each obfuscated gate for a hop
size of 2. Hence, we choose the gate-type with the highest
likelihood as the predicted class.
Post-Processing Using Oracle. We describe the post-
processing algorithm in Algorithm 2. Here, we use the oracle
to obtain true input-output mappings to refine the predicated
deobfuscation. We utilize HD as a metric to guide the greedy
search. The search can be terminated at any given point (based
on the timeout value; lines 19–20) and returns the recovered
design with the best HD at that point. We model the obfuscated
gate/net components using MUXes, where all possible gates
or nets of the obfuscated component is an input to the MUX.
Furthermore, the select lines of the MUXes can be understood
to be controlled by key-bits.

V. EXPERIMENTAL INVESTIGATION

In this section, we present the results of Titan considering
selected benchmarks from the ITC-99 suite [43]. We also com-
pare our results with state-of-the-art attacks in Section V-D.

MANKALI et al. : TITAN: SECURITY ANALYSIS OF LARGE-SCALE HARDWARE OBFUSCATION USING GRAPH NEURAL NETWORKS 9

Algorithm 2: Post-Processing
Input: Final set of links, node-types (P); oracle O; obfuscated

design modelled as MUX-Lock R; timeout;
Output: Final recovered design Y
/* Extract keys mapped to P by converting

obfuscated design into MUX-Lock-based design
*/

1 K ← EXTRACT KEYS(P,R)
/* Calculate HD between oracle and the

recovered design, using key extracted above
*/

2 HD ← CALCULATE-HD(O,R,K)
/* HD obtained using GNN predictions is set as

starting value of HD for greedy algorithm */
3 HD init ← HD
4 len key← LENGTH(K)
5 BestHD← HD
/* best-K, i.e., the key providing low HD, is

initialized with the key mappings of GNN
predictions */

6 best-K ← K
7 start time← CURRENT TIME()
8 while HD > 0 do

/* Select a random key-bit */
9 i← RANDOM(0, len key − 1)

/* Flip ith key-bit */

10 K
′ ← FLIP(K,i)

/* HD calculation between oracle and
recovered design using new key (i.e.,
with some flipped bit) */

11 HD ← CALCULATE-HD(O,R,K
′
)

/* Update best-HD and best-K if the
obtained HD is lower than the current
best-HD */

12 if HD < best−HD then
13 best−HD← HD

14 best-K ← K
′

15 else
16 K ← best-K

17 time← CURRENT TIME()
18 time elapsed← (time− start time)

/* If time_elapsed is greater than or equal to
the given timeout, the post-processing
terminates with the current best-K and
best-HD */

19 if time elapsed ≥ timeout then
20 break

21 Y ← RECOVER(best-K,R)
22 return Y

A. Experimental Setup

Implementation. We have implemented selected obfuscation
schemes (i.e., interconnect obfuscation [16] and gate obfus-
cation [15] considering, w.l.o.g., eight gate-types: INV, BUF,
AND, NAND, NOR, XOR, OR, and XNOR) in Python. Fur-
ther, we have developed a Python script to model obfuscated
netlists as graphs. We use the Pytorch-based implementation
of the GIN [34] model for subgraph-classification, where we
have implemented tailored techniques for Titan as outlined in
Section IV-D. W.l.o.g., we utilize a maximum hop size of r=4
and r=2 for tackling interconnect and gate obfuscation.

The experiments were performed on a single compute node
with Intel(R) Xeon(R) CPU, comprising 28 cores operated
at 2.4GHz, with 100GB memory guaranteed as exclusively
available by the operating system.

Dataset Generation. We generate datasets by implementing
the four input-based interconnect obfuscation scheme [16]
(Section II-A) and an eight function-based gate obfuscation
scheme for selected ITC-99 benchmarks [43] (in BENCH
format), for both training and validation.

We generate separate training datasets considering the same
obfuscation scale as the design under attack (w.l.o.g. 10%,
30%, 40%, or 50% in this work). We are following a standard
leave-one-out scenario, i.e., the training and validation datasets
consists of different benchmarks other than the testing dataset.
For example, to attack the ITC-99 benchmark b14 C, we
use b15 C, b17 C, b20 C, b21 C, and b22 C for training
and validation. We use 90% of the dataset generated for
training and the remaining 10% for validation. We summarize
the specifications of the datasets for each benchmark and
obfuscation scale for both obfuscation techniques in Table IV.

For attacking interconnect obfuscation, we train the GNN on
a balanced dataset of positive (correct) and negative (dummy)
nets, where we randomly select 3,000 links each (correct and
dummy) from the training dataset (i.e., a total of 6,000 training
links). For attacking gate obfuscation, we train the GNN on
all the classes or gate types (w.l.o.g. 8 in this work).
GNN Topology. We use the default parameters of the GIN
architecture [34], like using 2 MLP layers for each GNN
layer. We set the batch size as 128, the hidden dimension
as 128, and the number of GNN layers as 6; the latter has the
best prediction performance. We train the GNN to minimize
the cross-entropy cost function for 500 epochs using Adam
optimizer with a learning rate of 0.01. The model with the
best performance on the validation set (i.e., lowest validation
loss) is used for testing.
Evaluation Metrics. We use HD, precision, and key-
prediction accuracy (KPA) to evaluate the performance of
Titan. HD is a metric that evaluates the output corruption of the
design. Precision is a metric that evaluates the performance of
the ML model and is defined as the ratio of true positives to the
sum of true and false positives. KPA is defined as the percent-
age of correctly predicted key-bits: KPA = |Kc|/|K| ∗ 100
where |Kc| is the number of correct key-bits and |K| is the
total number of key-bits [44]. Note that the KPA metric also
indicates on the scale/percentage of deobfuscated components;
recall that key-bits are used for configuration of obfuscated
components in the MUX-based locking model (Section II-B).
Note that we report KPA and key-size (i.e., number of total
key-bits) for context on the complexity of attacking large-scale
obfuscation and related performance of state-of-the-art attacks.
Baseline HD of Obfuscated Designs. Here we calculate
the HD considering a random guess/assignment for all ob-
fuscated nets or gates. This baseline HD is calculated and
averaged for all obfuscated benchmarks over 100 rounds of
randomized obfuscation and, for each round, over 1,000 runs
with a different random guess/assignment for each run, and
considering 10,000 random input patterns for each run. For
this thorough sampling, we observe an average HD of 23.44%,
35.5%, 39.12%, and 42.08% for 10%, 30%, 40%, and 50%
of interconnect obfuscation, respectively. For gate obfuscation
of 10%, 30%, 40%, and 50%, we observe an average HD of
25.62%, 41.69%, 44.18%, and 46.37%, respectively.

10 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

TABLE IV
TRAINING AND TESTING DATASETS FOR INTERCONNECT AND GATE OBFUSCATION

Benchmark
10% Interconnects

Obfuscation
30% Interconnect

Obfuscation
40% Interconnect

Obfuscation
50% Interconnect

Obfuscation
10% Gate

Obfuscation
30% Gate

Obfuscation
40% Gate

Obfuscation
50% Gate

Obfuscation
Testing

links
Training

links
Testing

links
Training

links
Testing

links
Training

links
Testing

links
Training

links
Testing

nodes
Training

nodes
Testing

nodes
Training

nodes
Testing

nodes
Training

nodes
Testing

nodes
Training

nodes
b14 C 4,776 78,395 15,518 254,417 22,065 349,523 28,464 444,216 389 6,318 1,168 18,959 1,558 25,280 1,947 31,600
b15 C 8,795 73,197 30,760 239,165 41,918 329,670 52,498 420,182 722 5,985 2,166 17,961 2,888 23,950 3,610 29,937
b17 C 28,559 53,185 97,039 172,896 134,254 237,334 172,005 300,685 2,347 4,360 7,034 13,084 9,390 17,448 11,738 21,809
b20 C 11,542 72,032 36,021 233,914 48,298 323,290 61,682 410,998 923 5,784 2,771 17,536 3,695 23,143 4,619 28,928
b21 C 11,038 71,953 34,848 235,087 48,580 323,008 62,987 409,693 917 5,790 2,751 17,376 3,669 23,169 4,586 28,961
b22 C 16,752 66,893 55,749 214,186 76,473 295,115 95,044 377,636 1,409 5,298 4,228 15,899 5,638 21,200 7,047 26,500

TABLE V
COMPARISON OF SUBGRAPH EXTRACTION TIME (IN SECONDS)

DEPENDING ON THE NUMBER OF DUMMY NETS

Benchmark 3 dummy
nets

4 dummy
nets

5 dummy
nets

6 dummy
nets

b14 C 251 670 1,421 3,407
b15 C 558 5,330 6,538 11,259
b17 C 704 5,220 8,346 23,681
b20 C 503 1,300 3,041 6,982
b21 C 512 1,492 2,946 7,202
b22 C 763 2,423 4,560 10,032

Average 548 2,739 4,475 10,427

TABLE VI
COMPARISON IN THE PRECISION OF GNN PREDICTION (%) DEPENDING

ON THE NUMBER OF DUMMY NETS FOR HOP SIZE OF 2

Benchmark 3 dummy
nets

4 dummy
nets

5 dummy
nets

6 dummy
nets

b14 C 67.43 40.12 47.61 39.05
b15 C 70.56 58.05 49.79 45.83
b17 C 74.98 58.74 52.35 48.61
b20 C 70.92 61.91 51.18 46.90
b21 C 72.86 55.71 53.79 46.13
b22 C 70.10 59.61 52.25 45.07

Average 71.14 55.69 51.16 45.26

B. Breaking Interconnect Obfuscation

GNN-Based Subgraph Classification. We showcase the re-
sults of Titan after GNN predictions (without oracle post-
processing) for attacking interconnect obfuscation in Ta-
ble VII. For HD, we observe an average reduction of 14.95,
14.70, 15.00, and 16.42 pp over the baseline HD (random
guessing) for 10%, 30%, 40%, and 50% obfuscation scales, re-
spectively. We observe that the subgraph-classification frame-
work recovers more than 65% of the nets and achieves an
average KPA of 85.26% for all obfuscation scales.
Effect of Number of Dummy Nets. We showcase the effect
of increasing dummy nets on the subgraph extraction time
for 30% obfuscation in Table V. We consider the number of
dummy nets as 3, 4, 5, and 6, where two dummy nets are TIE
HI and TIE LO, and the remaining connections are driven by
internal nets of the design.
The average time taken for subgraph extraction in the case of
4, 5, and 6 dummy nets is 5×, 8×, and 19× compared to the 3
dummy-nets scenario that we target in this work. Furthermore,
we can parallelize the subgraph extraction procedure to speed
up execution time. The precision of the GNN decreases with
the increase in dummy nets, as shown in Table VI.

Please note that increasing the number of dummy nets
results in a considerable increase in power, performance, and

TABLE VII
RESULTS OF TITAN (WITHOUT ORACLE POST-PROCESSING) ON

INTERCONNECT OBFUSCATION

Benchmark Obs % N Key-size Precision (%) HD (%) KPA (%)

b14 C

10
30
40
50

709
2,183
2,958
3,741

1,418
4,366
5,916
7,462

71.51
75.72
70.25
64.14

14.85
23.24
22.29
28.58

81.38
83.69
79.93
75.89

b15 C

10
30
40
50

1,229
3,855
5,184
6,479

2,458
7,710
10,368
12,958

85.76
78.11
78.66
75.95

3.65
22.92
26.15
31.34

90.6
85.42
85.68
84.00

b17 C

10
30
40
50

4,025
12,592
16,946
21,326

8,050
25,184
33,892
42,652

91.87
85.94
78.60
77.23

5.47
16.13
23.36
29.91

94.47
90.59
85.83
84.86

b20 C

10
30
40
50

1,661
5,083
6,789
8,523

3,322
10,166
13,578
17,046

85.49
78.18
75.68
67.65

8.73
21.94
26.01
33.68

90.25
85.57
83.55
78.26

b21 C

10
30
40
50

1,613
4,964
6,679
8,429

3,226
9,928
13,358
16,858

86.61
78.40
75.73
72.82

9.92
20.97
25.29
29.91

90.79
85.64
83.71
81.78

b22 C

10
30
40
50

2,534
7,833
10,506
13,112

5,068
15,666
21,012
26,224

88.44
81.38
77.19
69.27

8.29
19.60
21.57
32.86

92.47
87.57
84.98
79.37

Note that “Obs %” is the obfuscation scale, “N” is the number of obfuscated
components, “Key-size” is the equivalent number of total key-bits for the

obfuscated design converted to a MUX-based locking problem.

area overheads [16]. Such overheads are typically not preferred
by a security-enforcing designer; hence the number of dummy
nets is limited in practice to less than or equal to four.
Post-Processing. We further perform a greedy, oracle-based
post-processing on the GNN outputs. The results before and
after post-processing are shown in Fig. 8. We observe an
average reduction of 3 pp HD for all the obfuscation scales
with the help of post-processing. Here we note that post-
processing is performing better for smaller benchmarks: e.g.,
for the b14 C benchmark (smallest among all considered), HD
decreases by 12.54 and 7.27 pp for 10% and 30% obfuscation
scales, respectively, whereas for benchmark b17 C (largest
among all considered), HD decreases by 0.2 and 0.96 pp for
10% and 30% obfuscation scales, respectively.

C. Breaking Gate Obfuscation

GNN-Based Subgraph Classification. The results of Ti-
tan after GNN predictions (without oracle post-processing) for
tackling gate obfuscation are given in Table VIII. For HD, we
observe an average reduction of 13.72, 21.46, 19.1, and 21.29

MANKALI et al. : TITAN: SECURITY ANALYSIS OF LARGE-SCALE HARDWARE OBFUSCATION USING GRAPH NEURAL NETWORKS 11

b14_Cb15_Cb17_Cb20_Cb21_Cb22_C Avg.0

5

10

15

20

25

Ha
m

m
in

g
Di

st
an

ce
 (H

D)

15

10

6

9
10

8
10

7

2

5
6 6

8
6

23
24

21

25
23

25
23

10% Obfuscation

b14_Cb15_Cb17_Cb20_Cb21_Cb22_C Avg.0

5

10

15

20

25

30

35

40

23 23

16

22 21 20 21

16 16 16
18

20 19 18

34
37

35 36 35 36 36

30% Obfuscation

b14_Cb15_Cb17_Cb20_Cb21_Cb22_C Avg.0

10

20

30

40

22

26
23

26 25
22

27

18

24 23
25 25

21
23

38
40 40 40 39 39 39

40% Obfuscation

b14_Cb15_Cb17_Cb20_Cb21_Cb22_C Avg.0

10

20

30

40

29
31 30

34

30
33

31

22

29 30
33

29

33

29

40
43 43 42 42 43 42

50% Obfuscation

Without attack Post-GNN GNN+Oracle

Fig. 8. Results of Titan on interconnect obfuscation. The bar plots represent the HD of the obfuscated designs without any attack (i.e., baseline HD), Post-GNN
attack, and the full GNN + Oracle attack.

TABLE VIII
RESULTS OF TITAN (WITHOUT ORACLE POST-PROCESSING) ON GATE

OBFUSCATION

Benchmark Obs % N Key-size Precision (%) HD (%) KPA (%)

b14 C

10
30
40
50

389
1,168
1,558
1,947

1,109
3,286
4,356
5,441

73.39
71.98
59.75
63.96

14.65
16.37
23.67
22.46

87.37
86.09
85.42
86.31

b15 C

10
30
40
50

722
2,166
2,888
3,610

2,042
6,092
8,154
10,152

55.87
52.98
62.38
62.57

10
17.27
25.34
22.87

88.25
89.79
90.95
90.19

b17 C

10
30
40
50

2,347
7,043
9,390
11,738

6,653
19,834
26,506
33,087

59.23
59.09
57.42
58.60

11.18
22.69
26.3
31.38

88.06
88.76
88.21
88.14

b20 C

10
30
40
50

923
2,771
3,695
4,619

2,525
7,657
10,231
12,753

54.42
58.89
70.52
67.96

8.39
22.12
23.67
21.54

85.50
87.18
86.72
87.05

b21 C

10
30
40
50

917
2,751
3,669
4,586

2,561
7,641
10,177
12,690

75.27
72.59
63.25
69.17

12.83
21.62
25.95
26.42

85.90
87.63
86.30
87.29

b22 C

10
30
40
50

1,409
4,228
5,638
7,047

3,885
11,688
15,547
19,407

59.57
64.96
62.39
65.54

14.39
21.31
25.5
29.26

86.23
87.35
87.25
87.32

See Table VII for remarks on labels.

pp over the baseline HD (using random guess) for 10%, 30%,
40%, and 50% obfuscation scales, respectively. We observe
that the subgraph-classification framework recovers more than
70% of the gates and achieves an average KPA of 87.47% for
all the obfuscation scales.
Post-Processing. We perform the same, greedy and oracle-
based post-processing on the GNN outputs. The results before
and after post-processing are shown in Fig. 9. On average,
we observe a 4.5 pp reduction in HD through post-processing.
Similar to the case of post-processing on interconnect obfus-
cation, we observe that there is a more substantial reduction
of HD for smaller designs.

D. Comparison to State-of-the-art Attacks

We compare Titan with state-of-the-art attacks, i.e., SAT [5],
AppSAT [6], redundancy attack [7]. We consider a timeout of
48 hours for all these attacks. Fig. 10 illustrates that the SAT
and AppSAT attacks both fail to resolve all the obfuscated
designs before timeout, specifically for large-scale obfuscation
(30–50%, except for 30% obfuscation scale for b14 C). We
observe that the redundancy attack has failed to recover the

designs for all obfuscation scales (10–50%). This indicates
that these attacks cannot handle such complex, large-scale
obfuscation problem. Further, we launch OMLA [11] on gate
obfuscation where it returns an invalid netlist because of its
restriction to two-function-based gate obfuscation.5

Fig. 11, Fig. 12, Fig. 13, and Fig. 14 represent the compar-
ison of Titan to ML-based attacks (UNTANGLE and SCOPE)
and a greedy, oracle-based attack for interconnect and gate
obfuscation. All results indicate that Titan outperforms the
state-of-the-art attacks. Further analysis are provided below.
Greedy, Oracle-Based Approach on Random Key. Recall
that, for Titan, we perform a greedy, oracle-based post-
processing on top of the GNN outputs. To understand the effect
of the GNN predictions on the overall attack framework, here
we launch the post-processing approach alone on a randomly
initialized key assignment, rather than on the key extracted
using GNN predictions.

We observe that the decrease in HD is much less for this
baseline approach when compared to Titan. More specifically,
when attacking interconnect obfuscation, we observe that the
average reduction in HD (over the baseline HD, Section V-A)
for to the greedy, oracle-based approach alone is 5.43, 2.77,
2.44, and 2.13 pp for obfuscation scales of 10%, 30%, 40%,
and 50%, respectively (Fig. 11). Similarly, when attacking gate
obfuscation, we observe an average HD reduction of 4.62,
3.78, 4.48, and 5.54 pp for obfuscation scales of 10%, 30%,
40%, and 50%, respectively (Fig. 12). These reductions are
on average 5× lesser than those of Titan for all scales of
interconnect and gate obfuscation. Thus, the GNN predictions
are essential for the success of Titan.
Comparison with SCOPE. We launch SCOPE with the
default margin parameter of 0. Note that SCOPE returns a key
where some key-bits are “don’t care” bits. Thus, we cannot
directly use the key returned by SCOPE for further post-
processing and HD analysis. To reasonably resolve this, we
randomly assign bits 0 or 1 to any “don’t care” bits when
calculating HD.

Second, we observe an average KPA of 58.21% and 51%
on the original key returned by SCOPE for interconnect
and gate obfuscation, respectively (Fig. 13 and Fig. 14).
Accordingly, Titan performs better by 27.05 and 36.45 pp
for interconnect and gate obfuscation, respectively. SCOPE
deobfuscates designs such that they induce, on average, HD
values that are increased/worsened by 12.55 and 19.04 pp for

5We could not perform a comparison with ML-based attacks such as
SAIL [32] and SnapShot [44] as they are not publicly available.

12 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

b14_C b15_C b17_C b20_C b21_C b22_C Avg.0

5

10

15

20

25

Ha
m

m
in

g
Di

st
an

ce
 (H

D)

15

10
11

8

13
14

12

4
2

10

4

8

11

7

23

28
27

25 25
26 26

10% Obfuscation

b14_C b15_C b17_C b20_C b21_C b22_C Avg.0

10

20

30

40

16 17

23 22 22 21 20

6

12

22
19

16

21

16

39

44 44
42

40
42 42

30% Obfuscation

b14_C b15_C b17_C b20_C b21_C b22_C Avg.0

10

20

30

40

24 25 26
24

26 26 25

11

19

26

20
23

25

21

42

46 46
43 43 42

44

40% Obfuscation

b14_C b15_C b17_C b20_C b21_C b22_C Avg.0

10

20

30

40

50

22 23

31

22
26

29
26

10

16

31

19

24
28

21

45
48 47 46 46 46 46

50% Obfuscation

Without attack Post-GNN GNN+Oracle

Fig. 9. Results of Titan on gate obfuscation with and without post-processing. The bar plots represent the HD of the obfuscated designs without any attack
(i.e., baseline HD), Post-GNN attack, and the full GNN + Oracle attack.

1

100

10000

1000000

b14_C b15_C b17_C b20_C b21_C b22_C
1

100

10000

1000000

b14_C b15_C b17_C b20_C b21_C b22_C

R
un

tim
e

(s
)

1

100

10000

1000000

b14_C b15_C b17_C b20_C b21_C b22_C
1

100

10000

1000000

b14_C b15_C b17_C b20_C b21_C b22_C

R
un

tim
e

(s
)

(c) Interconnect Obfuscation (d) Gate Obfuscation

Timeout = 2days

AppSAT Attack

(a) Interconnect Obfuscation
SAT Attack

(b) Gate Obfuscation

10% Obfuscation 30% Obfuscation 40% Obfuscation 50% Obfuscation

Fig. 10. SAT and AppSAT results for selected ITC-99 benchmarks for 10–
50% of interconnect and gate obfuscation.

interconnect and gate obfuscation, respectively, compared to
our Titan without post-processing.

Third, we further compare SCOPE with Titan, including
post-processing. Note that SCOPE is an oracle-less attack;
thus, for the fairness of this comparison, we employ the
same greedy, oracle-based post-processing approach proposed
in our work on top of the key returned by SCOPE. We
observe an inferior performance of SCOPE compared to Titan
framework for both interconnect and gate obfuscation (Fig. 11
and Fig. 12). In fact, for most of the benchmarks under gate
and interconnect obfuscation, we observe that the results for
the greedy baseline attack and the augmented SCOPE oracle
differ only by a little.

Comparison with UNTANGLE. UNTANGLE is originally
proposed to attack Interlock [27]. Thus, we cannot use
its post-processing scheme while attacking the four-input-
based interconnect-obfuscation scheme [16]. We devise a
tailored post-processing for UNTANGLE, where we choose
the highest-likelihood link from all the possible links per ob-
fuscated net. As in our regular attack flow, we obtain the GNN
likelihoods for hop sizes of 2, 3, and 4, and then compute the
average of likelihoods for each link over different hops before
choosing the highest-likelihood link. Note that UNTANGLE is
only applicable for interconnect obfuscation. To that end, we
observe that Titan performs better than UNTANGLE in terms
of KPA and HD by an average of 9.42 pp and 5.30 pp over
all scales of interconnects obfuscation (10–50%) (Fig. 13).
We argue that UNTANGLE performs worse for two reasons:
(i) UNTANGLE targets obfuscation techniques where only a
single input of a given gate is obfuscated; (ii) UNTANGLE

TABLE IX
COMPARISON OF ACCURACY (%) TO STATE-OF-THE-ART GNN-BASED

ATTACKS FOR 30% UNIFIED OBFUSCATION

Benchmark #Obfuscated
Components

OMLA +
UNTANGLE

UNTANGLE +
OMLA

Individual
Attacks

Titan
Post-GNN

b14 C 2,277 62.88 66.01 64.90 70.93
b15 C 4,223 66.99 66.54 67.39 76.65
b17 C 13,732 65.91 66.90 67.44 78.44
b20 C 5,392 65.37 68.26 66.80 73.99
b21 C 5,350 64.67 67.10 67.06 76.05
b22 C 8,231 64.57 66.22 65.60 69.69

Average 6,534 65.06 66.84 66.53 74.29

does not support TIEHI/LO connections that exist in the
interconnect obfuscation scheme we consider [16].

Note that UNTANGLE is an oracle-less attack; similar to the
comparison with SCOPE, we employ the same oracle-based
post-processing on top of the key provided by UNTANGLE.
On average, Titan achieves 5.97, 8.03, 5.48, and 2.58 pp
lower/better HD than UNTANGLE for obfuscation scales of
10%, 30%, 40%, and 50%, respectively (Fig. 11).

E. Attacking Unified Obfuscation

We consider a special case of obfuscation, i.e., a unified
obfuscation scheme to demonstrate the efficacy of Titan. A
unified obfuscation scheme includes both interconnect and
gate obfuscation. Titan is directly applicable to such a unified
obfuscation scheme. In contrast, neither of the state-of-the-
art GNN-based attacks apply to unified obfuscation since they
target a specific type of obfuscation, i.e., gate or interconnect
obfuscation. To that end, we consider three cases to compare
the efficacy of Titan with state-of-the-art GNN-based attacks.
1) We first launch OMLA to recover the gate-obfuscated

components and subsequently launch UNTANGLE on
the OMLA-recovered design to recover the interconnect-
obfuscated components (OMLA + UNTANGLE).

2) We first launch UNTANGLE to recover the interconnect-
obfuscated components and subsequently launch OMLA
on the UNTANGLE-recovered design to recover the gate-
obfuscated components (UNTANGLE + OMLA).

3) We launch both the attacks, OMLA and UNTANGLE,
individually to recover the different types of obfuscated
components separately.

Our GNN-based attack outperforms all the aforementioned
scenarios of state-of-the-art attacks by 8–9 pp for 30% unified
obfuscation, as shown in Table IX.

MANKALI et al. : TITAN: SECURITY ANALYSIS OF LARGE-SCALE HARDWARE OBFUSCATION USING GRAPH NEURAL NETWORKS 13

b14_C b15_C b17_C b20_C b21_C b22_C Avg.
0

5

10

15

20

25

Ha
m

m
in

g
Di

st
an

ce
 (H

D)

7

2

5
6 6

8
6

13
15

18

15
17

20

16

12

4

14 14
12

15

12

9

16

19

23

16

25

18

10% Obfuscation

b14_C b15_C b17_C b20_C b21_C b22_C Avg.
0

10

20

30

16 16 16
18

20 19 18

27

32
34

31 30
32 31

17

22

27

31

26

30

2625

36 35
37

34 33 34

30% Obfuscation

b14_C b15_C b17_C b20_C b21_C b22_C Avg.
0

10

20

30

40

18

24 23
25 25

21
23

30

37 38
36 36 37 36

18

28
31

29

33

29 2829

40 40
37

39
37 37

40% Obfuscation

b14_C b15_C b17_C b20_C b21_C b22_C Avg.
0

10

20

30

40

22

29 30
33

29
33

29

34

40
42

39 40 39 39

24

34 35
33 32 33 3233

41
43

40
43 42

40

50% Obfuscation

Random key+Oracle SCOPE+Oracle UNTANGLE+Oracle Titan (GNN+Oracle)

Fig. 11. Comparison of SCOPE + Oracle, UNTANGLE + Oracle, Random key + Oracle with Titan (GNN + Oracle) on interconnect obfuscation. The plots
indicate that Titan performs superior for all benchmarks and scales of obfuscation (10%–50%).

b14_C b15_C b17_C b20_C b21_C b22_C Avg.0

5

10

15

20

25

30

Ha
m

m
in

g
Di

st
an

ce
 (H

D)

15

27

24

19
21 22 21

4
2

10

4

8

11

7

4

23

29

19

27

22 21

10% Obfuscation

b14_C b15_C b17_C b20_C b21_C b22_C Avg.0

10

20

30

40

25

41
43

37 37
40

37

31

39
42

37 36 37 37

6

12

22
19

16

21

16

30% Obfuscation

b14_C b15_C b17_C b20_C b21_C b22_C Avg.0

10

20

30

40 39

44 45
41 41 41 42

11

19

26

20
23

25 2525

42
45

42 41
44

40

40% Obfuscation

b14_C b15_C b17_C b20_C b21_C b22_C Avg.0

10

20

30

40 40

46 46
43 42

44 44

10

16

31

19

24
28

2626

44
47

44 43
46

42

50% Obfuscation

Random+Oracle SCOPE+Oracle Titan (GNN+Oracle)

Fig. 12. Comparison of SCOPE + Oracle, Random key + Oracle with Titan (GNN + Oracle) on gate obfuscation. The plots indicate that Titan performs
superior for all benchmarks and scales of obfuscation (10%–50%).

F. Runtime

Attack on Interconnects Obfuscation. The GNN model
requires a maximum of 9, 5.6, 3.6, and 2.5 hours for training
and subgraphs extraction on obfuscation scales of 10%, 30%,
40%, and 50%, respectively. The GNN takes less training
time for a higher percentage of interconnect obfuscation, as
explained next. For attacking interconnect obfuscation, the
GNN trains on the subgraphs extracted around each obfus-
cated interconnect. These subgraphs consist of the neighboring
nodes of the considered obfuscated interconnect. The true
connections of obfuscated interconnects are unknown; thus,
they are treated as missing links in the graph. With an increase
in the obfuscation, the number of missing links (obfuscated
interconnects) increases, as shown in Table IV. Thus, the graph
becomes more sparse, and the extracted subgraphs are smaller
(Table X). Furthermore, the GNN takes an average of 30
minutes for testing across all the designs.

Attack on Gate Obfuscation. The GNN model requires at
most 33, 51, 55, and 60 minutes to train for obfuscation
scales of 10%, 30%, 40%, and 50%, respectively. The training
time increases slightly with the percentage of obfuscation.
This is because obfuscated gates are not removed from the
extracted subgraphs. Thus, there is no change in the size of
subgraphs with the percentage of obfuscation. We observed an
average subgraph size of 22 for a hop size of two for all the
benchmarks across all percentages of obfuscation. However,
the obfuscated components increase with the percentage of
obfuscation, as shown in Table IV. Thus, we observe a slight
increase in training time. Furthermore, the GNN takes an
average of 3 seconds for testing across all the designs.

Post-Processing. The greedy, oracle-based approach for post-
processing is an any-time algorithm; we can terminate the
post-processing any time to obtain some refined result.
W.l.o.g., we run post-processing for 48 hours in all ex-

TABLE X
AVERAGE SUBGRAPH SIZE FOR A HOP SIZE OF 2 FOR DIFFERENT

PERCENTAGES OF INTERCONNECT OBFUSCATION

Benchmark 10% Obfuscation 30% Obfuscation 40% Obfuscation 50% Obfuscation
b14 C 50 36 29 23
b15 C 54 41 33 25
b17 C 52 37 30 24
b20 C 49 34 26 22
b21 C 48 33 27 22
b22 C 47 34 27 21

Average 50 36 29 23

periments, including the application of post-processing for
augmenting state-of-the-art results.

VI. POTENTIAL COUNTERMEASURES

Our work demonstrates that even large-scale obfuscation
leaves structural traces and remains vulnerable to GNN-based
attacks. In this work, we developed Titan that predicts the
functionality of the obfuscated components (either gate or
wire) by subgraph extraction, i.e., Titan exploits the struc-
tural and functional hints from the locality (neighborhood) of
the obfuscated components. Possible countermeasures against
our proposed attack could include: (i) creating look-alike
subgraphs around obfuscated components and (ii) hiding the
locality of obfuscated components through design IP redaction.

For (i), if the subgraphs around obfuscated components can
be engineered to look alike, the extracted subgraphs may not
leak structural hints. For (ii), to hide the locality of obfuscated
components, hardware redaction [45] can be applied, where a
portion of the design is replaced using an embedded FPGA
(eFPGA). Redacting the design using eFPGA ensures that the
locality of each redacted component consists of eFPGA-based
components that do not leak structural or functional hints about
the original design. However, such advanced obfuscation using
eFPGAs may incur design overheads.

14 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

b14_C b15_C b17_C b20_C b21_C b22_C Avg.
0

20

40

60

80

Ke
y

Pr
ed

ict
io

n
Ac

cu
ra

cy
 (K

PA
)

69

80 82 81 80 82 7981

91 94
90 91 92 90

60 59 56 56
60 60 58

10% Obfuscation

b14_C b15_C b17_C b20_C b21_C b22_C Avg.
0

20

40

60

80 75 77 77 76 76 76 76
84 85

91
86 86 88 86

63 62 59 58 59 62 60

30% Obfuscation

b14_C b15_C b17_C b20_C b21_C b22_C Avg.
0

20

40

60

80
73 76 76 75 75 75 75

80
86 86 84 84 85 84

53 56 55
63

58
54 56

40% Obfuscation

b14_C b15_C b17_C b20_C b21_C b22_C Avg.
0

20

40

60

80
72 75 74 74 74 73 7376

84 85
78

82 79 81

58 55
59 56 57 60 58

50% Obfuscation

SCOPE UNTANGLE Titan (Post-GNN)

Fig. 13. Comparison of KPA for SCOPE and UNTANGLE with Titan on interconnect obfuscation for selected ITC-99 benchmarks without oracle-based
post-processing. The plots indicates that Titan performs better than SCOPE for all benchmarks and scales of obfuscation (10%–50%).

b14_C b15_C b17_C b20_C b21_C b22_C Avg.
0

20

40

60

80

Ke
y

Pr
ed

ict
io

n
Ac

cu
ra

cy
 (K

PA
) 87 88 88 86 86 86 87

52 51 51
55 53 53 52

10% Obfuscation

b14_C b15_C b17_C b20_C b21_C b22_C Avg.
0

20

40

60

80
86

90 89 87 88 87 88

49 52 49 49
53 53 51

30% Obfuscation

b14_C b15_C b17_C b20_C b21_C b22_C Avg.
0

20

40

60

80
85

91 88 87 86 87 87

51 48 49 51 50
54

50

40% Obfuscation

b14_C b15_C b17_C b20_C b21_C b22_C Avg.
0

20

40

60

80
86

90 88 87 87 87 88

50 47
53 50 53

49 51

50% Obfuscation

SCOPE Titan (Post-GNN)

Fig. 14. Comparison of KPA for SCOPE with Titan on gate obfuscation for selected ITC-99 benchmarks without oracle-based post-processing. The plots
indicates that Titan performs better than SCOPE for all benchmarks and scales of obfuscation (10%–50%).

VII. CONCLUSION

We propose a holistic attack framework, Titan, against large-
scale hardware obfuscation, considering up to 50% of intercon-
nects or gates being obfuscated. Our proposed framework is
based on subgraph classification using a graph neural network
(GNN). The GNN model exploits structural and functional
hints that remain present even in large-scale obfuscation.
Additionally, we implement an oracle-guided post-processing
technique to refine the accuracy of the GNN outputs.

For the ITC-99 benchmarks, we recovered an average of
63.40% and 77.94% of the obfuscated components for 10–50%
gate and interconnect obfuscation scales. More specifically,
for 50% interconnect obfuscation on the smallest benchmark
b14 C and the largest benchmark b17 C, our attack improved
Hamming distance (HD) by 19.14 and 12.94 percentage
points (pp) over the random-guessing baseline. Similarly, for
50% gate obfuscation, we improved HD by 35.5 and 16.31
pp for b14 C and b17 C, respectively. These considerable
improvements indicate leakage of structural and functional
traces even for large-scale obfuscated designs (30%–50%
obfuscated components). Additionally, we compare our results
against six state-of-the-art attacks. We note that state-of-the-
art attacks either fail, are not applicable, or are limited in
attack performance compared to Titan, especially for large-
scale obfuscation (30%–50% obfuscated components) and also
for unified obfuscation (gate and interconnect obfuscation).
This is due to the significant complexity for such large-scale
obfuscation; the equivalent key-size for a MUX-based locking
model is up to 42,652 key-bits.

In short, while large-scale interconnect and gate obfuscation
seem promising and represents a significant challenge for
state-of-the-art attacks, Titan opens up new doors toward com-
petitive, scalable, and generalized attacks. We will open-source
Titan and corresponding artifacts to enable reproducibility and
foster future work.

APPENDIX

For the subgraph classification task, the GNN should be
able to distinguish different graph structures by mapping
them to different representations in the embedding space, in
order to classify the graphs correctly. The ability to map
any two different graphs to different embeddings implies that
isomorphic graphs must be mapped to the same representation
and non-isomorphic ones to different representations. This
property is a.k.a. expressive power of GNN. However, state-
of-the-art GNNs such as DGCNN and line GNN are less
expressive than GIN. Here, we explain the reason for the same.

The function in a GNN that is responsible for the genera-
tion of embeddings is neighborhood aggregation. In DGCNN
architecture, the neighborhood aggregation on a graph G

′
for

lth layer is as follows.

Zl = f(
∼
D
−1
Zl−1XW l−1) (5)

DGCNN is less expressive because the neighborhood aggre-
gator function is a mean function. For instance, consider
two different input graphs G

′

1 and G
′

2 as shown in Fig. 15
with all the nodes having same features. Thus, the resulting
features of v1 and v2 upon neighborhood aggregation are
also same. Fig. 15 demonstrates the neighborhood aggregation
in DGCNN where v1 and v2 in G

′

1a and G
′

2a have the
same embeddings. In contrast, G

′

1 and G
′

2 are not similar or
isomorphic. For such cases, DGCNN misclassifies the graphs.
Thus, DGCNN is less expressive. Line GNN, also has a mean
neighborhood aggregation; thus, it is also less expressive.

However, GIN is an expressive network with injective
aggregation function that helps it to map different graphs to
different representations. Below, we showcase the injective
property of the GIN aggregation. Consider an input subgraph
G

′
to GIN. The GIN architecture performs neighborhood

MANKALI et al. : TITAN: SECURITY ANALYSIS OF LARGE-SCALE HARDWARE OBFUSCATION USING GRAPH NEURAL NETWORKS 15

𝑢!

. 𝑢"

𝑣!

𝑢#

𝑢$

𝐺"#$ 𝐺%#$

𝑣"

𝐺"&$ 𝐺%&$
DGCNN GIN

𝑢%
𝑢&

𝑢' 𝑢!

. 𝑢"

𝑣!

𝑢#

𝑢$

𝑣"

𝑢%
𝑢&

𝑢'𝑢!

. 𝑢"

𝑣!

𝑢#

𝑢$

𝐺"$ 𝐺%$

𝑣"

𝑢%
𝑢&

𝑢'

Input graphs

Fig. 15. Example of neighborhood aggregation in DGCNN [42] and GIN [34].

aggregation on G
′

at lth layer is as follows, where MLP refers
to a multi-layer perceptron.

hlv = MLPl

hl−1v +
∑

u∈N (v)

hl−1u

 (6)

The MLP is modelled using a multi-set injective function
φ(
∑

x∈S f(x)), where f and φ are non-linear functions and
S is a multi-set. Also, it is proven in [34] that the neighbor-
hood aggregation of GIN is injective. Consider the same two
different input graphs G

′

1 and G
′

2, as shown in Fig. 15. The
resulting graphs upon neighborhood aggregation for v1 and v2
are G

′

1b and G
′

2b respectively. It can be observed that v1 and
v2 have different embeddings, unlike DGCNN which has been
obtained upon using an injective aggregation function. Thus,
GIN is more expressive than other traditional GNNs and is
best suitable for our attack.

REFERENCES

[1] R. Zafar, “TSMCs Total 3nm Investment Will
Equal At Least $ 23 Billion,” https://wccftech.com/
tsmc-3nm-investment-23-billion-project-end/, 2021, [Online; accessed
14-March-2022].

[2] D. S. Abhijit Mahindroo, Nick Santhanam, “The potential
shake-up in semiconductor manufacturing business models,” 2013.
[Online]. Available: http://www.mckinsey.com/∼/media/mckinsey/
dotcom/client service/semiconductors/issue%203%20autumn%202013/
pdfs/3 futuremanufacturing.pdf

[3] M. Rostami, F. Koushanfar, and R. Karri, “A primer on hardware
security: Models, methods, and metrics,” Proc. of the IEEE, vol. 102,
no. 8, pp. 1283–1295, 2014.

[4] W. Hu, C.-H. Chang, A. Sengupta, S. Bhunia, R. Kastner, and H. Li, “An
overview of hardware security and trust: Threats, countermeasures, and
design tools,” IEEE Trans. on Comput.-Aided Design of Integr. Circuits
and Syst., vol. 40, no. 6, pp. 1010–1038, 2021.

[5] P. Subramanyan, S. Ray, and S. Malik, “Evaluating the security of logic
encryption algorithms,” in Proc. IEEE Int. Symp. Hardw. Oriented Secur.
Trust, May 2015, pp. 137–143.

[6] K. Shamsi, M. Li, T. Meade, Z. Zhao, D. Z. Pan, and Y. Jin, “AppSAT:
Approximately deobfuscating integrated circuits,” in Proc. IEEE Int.
Symp. Hardw. Oriented Secur. Trust, May 2017, pp. 95–100.

[7] L. Li and A. Orailoglu, “Piercing logic locking keys through redundancy
identification,” in Proc. Design, Autom. Test Eur. Conf. Exhib., 2019, pp.
540–545.

[8] A. Alaql, D. Forte, and S. Bhunia, “Sweep to the secret: A constant
propagation attack on logic locking,” in Asian Hardware Oriented
Security and Trust Symposium, 2019, pp. 1–6.

[9] A. Alaql, M. M. Rahman, and S. Bhunia, “SCOPE: Synthesis-based
constant propagation attack on logic locking,” IEEE Trans. on VLSI
Syst., vol. 29, no. 8, pp. 1529–1542, 2021.

[10] L. Alrahis, S. Patnaik, M. A. Hanif, M. Shafique, and O. Sinanoglu,
“UNTANGLE: Unlocking routing and logic obfuscation using graph
neural networks-based link prediction,” in Proc. IEEE/ACM Int. Conf.
Comput.-Aided Design, 2021, pp. 1–9.

[11] L. Alrahis, S. Patnaik, M. Shafique, and O. Sinanoglu, “OMLA: An
oracle-less machine learning-based attack on logic locking,” IEEE Trans.
on Circuits and Syst. II: Express Briefs, vol. 69, no. 3, pp. 1602–1606,
2022.

[12] M. Hoffmann and C. Paar, “Doppelganger obfuscation–exploring thede-
fensive and offensive aspects of hardware camouflaging,” IACR Trans.
Cryptograph. Hardw. Embedded Syst., pp. 82–108, 2021.

[13] R. P. Cocchi, J. P. Baukus, L. W. Chow, and B. J. Wang, “Circuit
camouflage integration for hardware IP protection,” in IEEE Des. Autom.
Conf., 2014, pp. 1–5.

[14] J. Rajendran, M. Sam, O. Sinanoglu, and R. Karri, “Security analysis of
integrated circuit camouflaging,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., 2013, pp. 709–720.

[15] I. R. Nirmala, D. Vontela, S. Ghosh, and A. Iyengar, “A novel threshold
voltage defined switch for circuit camouflaging,” in IEEE European Test
Symp., 2016, pp. 1–2.

[16] S. Patnaik, M. Ashraf, O. Sinanoglu, and J. Knechtel, “Obfuscating the
interconnects: Low-cost and resilient full-chip layout camouflaging,”
IEEE Trans. on Comput.-Aided Design of Integr. Circuits and Syst.,
vol. 39, no. 12, pp. 4466–4481, 2020.

[17] S. Chen, J. Chen, and L. Wang, “A chip-level anti-reverse engineering
technique,” J. Emerg. Technol. Comput. Syst., vol. 14, no. 2, jul 2018.

[18] J. A. Roy, F. Koushanfar, and I. L. Markov, “Epic: Ending piracy of
integrated circuits,” in Proc. Design, Autom. Test Eur. Conf. Exhib., 2008,
p. 10691074.

[19] M. Yasin, J. J. Rajendran, O. Sinanoglu, and R. Karri, “On improving
the security of logic locking,” IEEE Trans. on Comput.-Aided Design of
Integr. Circuits and Syst., vol. 35, no. 9, pp. 1411–1424, 2016.

[20] M. Yasin, B. Mazumdar, J. Rajendran, and O. Sinanoglu, “SARLock:
Sat attack resistant logic locking,” in Proc. IEEE Int. Symp. Hardw.
Oriented Secur. Trust, 2016, pp. 236–241.

[21] Y. Xie and A. Srivastava, “Anti-sat: Mitigating sat attack on logic
locking,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 38, no. 2, pp. 199–207, 2019.

[22] H. M. Kamali, K. Z. Azar, H. Homayoun, and A. Sasan, “Full-lock:
Hard distributions of sat instances for obfuscating circuits using fully
configurable logic and routing blocks,” in IEEE Design Automation
Conference, 2019, pp. 1–6.

[23] A. Saha, S. Saha, S. Chowdhury, D. Mukhopadhyay, and B. B. Bhat-
tacharya, “Lopher: Sat-hardened logic embedding on block ciphers,” in
IEEE Des. Autom. Conf., 2020, pp. 1–6.

[24] K. Shamsi, M. Li, T. Meade, Z. Zhao, D. Z. Pan, and Y. Jin, “Cyclic
obfuscation for creating sat-unresolvable circuits,” in Proceedings of the
on Great Lakes Symposium on VLSI, 2017, p. 173178.

[25] R. Karmakar, S. Chatopadhyay, and R. Kapur, “Encrypt flip-flop: A
novel logic encryption technique for sequential circuits,” 2018.

[26] N. Limaye, S. Patnaik, and O. Sinanoglu, “Valkyrie: Vulnerability
assessment tool and attack for provably-secure logic locking techniques,”
IEEE Trans. Inf. Forensics Secur., vol. 17, pp. 744–759, 2022.

[27] H. M. Kamali, K. Z. Azar, H. Homayoun, and A. Sasan, “Interlock:
An intercorrelated logic and routing locking,” in Proc. IEEE/ACM Int.
Conf. Comput.-Aided Design, 2020, pp. 1–9.

[28] K. Z. Azar, H. M. Kamali, H. Homayoun, and A. Sasan, “NNgSAT:
Neural network guided sat attack on logic locked complex structures,”
in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design, 2020, pp. 1–9.

[29] H. Zhou, R. Jiang, and S. Kong, “Cycsat: Sat-based attack on cyclic logic
encryptions,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design,
2017, pp. 49–56.

[30] L. Alrahis, M. Yasin, N. Limaye, H. Saleh, B. Mohammad, M. Alqutayri
et al., “ScanSAT: Unlocking static and dynamic scan obfuscation,” IEEE
Trans. Emerg. Topics Comput., pp. 1–1, 2019.

[31] M. Yasin and O. Sinanoglu, “Transforming between logic locking and
ic camouflaging,” in Int. Design Test Symp., 2015, pp. 1–4.

[32] P. Chakraborty, J. Cruz, A. Alaql, and S. Bhunia, “SAIL: Analyzing
structural artifacts of logic locking using machine learning,” IEEE Trans.
Inf. Forensics Secur., vol. 16, pp. 3828–3842, 2021.

[33] M. Bushnell and V. Agrawal, Essentials of Electronic Testing for
Digital, Memory and Mixed-Signal VLSI Circuits. Springer Publishing
Company, Incorporated, 2013.

[34] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph
neural networks?” CoRR, vol. abs/1810.00826, 2018.

[35] H. Zeng, M. Zhang, Y. Xia, A. Srivastava, A. Malevich, R. Kannan et al.,
“Decoupling the depth and scope of graph neural networks,” Proc. Adv.
Neur. Inf. Proc. Sys., vol. 34, 2021.

[36] M. Zhang and Y. Chen, “Link prediction based on graph neural net-
works,” Proc. Adv. Neur. Inf. Proc. Sys., vol. 31, 2018.

16 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

[37] M. El Massad, S. Garg, and M. V. Tripunitara, “Integrated Circuit
(IC) Decamouflaging: Reverse Engineering Camouflaged ICs within
Minutes.” in Network and Distributed System Security, 2015, pp. 1–14.

[38] The most cost-effective way to get critical analysis. [Online]. Available:
https://www.techinsights.com/analysis-solutions/reverse-engineering/

[39] R. Saleh, S. Wilton, S. Mirabbasi, A. Hu, M. Greenstreet, G. Lemieux
et al., “System-on-chip: Reuse and integration,” Proceedings of the
IEEE, vol. 94, no. 6, pp. 1050–1069, 2006.

[40] L. Alrahis, A. Sengupta, J. Knechtel, S. Patnaik, H. Saleh, B. Moham-
mad et al., “GNN-RE: Graph neural networks for reverse engineering
of gate-level netlists,” IEEE Trans. on Comput.-Aided Design of Integr.
Circuits and Syst., 2021.

[41] L. Cai, J. Li, J. Wang, and S. Ji, “Line graph neural networks for link
prediction,” IEEE Trans. on Pattern Analysis and Machine Intelligence,
pp. 1–1, 2021.

[42] M. Zhang, Z. Cui, M. Neumann, and Y. Chen, “An end-to-end deep
learning architecture for graph classification,” in Thirty-second AAAI
conference on artificial intelligence, 2018.

[43] S. Davidson, “Notes on ITC’99 Benchmarks,” https://github.com/
squillero/itc99-poli, 1999.

[44] D. Sisejkovic, F. Merchant, L. M. Reimann, H. Srivastava, A. Hallawa,
and R. Leupers, “Challenging the security of logic locking schemes in
the era of deep learning: A neuroevolutionary approach,” ACM Journal
on Emerg. Tech. in Comput. Syst., vol. 17, no. 3, 2021.

[45] J. Bhandari, A. K. Thalakkattu Moosa, B. Tan, C. Pilato, G. Gore,
X. Tang et al., “Exploring efpga-based redaction for ip protection,” in
Proc. IEEE/ACM Int. Conf. Comput.-Aided Design, 2021, pp. 1–9.

Likhitha Mankali is a Ph.D. candidate at the De-
partment of Electrical and Computer Engineering at
Tandon School of Engineering, New York Univer-
sity, NY, USA. She is also a Global Ph.D. Fellow
with New York University Abu Dhabi, UAE. Her
research interests include Hardware Security, and us-
ing Machine learning for enhancing and quantifying
the security of IP protection techniques.

Lilas Alrahis is a Postdoctoral Associate at New
York University Abu Dhabi. She received the M.Sc.
degree and the Ph.D. degree in electrical and com-
puter engineering from Khalifa University, UAE, in
2016 and 2021, respectively. Her research interests
include Hardware Security, Design for Trust, Logic
Locking, and Applied Machine Learning. Dr. Alrahis
won the MWSCAS Myril B. Reed Best Paper Award
in 2016 and the Best Paper Award at the Applied Re-
search Competition held in conjunction with Cyber
Security Awareness Week, in 2019. Dr. Alrahis is

currently serving as Associate Editor of the Integration, the VLSI Journal.

Satwik Patnaik is a Postdoctoral Researcher with
the Department of Electrical and Computer Engi-
neering, Texas A&M University, College Station,
TX, USA. He received his Ph.D. degree in Electrical
engineering from Tandon School of Engineering,
New York University, NY, USA, in September 2020.
His research delves into semiconductor supply chain
security with prime focus on IP protection tech-
niques and hardware Trojans. He has developed
several computer-aided design frameworks for incor-
porating security, and his research leverages the 3D

paradigm for security, exploits security properties of emerging devices, and
utilizes machine learning, reinforcement learning, and game theory techniques
for enhancing hardware security. Dr. Patnaik received the Bronze Medal in the
Graduate Category at the ACM/SIGDA Student Research Competition held
at ICCAD 2018, the Best Paper Award at the Applied Research Competition
(ARC) held in conjunction with Cyber Security Awareness Week (CSAW)
in 2017, and the third place at ARC in 2021. He has co-organized global
hardware security competitions (HeLLO:CTF 2021, AI vs. Humans 2022)
and is an active reviewer for premier journals and peer-reviewed conferences.

Johann Knechtel received the M.Sc. degree in
Information Systems Engineering (Dipl.-Ing.) and
the Ph.D. degree in Computer Engineering (Dr.-Ing.,
summa cum laude) from TU Dresden, Germany, in
2010 and 2014, respectively.

He is a Research Scientist with New York Uni-
versity Abu Dhabi, United Arab Emirates. From
2015 to 2016, he was a Postdoctoral Researcher
with the Masdar Institute of Science and Technology,
Abu Dhabi; from 2010 to 2014, he was a Ph.D.
Scholar with the DFG Graduate School “Nano- and

Biotechnologies for Packaging of Electronic Systems” hosted at TU Dresden;
in 2012, he was a Research Assistant with the Chinese University of Hong
Kong; and in 2010, he was a Visiting Research Student with the University
of Michigan at Ann Arbor, MI, USA. His research interests cover VLSI
physical design automation, with particular focus on emerging technologies
and hardware security. He has (co-)authored around 50 publications.

Ozgur Sinanoglu is a professor of electrical and
computer engineering at New York University Abu
Dhabi. He obtained his Ph.D. in Computer Science
and Engineering from University of California San
Diego. He has industry experience at TI, IBM and
Qualcomm. During his Ph.D. he won the IBM Ph.D.
fellowship award twice. He is also the recipient of
the best paper awards at IEEE VLSI Test Sympo-
sium 2011 and ACM Conference on Computer and
Communication Security 2013.

Prof. Sinanoglus research interests include design-
for-test, design-for-security and design-for-trust for VLSI circuits, where he
has more than 200 conference and journal papers, and 20 issued and pending
US Patents. Prof. Sinanoglu is the director of the Center for CyberSecurity
at NYU Abu Dhabi. His recent research is being funded by US National
Science Foundation, US Department of Defense, Semiconductor Research
Corporation, Intel Corp, and Mubadala Technology.

