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Abstract—In this work we present SCRAMBLE, a configurable
neuromorphic architecture that provides security against dif-
ferent threats by employing memristors for critical parts and
functions. More specifically, we employ memristive memory cells
– that are 3D stacked on top of the configurable neuromorphic
hardware – to securely hold the weights as well as activation
functions of any model processed on the generalized architecture.
Thus, programmable memristive cells enable reconfiguration of
the architecture to thwart both model stealing and hardware
IP stealing attacks. We implement a proof-of-concept for the
proposed architecture and analyze its security metrics. We
also benchmark it against selected prior art for neuromorphic
architectures to quantify the security-performance trade-offs.

I. INTRODUCTION

Hardware neuromorphic systems employing crossbar arrays
for vector matrix multiplication (VMM) have proliferated in
recent times owing to the advancements in the memristive
materials and devices space. The ease of the analog multiply-
and-accumulate (MAC) operations in such crossbar arrays,
without the need for complex digital circuits, has paved
the way for their adoption in various applications ranging
from artificial intelligence (AI) and machine learning (ML)
to edge computing, imaging, and sensing [1]–[3]. Further,
several emerging device-based memristive technologies enable
in-memory computing (IMC) to circumvent the von Neumann
bottleneck, and render modern neuromorphic systems power
and performance efficient [4].

Memristor Device Advancements: The early concerns
about the endurance, slow operation, and footprint of mem-
ristors have been alleviated to a certain extent in the
past few years due to the discovery and demonstration of
the memristive phenomenon in several new material sys-
tems and device topologies [5]. For instance, high perfor-
mance memristors, with a TiN/AlN/Pt stack, were demon-

strated in [6]. These nitride-based memristors exhibit ultra-
fast switching speeds (∼85 ps) and low switching currents.
An Ag/BaTiO3/Nb:SrTiO3 ferroelectric tunnel junction (FTJ)-
based memristor capable of implementing five bits per cell,
with a 600 ps switching speed, was showcased in [7]. An
ultra-small Pt nanofin-based memristor with 2 nm feature size
and a single layer density of 4.5 terabits per square inch was
introduced in [8]. Two-dimensional materials have garnered
significant attention for nanoelectronic devices due to their
interesting electronic and optical properties. For example, the
authors in [9] fabricated a 2D hexagonal boron nitride (h-BN)-
based memristive crossbar array with Au/h-BN/Au and Ag/h-
BN/Ag structures, to achieve zeptojoule switching energy with
considerable endurance numbers. A high density memristive
crossbar array with 50 nm feature size and 50 ns switching
speed was achieved in [10] using p-type van der Waals SnS
in an Ag/SnS/Pt structure.

Security Vulnerabilities in Neuromorphic Architectures:
Though the promising progress at the device-level has en-
couraged and accelerated the development of memristor-based
neuromorphic systems further, there are still looming concerns
over the security vulnerabilities in these emerging architectures
as follows (see also Fig. 1(a)).

1) Model replication attacks repeatedly query the neuro-
morphic circuit and collect a large enough I/O dataset
to successfully train a new neural network (NN) model
to achieve the same functional behavior as the original
design [11]. This attack was impeded in [12] by exploit-
ing the obsolescence effect-induced resistance drift in
memristors, however, the proposed defense was shown
to be inadequate in the face of input magnitude scaling
attacks as well as temperature manipulation [13].



Fig. 1: (a) Typical threat landscape for memristor-based neuromorphic systems. Vulnerabilities are highlighted in orange and
their corresponding threats in red. (b) The specific threat model considered for the proposed secure neuromorphic architecture.
The foundry and end user (red) are considered untrusted while all other entities are trusted (green).

2) The data retention in non-volatile memristive cells
presents a window of opportunity for an attacker to
launch cold boot attacks as well as physical probing
attacks after powering off the neuromorphic system [14].

3) Memristor crossbar architectures without access transis-
tors for cell gating suffer from the problem of current
sneak paths parallel to the intended path [15]. These
sneak paths can become a potential attack surface for
an attacker to exploit and induce undesired bias and
precision loss [16]. This attack leverages the controlled
application of input sequences, either externally or
through an implanted hardware Trojan (HT), to slowly
build up charge along the sneak paths and cause faults,
resulting in unintended neuronal firing.

4) The variable write latency in certain memristor crossbar
implementations, which is a direct by-product of sneak
currents, can result in timing variability in the write
operations. This variability can be employed by an
attacker to launch data/key retrieval attacks [17].

5) A side-channel attack on the IMC crossbar architecture
of memristor-aided logic (MAGIC) [18] was proposed
in [19]. This attack leverages the differential power
signatures and operating times of the AND and OR
arrays in MAGIC.

In this paper, we review prior neuromorphic architectures,
discuss their common security vulnerabilities, and then
propose a secure 3D neuromorphic solution by amalgamating
the benefits of a configurable memristor-based weight array
in the top (memory) layer, with a configurable digital
activation function circuit in the bottom (logic) layer. Such a
programmable 3D arrangement allows us to protect against
hardware and model intellectual property (IP) stealing
attempts both at fabrication time and runtime. The threat
model for the proposed architecture is highlighted in Fig. 1(b).

II. BACKGROUND

In this section, we briefly discuss the fundamental aspects of
the memristor device and then provide an overview of state-of-
the-art neuromorphic architectures, along with some security
challenges for those.
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Fig. 2: (a) Memristor as the fourth fundamental circuit ele-
ment. (b) Theoretical current-voltage characteristics of a bipo-
lar memristor [23]. (c) Memristor structure from its original
MIM implementation [21].

A. Memristor: Construction and Working

The memristor, a two-terminal element which connects
magnetic flux to electric charge (Fig. 2a), was proposed by
Chua [20] in 1971 to be the fourth fundamental circuit ele-
ment, besides RLC elements. The memristive element exhibits
a pinched hysteresis behaviour [21] (Fig. 2b), a character-
istic that requires at least two equations to describe [22].
Memristors retain their internal resistive state (memristance
or memory resistance) according to the history of the applied
voltage and current, as described by the following equation.

M(q) =
dΦ(q)

dq
≡ v(t)

i(t)
(1)

The first memristor was realized using a metal-insulator-
metal (MIM) structure, by sandwiching two metal oxide layers
between two metallic electrodes as shown in Fig. 2c. A layer
of doped TiO2−x with oxygen vacancies, on an undoped layer
of TiO2, further sandwiched between platinum electrodes, was
used by Williams for this first memristor implementation [21].
This prototype exhibited all the expected properties as pro-
posed by Chua in [20]. Other suitable insulating layers for the



MIM memristor include, e.g., chalcogenides [24] and metal
oxides [25].

A memristor can be in one of two possible states, viz.
high-resistance state (HRS) and low-resistance state (LRS), an
attribute that corresponds to the movement of the dopant ion in
the sandwiched metal oxide. Initially, a newly fabricated mem-
ristor behaves linearly and requires activation [26]. The SET
and RESET operations involve switching of the memristor
from HRS to LRS and vice versa, respectively. Mathematical
models of memristance (M(t)) have been well documented
– starting with the linear model, which lacks the boundary
behaviour [27], followed by the introduction of window func-
tions that help capture the boundary behavior [28]. A more
sophisticated model of the memristance is the exponential
model, capable of capturing its highly nonlinear behaviour
as well [29]. These models are well studied using SPICE
modeling and benchmarked against device specifications [30].

B. Prior Neuromorphic Architectures

First of all, we like to note that prior neuromorphic ar-
chitectures are vulnerable to one or more attack vectors
highlighted in the threat landscape of Fig. 1(a). While CMOS-
based designs may fall prey to model replication via repeated
querying or advanced side-channel attacks, memristor-based
implementations are particularly susceptible to key stealing
attacks exploiting non-volatile data retention and variable write
latency in the crossbar array.

Next, we review selected CMOS-based neuromorphic archi-
tectures.

The reconfigurable on-line learning spiking neuromorphic
processor (ROLLS) was demonstrated as a low-power neural
computing system in [31]. The proposed architecture employs
electronic neuromorphic circuits to mimic neuronal physics
and emulate the dynamics and learning properties of real
neurons and synapses. ROLLS used digital components to
modify the synaptic and somatic properties, as well as set
the topology of the NN. This architecture was developed
to implement short-term and long-term plasticity, with the
capability of on-line learning for adapting to incoming stimuli.

The spiking neural network architecture (SpiNNaker) [32]
was developed as a massively parallel neural computing sys-
tem for handling large neuroscience experiments and simu-
lating various neural algorithms. SpiNNaker comprises of a
custom multiprocessor with a globally asynchronous, locally
synchronous system. It uses asynchronous handshaking pro-
tocols to communicate (via analog spikes) between individual
systems using a digital bus [33].

The Neurogrid mixed-signal multichip [34] takes advan-
tage of the benefits of energy efficiency and sparsity in
the analog domain, for performing large neural simulations.
Salient features of Neurogrid include a) emulation of all neural
elements (except the soma) with shared electronic circuits to
maximize synaptic connections, b) analog implementation of
electronic components (except for axonal arbors) to improve
energy efficiency, and c) interconnection of neural arrays
in a tree network to optimize the throughput. The axon

branching and inter-neural communication is realized using
Field-Programmable Gate Arrays (FPGA) and SRAM banks.
The Neurogrid architecture consists of 16 Neurocores with 1M
neurons and billions of synaptic connections.

Another mixed-signal neuromorphic architecture called
Braindrop, which uniquely leverages the variability, mismatch
and heterogeneity in analog/mixed-signal processes, was pro-
posed in [35]. Braindrop uses a novel neural engineering
framework to exploit process variability-induced mismatch
for error-tolerant computation. The heterogeneous neuronal
gains and biases, resulting from transistor threshold-voltage
mismatch, are forged to form a diverse set of basis functions
for function approximation. Further, it uses accumulative thin-
ning, a digitally implemented linear-weighted-sum operation,
to reduce communication traffic and sparsify signals.

A programmable digital 3D neuromorphic architecture, the
Neurocube, was introduced in [36]. This design consists of
a logic layer with a 2D mesh network of processing engines
(PE) connected to router units. The PE elements are capable
of performing MAC operations and come with a dedicated
cache. The entire logic layer is integrated in 3D with multiple
tiers of high density DRAM. The DRAM tiers are partitioned
into cells and concentric cells over multiple DRAM tiers
form parallel memory channels called vaults. Using memory-
centric neural computing and a programmable neurosequence
generator, the Neurocube is able to implement a wide range
of NN models, similar to a neuromorphic FPGA.

Moving away from traditional CMOS-based neuromorphic
architectures, we now briefly review some of the seminal
memristive neuromorphic systems in the literature.

One of the first memristive neuromorphic architectures,
CrossNets, was proposed in 2003 by Likharev et al. [37]. It em-
ploys a hybrid design, combining regular CMOS technology
with self-assembled molecular devices, to create a CMOL (hy-
brid CMOS/nanowire/molecular) circuit capable of realizing
synaptic weighting functionality [33]. CrossNets consisted of
perpendicular axionic and dendritic nanowires, and a uniform
field of bistable two-terminal memristive switches (synapses)
at the intersections of these nanowires. The somas were
implemented using CMOS-based opamps with a sigmoid-
type activation. This architecture was shown to achieve image
recognition and classification tasks.

A phase-change memristor (PCM)-based neuromorphic ar-
chitecture was developed at IBM [38] with neurons and
synapses realized by leveraging the PCM physical properties
and state dynamics. They utilize Ge2Sb2Te5 as the phase-
change material and employ level-tuned neuronal character-
istics to preferentially process input information. This partic-
ular implementation was shown to be adept at unsupervised
learning and correlation detection.

III. PROPOSED ARCHITECTURE

The SCRAMBLE architecture consists of two tiers in a
monolithic 3D stack as shown in Fig. 3. The top layer (L2)
comprises a programmable memristive crossbar array and the
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Fig. 3: Representative illustration (not to scale) of the proposed
secure 3D neuromorphic architecture with (i) a configurable
digital activation function logic in the bottom layer and (ii) a
programmable memristive crossbar array in the top layer.

bottom layer (L1) contains a configurable digital activation IP
module and peripherals.

A. Programmable Memristor Crossbar Array

For our analysis, we consider a 16×16 array of the
Ag/SnS/Pt memristors in [10]. Note that these devices have
a 50 nm2 footprint with 50 ns write/read times. They exhibit
conductances in the range of 20-100 µS (linear conductance
potentiation), and require read voltages of ∼60-80 mV. A
single neuron in this array consists of a chain (column) of 16
memristive weights that are multiplied with the corresponding
row-read voltages and accumulated via Kirchoff’s current
addition. Hence, the 16×16 memristor array in L2 consists of
16 neurons, each with their own instance of digital activation
function circuitry in L1. To implement NN models with a
larger number of hidden layers, more memristive crossbar
array tiers can be added to the monolithic 3D stack [39], [40].

B. Configurable CORDIC-based Activation Function

A typical neural computation requires an activation function
to model the non-linearity of an application. Popular activation
functions used in various learning applications are sigmoid,
tanh, and Rectified Linear Unit (ReLU) functions. To imple-
ment the proposed architecture, a desirable feature is to have a
configurable activation function that provides flexibility to se-
lect the activation function as per the application requirement,
while affording security at the same time.

Reconfigurable implementation of the architecture consider-
ing various activation functions is done using the Coordinate
Rotation Digital Computer (CORDIC) algorithm [41], which
offers various modes to realizes different functions. Note
that CORDIC requires conversion from rectangular to polar
coordinates [42] to solve trigonometric relationships. Without
loss of generality, we use the CORDIC algorithm in hyperbolic
mode to compute either the sigmoid or the tanh activation
function for our proof-of-concept.

The CORDIC algorithm uses an iterative approach for
approximate numerical calculations. The number of iterations
represents a design-time constraint; it can be revised to, e.g.,
manage hardware area footprint or increase the throughput of
the overall computation. As can be seen in Fig. 4, the CORDIC
unit outputs the sinh(z) or cosh(z) activation function, where
z is the MAC output. Additional adder and divider blocks are
required to compute the two activation functions as follows:

ez = sinh(z) + cosh(z) (2)

tanh(z) =
ez − e−z

ez + e−z
=
sinh(z)

cosh(z)
(3)

sigmoid(z) =
1

1 + e−z
=

ez

1 + ez
(4)

Equation 2 is computed using a adder. The resulting ez term is
required to further compute both sigmoid and tanh functions
as shown in Equations 3 and 4, respectively. Both equa-
tions/activation functions require a divider. More details on
the hardware implementation of the CORDIC-based activation
functions can be found in [41].

For the reconfigurable overall architecture, the two select
lines shown in Fig. 4 are used to switch between the three
different activation functions. Note that the ReLU function is
added separately to the CORDIC module. As can bee seen
in Fig. 3, the logic of the reconfigurable activation functions
occupies the lower layer (L1) of the 3D design. The memristor
crossbar in the upper layer L2 computes the MAC result,
which is then fed to L1 to calculate the activation outputs. It
is important to note that the select signals and other constant
inputs (Xin, Yin) are also stored in L2.

C. Performance and Security Analysis
We implement a proof-of-concept design of SCRAMBLE

using Verilog and synthesize it using Synopsys DC for the
TSMC 22nm ULL library. Note that we leverage the low-power
SAR ADC in [43], configured for simple 8-bit encoding of
positive floating numbers, for processing the activation func-
tion outputs. Also note that, although the memristor array size
for the MAC operation is only 16×16, the overall memristor
array is much larger, namely 65×16, in order to securely hold
the select signals and constants for the CORDIC activation
function module.

In Table I, we present a power-performance-area (PPA)
comparison of SCRAMBLE using a 16×16 MAC array against
a similarly sized Neurocube design. Note that all metrics are
end-to-end, i.e., they consider contributions from the overall
65×16 memristive-array, the ADC, and the activation function
module with its peripherals. We observe that SCRAMBLE
exhibits competitive power and area metrics, but its overall
delay is large due to the considerable read time required for
memristors as compared to DRAM. However, with ongoing
device and materials research for memristors, this read delay
is expected to reduce significantly in future.

For a security analysis, we consider the following scenario.
An adversary not having access to the weights and configura-
tion stored in the memristor cells – i.e., any adversary during
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Fig. 4: Configurable CORDIC-based activation function module.

TABLE I: PPA comparison of SCRAMBLE with similarly-
sized Neurocube [36].

Neuromorphic architecture Power
(mW)

Delay
(ns)

Area
(mm2)

Neurocube (28 nm) [36] 15.6 3.33 0.1936

SCRAMBLE (22 nm) 10.075 52.143 0.032736

the design and manufacturing, or an adversary in the field
without probing capabilities – tries to steal the design IP and
mimic the functional behaviour of SCRAMBLE.

For that, Fig. 5 provides box-plots for Hamming Distance
(HD)-represented mismatch in functional behaviour for NNs
processing on different memristor array sizes of illegitimate
SCRAMBLE instances as follows. First, three golden conduc-
tance/weight matrices of sizes 16×16, 32×32, and 64×64 for
some exemplary but arbitrary neural functions are initialized.
Then, we launch a random-guessing attack, effectively ran-
domizing the conductance values as well as the selection of the
activation function implemented by the CORDIC module. This
exercise is repeated 1,000 times for each array size, and we
report the corresponding HD values in Fig. 5. Here, we observe
that the corruptibility offered by the reconfigurable memristor
array and activation functions is ∼30–60%, which implies
good security against foundry-based and end-user adversaries.

Going beyond our proof-of-concept here, note that advanced
memristor implementations like [44], which are capable of
reconfiguration between drift and diffusive modes, can further
aid the security and protection of proprietary weights by
transforming a non-volatile weight array to a volatile array
that is susceptible to memristor obsolescence and weight drift.

Further, the tiered 3D structure of the SCRAMBLE archi-
tecture naturally lends itself to split manufacturing [45], [46]
– memristors and peripherals are implemented in upper metal
layers, separated from the logic in the lower layers. Thus,
the full design of the architecture can be protected against
foundry-based adversaries. For the memristor crossbar array
structure in this work, attacks based on spatial correlation
between active components and their interconnects [47], [48]
are not of concern. This is because, to an adversary having

Fig. 5: Hamming distance (HD) for mismatch in functional
behaviour of NNs running on illegitimate instances of SCRAM-
BLE, for different memristor array sizes.

access only to the lower digital layer, any of the incomplete
interconnects only point to regular array structures without
revealing the actual configuration/programming of the array.

IV. CONCLUSION

Threats against neuromorphic computing systems are of
particular interest nowadays, owing to the increased popularity
and use of such systems for various critical applications. Neu-
ral networks for specialized tasks can take a lot of resources
to train and, as such, their internal IP can be considered
proprietary and worth protecting against model and IP stealing
attacks. In this work, we demonstrate SCRAMBLE, a secure
and configurable memristor-based neuromorphic architecture
to thwart attacks launched by adversaries at the foundry
or regular end-users. We envision a two-tiered 3D imple-
mentation for the proposed SCRAMBLE architecture, with a
programmable memristive array holding the weights and con-
figuration settings in the top layer, and a configurable digital
activation-function module in the bottom layer. This way we
can reconfigure, transform and thus protect the entire neural
network that runs in SCRAMBLE. We quantify SCRAMBLE’s
security (HD for corruptibility) and PPA, and contrast the
latter against a state-of-the-art CMOS-based reconfigurable
neuromorphic architecture.
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