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Abstract

Many interesting economic hypotheses entail differences in behaviors of groups within
a population, but analyses of pooled samples shed only partial light on underlying seg-
mentations, Finite mixture models are considered as an alternative to methods based on
pooling. Robustness checks using ¢-regressions and a Bayesian analogue to the likelihood
ratio test for model evaluation are developed. The methodology is used to investigate
pro-son bias in child health outcomes in Bangladesh. While regression analysis on the
entire sample appears to wash out evidence of bias, the mixture models reveal systematic
girl-boy differences in health outcomes.
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1. Introduction

In most econometric analyses, estimation proceeds under the assumption that
all sampling units face similar constraints and behave in similar ways. However,
many interesting economic hypotheses entail segmentations or clusters among the
sampling units in the population. For example, theories of credit and labor markets
under asymmetric information yield bifurcations due to rationing, and, where it
exists, gender, ethnic, or racial discrimination is unlikely to be manifested with
equal force by all groups in a population. The assumption that all observations can
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be characterized by a single model is convenient but can mask critical features
of the data.

We describe the estimation of mixture models as an alternative approach to
methods based on pooling. The methodology is closely related to one variant of
the switching regression model (see, e.g., Quandt, 1972; Quandt and Ramsay,
1978). We apply the methodology in investigating sex-based biases in intra-
household allocations in Bangladesh. As in other models of selection, identifi-
cation in mixture models often rests on assumptions about the distribution of
regression errors, and this requirement must be balanced against biases associ-
ated with pooling. Here, we consider issues surrounding model set-up, robust-
ness to outliers, and methods for judging goodness of fit. Robustness checks
are implemented through estimation of models in which regression errors have
t-distributions with varying degrees of freedom. Since the regularity conditions
which admit standard approaches to inference are not met, we develop a Bayesian
analogue to the likelihood ratio test for model evaluation. These approaches are
straightforward to implement and can, in themselves, provide considerable insight
into the nature of the statistical relationships in the data.

As in similar poor economies, pro-son bias has been cited as a critical factor in
explaining child health outcomes in Bangladesh (e.g., Chen, Huq, and D’Souza,
1980; Pitt, Rosenzweig, and Hassan, 1990; Ahmad and Morduch, 1993). How-
ever, evidence of sex bias appears far stronger in aggregate statistics than in
houschold-level behavioral analyses. A natural hypothesis is that aggregate mea-
sures reveal bias by one segment of society but that evidence on those biases is
difficult to find in pooled behavioral studies because of variability among house-
holds from different segments of the population. Here, as elsewhere, the problem
is complicated by the fact that the nature of segmentation is not outwardly evident
to the researcher.

Formally, characterize the behavioral relationship between Dy, a measure of
the difference in average health status of sons and daughters in a household
h, and the predictor variables x, and disturbance term u;; by the regression
equation

Dy = xpy1 + pan (1)

for one group of households. For another group the best representation might be
Dy = xpy2 + pzn. (2)

The slope coeflicients, y; and y,, measure the effects of predictors on health status
differences in the two hypothesized groups. (We could in general consider any
finite number of groups.) In this specification, none of the slope coefficients, y; or
y2, should be statistically significantly different from zero in the absence of bias.
Thus, the null hypothesis of no bias implies a pooled model with y; =y, =0.
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The relationship between group membership (G, = 1 for a household in group
1 and Gy, = 0 for a household in group 2, with Gy, = 1 — Gy;) and predictors
zp 18 characterized by a generalized linear model

Pr(Giy = 1) = f(z4d). 3)

The predictors z;, may overlap partially or fully with the predictors x;. The princi-
pal difficulty in estimating the slope parameters ¢ is that since group membership
is not observed directly, it must be inferred from observed variables.

In the present study we take x; = z, so that there are no variables which are
thought a priori to determine group membership (Eq. (3)) or group behavior
(Egs. (1) and (2)) but not both. It follows that identification of separate effects
necessarily depends on distributional assumptions. At the minimum, however,
even if these assumptions are in question, estimation of the mixture model pro-
vides a test of the robustness of the exclusion restriction y; = y, = 0. Beyond
that, under the assumptions it delivers a description of key determinants of health
outcomes. !

Even when it is suspected that populations are segmented in preferences and/or
constraints, it 1s sometimes asserted that using standard approaches (like linear re-
gression) with pooled data will yield consistent estimates of population-weighted
average effects. Thus, the existence of sex bias should still be detectable without
having to impose structure on the problem. However, this is not generally so
(Appendix A, Murdoch and Stern, 1995). Estimation of a single linear model
for the entire population would be subject to a form of omitted variable bias,
where the omitted variables are an indicator of group membership and possi-
ble interactions between group membership and other predictors of health out-
come differences. When the population consists of different subpopulations, OLS
regression provides an unbiased estimate of a matrix-weighted average of the
subpopulation regression coefficient vectors. But in a multivariate regression, it
is possible for the weighted average of a single coefficient to lie outside the
range of the subpopulation coefficients (Chamberlain and Leamer, 1976); the
estimated coefficient may even differ in sign from both subpopulation coeffi-
cients. Pooled data will yield consistent estimates only when the determinants
of group membership, z;, are uncorrelated with the behavioral determinants of
health outcomes, x, — as in standard analyses of selection bias (Heckman, 1990).
Even then, the regression standard error is not estimated consistently, and the

IRelated problems of identification in selectivity models are discussed by Heckman (1990) and
Manski (1990). Since here the classification is based on an unobserved variable, identification of
the causal effect is even more difficult than in standard selection problems — e.g., the effect of
unionization in Heckman (1990) and Lewis (1986) or female labor force participation in Newey,
Powell, and Walker (1990) and Mroz (1987). Recent work in standard selection problems attempts
to relax distributional assumptions through semi-parametric methods. Lee and Porter (1984) address
estimation when sample separation information is available but imperfect.
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upward bias leads to a significant loss of power for detecting nonzero slopes.
With large samples, generalized heteroscedasticity correction methods might be
used to address the nonconstant variance that is a symptom of a mixture of re-
gressions, but they do not directly address the presence of subpopulations. In
small samples, mixture models have the advantage of putting structure on the
nature of heterogeneity and thus offering the possibility of greater precision in
estimates.

In the present case, under our distributional assumptions, we find that, unlike
the results from the pooled regression, evidence of pro-son bias is clear in the
slope estimates obtained under the mixture model, suggesting that unobserved
heterogeneity helps to explain why so little evidence on bias has been found in
pooled regressions. Our relatively small sample, however, limits the precision of
the estimates.

In the next section we describe recent evidence on health outcomes of chil-
dren in Bangladesh. Section 3 describes the mixture model. In Section 4, we
describe our results and tests for robustness using 7-regressions, and in Section 5
a Bayesian approach to inference about the number of subpopulations is devel-
oped and applied.

2. Gender-based child health outcomes in Bangladesh

We focus attention on differences in the health of male and female children
as reported in the 1988-89 Child Nutrition Survey (CNS) conducted by the
Bangladesh Bureau of Statistics. A variety of household-level socio-economic
data were collected, as well as anthropometric data and information on health
practices for each child between the ages of six months and six years. The
survey covers 1555 households, which are drawn from a re-survey of 50%
of the random sample initially included in the 1988 Household Expenditure
Survey. 2

Evidence of gender bias in mortality patterns is clear in the survey. There
are 107 males for every 100 females age three and below. Between the ages
of four and six years, the ratio rises to 113 to 100. This finding suggests sub-
stantially higher mortality rates for girls than for boys (a phenomenon which
counters the biological tendency toward parity). While under-counting of females
can also explain some of the difference, under-counting is likely to be minor
given the nature of the survey. Moreover, this evidence is consistent with pre-
vious studies which have noted sex bias in health outcomes and treatment in
Bangladesh.

2Given that households were less likely to be surveyed if children died or fell ill between the
Household Expenditure Survey and the CNS, there is a selection bias which will likely work against
finding evidence of discrimination.
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Clearly, gender seems to have a role in explaining mortality patterns and some
acute health outcomes. However, when we turn to econometric analyses of the
Bangladesh Child Nutrition Survey, the evidence of bias is not clear. We con-
sider three anthropometric measures of health status: height-for-age (a measure
of chronic malnutrition), weight-for-height (a measure of current and acute mal-
nutrition), and weight-for-age (a second measure of principally short-term depri-
vation).3 Since our definition of the dependent variable, Dy, is the difference
between the logarithm of the mean health status for male children and the loga-
rithm of the mean health status for female children, we restrict attention to 307
households with at least one male and one female child. Across the 307 house-
holds, the mean D, for height-for-age is 0.0067 with a standard error of 0.0042,
the mean difference for weight-for-height is —0.0008 with a standard error of
0.0061, and the mean difference for weight-for-age is 0.011 with a standard error
of 0.0085. Males do appear to have an advantage of roughly 1% as measured by
height-for-age and weight-for-age although there is considerable variability across
households.

We first investigate the correlates of gender differences in health outcomes
using pooled regressions, estimating Eq. (1) under the assumption that the coef-
ficients are constant for the entire sample.* The dependent variable D), controls
for fixed effects like genetic and environmental factors by differencing male and
female averages within each household. Such factors may be critical in explain-
ing child health outcomes. For example, tall parents are more likely to have
tall children, and this should be controlled to reduce bias. The disturbances pj
are heteroscedastic, with variance depending on the number of male and female
children, and this is addressed using weighted least squares (see Section 3). As
above, none of the coefficients will be significantly different from zero in the
absence of bias.

The basic regression results are shown in Table 1. The independent variables
are among those household, community, and child-specific variables most likely
to be related to discrimination, and all continuous variables have been centered
at their means. Thus, the constant will reflect the average advantage of boys over
girls in households with zero values for all dummy variables and mean values
for all continuous variables; the other coefficients will reflect ways in which boys
receive different treatment than girls.

In the three equations in Table 1, the intercepts are all positive but small
and not significant, suggesting slight or no advantages for boys over girls as a
base-line. The Hindu dummy, the log of family size, and the dummy variable

3The reference standards for the anthropometric measure are given by the United States National
Center for Health Statistics, as employed by the Bangladesh Bureau of Statistics and used frequently
in international comparisons.
4Useful discussions of issues raised in estimating health relationships are found in Strauss and Thomas
(1995) and Bhargava (1994).
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Table 1

Pooled sample: Weighted regression estimates of male-female differences in three anthropometric
measures (estimates and standard errors in parentheses obtained via maximum likelihood)

Dependent variable:

Male average less female average

Independent variables Logarithm of Logarithm of Logarithm of
height-for-age weight-for-age weight-for-height
Log age of woman -0.015 -0.037 0.002
head of household (0.021) (0.042) (0.030)
Log per capita —0.007 —0.004 0.002
income (0.010) (0.021) (0.015)
Hindu dummy —0.005 —0.010 —0.006
variable (0.016) 0.032) (0.023)
Rural dummy 0.005 0.007 —0.009
variable (0.012) (0.023) (0.017)
Log household size 0.008 0.015 0.001
0.014) (0.029) (0.021)
Mother has primary —0.007 0.005 0.024
education only (0.011) (0.022) (0.016)
Mother has secondary —0.019 —0.042 —0.007
education or more (0.015) (0.031) (0.023)
Log distance to —0.006 -0.021 —0.012
medical facility (0.005) (0.009) (0.007)
Log distance to 0.009 0.016 0.005
regional center (0.006) (0.012) (0.009)
Girl is oldest 0.012 —0.021 —0.017
dummy variable (0.008) (0.017) (0.012)
Intercept 0.0006 0.023 0.011
(0.010) (0.020) (0.014)
Log likelihood 657.3 439.3 538.6
Number of houscholds 307 307 307
Regression standard 0.073 0.149 0.108

crror

for secondary education of the head woman take the expected signs in all three
regressions but none are significant. Interestingly, the coefficient of distance from
the medical center is consistently negative, and it is significant in the equa-
tion predicting weight-for-age. Being further from a health facility lowers the
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advantage sons have over daughters. Distance from the regional center appar-
ently increases the advantage.® However, the general fit of the regressions is
poor; the R? is 0.03 for each regression. The F-statistics (10, 296) are 1.026,
0.980, and 0.983 for height-for-age, weight-for-age, and weight-for-height, respec-
tively, with resulting p-values of 0.42, 0.46, and 0.46. Thus, overall, the absence
of bias cannot be rejected for any of the three health measures.

There are a number of explanations for these weak results on discrimination.
First, there may in fact be very little bias in health outcomes, perhaps because
the most disadvantaged children are the least likely to survive to show up in
the sample. Second, the regression specification may not be flexible enough to
capture evidence of bias.® Third, measurement error (possibly exacerbated by
the use of a dependent variable which is the difference of two random outcomes)
may be large enough that there is little power for detecting nonzero coefficients.
Below, however, we focus on the potential consequences of heterogeneity. To
the extent that the alternative explanations have force, findings of biases using
mixture models will be strengthened.

3. Mixture model

We have hypothesized that the behavioral relationship between the difference
in average male and female health outcomes in a household is described by Egs.
(1) or (2), Dy = xpyi+ pn, where i = 1,2 indexes subpopulations and A= 1,...,n
indexes households. More generally, the population may be thought to consist of
a mixture of M subpopulations each with its own set of regression coefficients.
Below we assume M = 2, but the model could be extended so that M is treated
as a parameter and estimated along with other model parameters. Alternatively,
several M’s could be used and the resulting model fits compared (Rubin and
Stern, 1994). Here, a mixture of three groups seems to provide only a small
increase in the likelihood. Each subpopulation is described by a standard normal
linear model, and the variance parameter ¢ is assumed to be the same in the two

SThe distance to the medical and regional centers will raise the male—female health gap if, by
increasing the price of treatment, girls do not receive adequate care. However, if the distance raises
the price so that boys also receive inadequate care, it could lower the gap. Note that the two distance
variables are highly correlated, which may explain why they take opposite signs in the equations.
Ahmad and Morduch (1993) discuss the other predictor variables in greater detail.

SFor example, pro-son bias may not be a general phenomenon. Instead, it may be that girls born
earlier receive better treatment than girls born later (Das Gupta, 1987) or girls with brothers may
be treated better than those with sisters (Muhuri and Preston, 1991). However, neither of these
explanations appears to have much power in this data (Ahmad and Morduch, 1993). Bardhan (1984)
argues that the strength of the health sector can be critical in determining child health outcomes, and
he critically addresses economic and social explanations of sex bias in South Asia.
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subpopulations. Separate variances in each group are permissible but considerably
complicate estimation — we address this point below.

A central feature of the model is that the composition of subpopulations cannot
be explicitly identified a priori. Let 4; = Pr(Gy = 1) denote the probability that
household # belongs to subpopulation group i. In this application the model for
group membership (Eq. (3)) is taken to be a logistic regression model with
predictors x;, just as in the linear model. The logistic regression model is defined
in terms of Ay,

Al _
log (1 — ilh) = x;,0, “4)

with Ay, = 1—A41;. Such a model might result from considering group membership
to be determined by a continuous measure I, = x;6+ v, where v, has the logistic
distribution and is assumed independent of the linear model disturbances ;.
Under these assumptions the mixture model likelihood is given by

P Xh%‘)z)}
H [’Z Aih—=— \/-Gh eXp( 0-5————0i , ()

where the dependence of A; on xj, and J is suppressed.

Heteroscedasticity arises naturally in the definition of D; as the difference
between average male and average female health outcomes. Define ¢ to be
the residual variance in households with one male child and one female child. If
nyp and ny, are the number of boys and girls respectively in household 4, then an
approximation to the variance associated with the residual in the Ath household
is 02 = 0.56%(1/n4y + 1/npp). The corresponding weight for the Ath household is
Wy = 2npgnpy/(fpg + npp). This variance is approximate because it assumes the
disturbances specific to individual children are independent when any gender bias
is likely to induce some correlation.

A pooled regression using individual children as the unit of analysis but with
household fixed effects would provide an alternative means of addressing het-
erogeneity. However, it only addresses household-level heterogeneity in levels of
child health outcomes, not in regression coefficients detailing the size of gender
bias and the effects of covariates. Using only cross-sectional data, it is not pos-
sible to estimate separate household-specific regression slopes because only one
value of the household level predictor is observed (see the overview on variable-
coefficient models in Chapter 6 of Hsiao, 1986). The mixture model approach
provides a compromise in that heterogeneity in both intercepts and variable coef-
ficients is addressed by assuming a discrete number of subsamples in the popu-
lation, each with its own behavioral responses and constraints, and by removing
household fixed effects through the definition of the dependent variable.

The survey provides information on 1206 individual children, 675 of these
children reside in households having both male and female children in the age
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range of interest. There would seem to be a loss of efficiency in restricting atten-
tion to the 307 households in place of the 675 children. We considered a mixture
model applied directly to the 675 children in these households where standard
fixed-effect methods are used to estimate separate household effects in each of
the two mixture components. However, this requires over 600 parameters since
M =2 fixed effects must be estimated for each household, leaving few degrees
of freedom for assessing variability. Random-effects models would replace the
household terms in the model by an assumed normal population of household
effects with possibly different means and variances in the two subpopulations.

4. Results

After allowing for the possibility that there may be several internally homo-
geneous groups in the sample, the sample divides into two clear groups for the
equations which describe the correlates of height-for-age. Here, the largest group
includes 72% of the sample, leaving 85 of 307 households in the smaller group.
The evidence, however, is not strong for a mixture of groups in investigating
the two measures of shorter-term health: weight-for-height and weight-for-age. In
the case of weight-for-age only a small increase in the likelihood is obtained by
allowing for two subpopulations. In the case of weight-for-height, the maximum
likelihood solution obtains a small group (25 households) and a large group. A
larger sample than the 307 households would be needed for accurate inference
for a subpopulation thought to consist of less than 10% of the population, es-
pecially given the large number of predictors. Section 5 addresses methods for
assessing the increase in the likelihood and whether these groupings are likely to
have occurred just by chance clustering of the data.

The results for the height-for-age model are presented in Table 2. The first
column repeats the pooled regression results of Table 1. The second and third
columns correspond to the special restricted model in which no predictors are
assumed available for identifying group membership (these results are discussed
later). We focus on the results of the full model, appearing in the final three
columns of Table 2, which incorporates separate linear regressions within each of
two subpopulations and a logistic regression for explaining subpopulation mem-
bership. The estimates in Table 2, obtained using the EM algorithm of Dempster,
Laird, and Rubin (1977), are those obtaining the highest mode of the likelihood
function (see the Appendix).

In this section, we concentrate on interpreting the estimated model parameters,
deferring tests of the overall model until the final section. The centered intercepts
give the advantage of boys over girls in households with zero values for all
dummy variables and mean values for all continuous variables. Thus, in the
smaller group boys have a 7% advantage over girls in urban, Muslim, uneducated
households with younger girls. The larger group shows the reverse, girls have a
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Table 2
Pooled model versus two class (normal) mixture model: Estimates of male—female differences in
height-for-age (approximate asymptotic. standard errors in parentheses)

Dependent variable:
Male average less female average logarithm of height-for-age

Independent Pooled Restricted Full mixture
variables sample Group1  Group2 Group 1  Group 2  Logit
Log age of woman —0.015 0.038  —0.032 0.008 —0.004 —-1.05
head of household (0.021) (0.042) (0.023) (0.037) (0.025) (1.59)
Log per capita —0.007 0.003  —0.009 0.030 —0008 —134
income (0.010) (0.021) (0.012) (0.018) (0.012) (0.87)
Hindu dummy —0.005 -0.014 —0.007 —0.016 —0.039 2.16
variable (0.016) (0.031) (0.017) (0.023) (0.020) (0.98)
Rural dummy 0.005  —-0.063 0.024 0.034 0.044 2381
variable 0.012)  (0.031)  (0.013)  (0.022)  (0.015)  (0.96)
Log household size 0.008 —0.019 0.022  —0.140 —0.043 6.00
(0.014) (0.033) (0.017) (0.035) (0.021) (1.47)
Mother has primary -0.007 —0.064 0.013 0.023 0.027 =297
education only (0.011)  (0.025)  (0.012)  (0.043)  (0.010)  (1.76)
Mother has secondary —0.019 —-0.097 0.005 —0.004 0.019  -3.03
education or more (0.015) (0.047) (0.021) (0.047) (0.015) (2.04)
Log distance to —0.006 0.023 —0.016 0.018 -0.012 —0.39
medical facility (0.005) (0.010) (0.006) (0.009) (0.005) 0.41)
Log distance to 0.009 0.038 0.003  -0.008 0.003 1.05
regional center (0.006) (0.015) (0.007) (0.010) (0.007) (0.60)
Girl is oldest 0.012 0.048 0.003 0.038 0.010 —046
dummy variable (0.008) (0.020) (0.009) (0.017) (0.009) (0.60)
Intercept 0.0006 0.085 —0.028 0.069 —0.059 0.73
0.010)  (0.022)  (0.011)  (0.017)  (0.015)  (0.66)
Log likelihood 657.3 672.0 681.1
Proportion of sample 1.0 0.26 0.74 0.28 0.72
Number of households 307 80.3 226.7 85.5 221.5
Regression standard 0.073 0.059 0.059 0.058 0.058

error

6% advantage over boys. Both findings are significant; it is somewhat surprising
that the larger group has a pro-daughter advantage.

* In the smaller group, the advantages of males are highly sensitive to changes
distance from the health center, whether the oldest child is a girl, and the size



J.J. Morduch, H.S. Stern/Journal of Econometrics 77 (1997) 259-276 269

of household. There, being further from the health center tends to increase the
advantage to boys. Surprisingly, larger households tend to decrease the advantage
to boys and having a female oldest child increases the advantage. The opposite
signs were expected. In the pooled regression no variables have significant co-
efficients. In the larger group, distance to the health center appears to increase
the advantage of females. Rural location and primary education of the mother
tend to reduce the advantage of females. Again, larger households tend to favor
females more.

In the logit equation, the most important determinant of membership is house-
hold size. Larger households are predominantly in the smaller group (that tends
to favor boys). Within that group, recall that additional household size is as-
sociated with smaller advantages for male children. Also, Hindu households
tend be in the smaller group while rural households tend to be in the larger
group.

To assess robustness to outliers, we re-estimated the models under the as-
sumption that regression errors have ¢-distributions, as shown in Table 3. The
t-distributions with 4 and 10 degrees of freedom have relatively long tails, so
that outlying observations get less weight. No standard errors are supplied as the
loglikelihood of the t-regressions are relatively flat so that standard errors are
difficult to obtain (and generally too small) in small samples. The results for the
t-distribution with 10 d.f. are quite similar to those for the normal regressions.
Coefficients differ by at most one-quarter of the normal regression standard error.
The results with 4 d.f. indicate some larger differences, especially in the smaller
group. The coefficients of age of the female household head and the dummy for
education in the smaller group change signs. There are relatively large changes
in the logistic regression coefficients, especially those for the education variables
and the rural location dummy variable. The results in Tables 2 and 3 suggest that
the distributional assumptions are not innocuous. However, the principal findings
concerning gender differences in the two subpopulations remain the same. The
nonrobustness of the logistic regression is a first indication that the current data
set may not be sufficient for estimating both the between-group effects and the
within-group effects of the predictor variables.

5. Assessing the mixture model

One chief concern is that, lacking an explicit identifier of group identity, the
mixture model may yield groups which occur simply by chance in the data.
For example, when the estimation procedure divides the sample into one large
nebulous group and one precisely-estimated group with a small number of obser-
vations, it could reflect a random clustering rather than true underlying structure.
We develop and apply a Bayesian approach to inference which addresses these
issues in an analogue to standard loglikelihood ratio tests.
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Table 3
Two-class mixture model under #-distribution: Estimates of male—female differences in height-for-age

Dependent variable:
Male average less female average logarithm of height-for-age

Independent 4 degrees of freedom 10 degrees of freedom

variables Group 1 Group 2 Logit Group 1 Group 2 Logit

Log age of woman -0.027 -0.015 0.02 —0.005 —0.007 -0.70
head of household

Log per capita 0.038 —0.010 -1.59 0.032 —0.011 —1.26
income

Hindu dummy —0.015 —0.040 1.91 -0.014 —0.040 2.10
variable

Rural dummy 0.021 0.033 —1.49 0.032 0.042 —2.60
variable

Log household size —0.107 —0.064 6.68 —0.132 —0.044 593

Mother has primary —0.009 0.024 —0.82 0.018 0.031 —2.75
education only

Mother has secondary —0.009 0.017 —-1.29 —0.002 0.022 —3.05
education or more

Log distance to 0.008 —0.015 0.06 0.015 -0.013 —0.30
medical facility

Log distance to —0.004 0.012 0.11 —0.006 0.005 0.87
regional center

Girl is oldest 0.031 0.022 —0.84 0.038 0.015 —0.55
dummy variable

Intercept 0.067 —0.065 0.24 0.068 —0.061 0.67

Log likelihood 701.9 690.3

Proportion of sample 0.34 0.66 0.29 0.71

Number of households 104.5 202.5 87.5 219.5

Regression scale 0.044 0.044 0.052 0.052
parameter

While standard methods like maximum likelihood estimation can be used to
obtain parameter estimates, it is not appropriate to test the mixture model against
the pooled-regression null hypothesis by applying the usual asymptotic chi-square
test based on twice the difference in maximum loglikelihood values. The principal
reason for this is that under the null hypothesis (that the population is homo-



J.J. Morduch, H.S. Stern!Journal of Econometrics 77 (1997) 259-276 271

geneous and a single pooled regression is appropriate) the two component mixture
model likelihood is not well approximated by a quadratic surface as required for
the likelihood ratio test (sec, e.g., Titterington, Smith, and Makov, 1985). Sug-
gestions for approximate degrees of freedom to apply as a correction are found
in the statistics and economics literature (Goldfeld and Quandt, 1976; Tittering-
ton, Smith, and Makov, 1985). Instead, we follow Rubin and Stern (1994) in
implementing a Bayesian posterior predictive evaluation of the propriety of the
pooled regression relative to that of the mixture.

The posterior predictive check asks whether the observed improvement in mov-
ing from a single regression to the two-component mixture is large relative to
the improvement that might be observed in future similar data sets. Of course,
this is exactly the question that the likelihood ratio chi-square addresses when the
regularity conditions are met. In the present case, a set of 200 replicate data sets
are obtained as draws from a Bayesian posterior predictive distribution under the
null model, a single pooled regression. We use a standard noninformative prior
distribution for the coefficients of the regression y and regression variance o?
(corresponding to families with one male and one female child) in the Bayesian
analysis, p(y,6%) o ¢72. Only a brief summary of the steps required for the
Bayesian analysis is presented here; the methods are described more fully in
Box and Tiao (1973). Under the assumption that a single pooled weighted least
squares regression is appropriate and using the noninformative prior distribution,
the posterior distribution of 62 can be expressed as

(D - XYW (D - X¥)

~o 2 N
X296

where § is the weighted least squares estimate of 7, D is the vector of health out-

comes, X is the matrix of predictor variables, W is a diagonal matrix containing

the household weights, and y3q refers to a random variable with a chi-square
distribution, Given ¢? the conditional posterior distribution of y is

716%,D ~ NG, > (X' WX)™). (7

o’|D

(6)

We generate hypothetical replications of the data D by first drawing ¢? from its
posterior distribution, then drawing a simulation of y from its posterior distribu-
tion conditional on 62, and finally drawing a vector of new responses DU®P) =
Xy + 1 where the elements of p are normally distributed disturbances with vari-
ance matrix o> ~!. The vectors D) represent values of the response variable
that might be expected in new observations at the same predictors X if the single
pooled regression is correct. For each of the 200 replicate data sets, we fit the
pooled regression and the mixture model. The replicate data sets define a refer-
ence set for determining whether the observed increase in the likelihood is large
relative to what might occur by chance.

In the Bangladesh data, the loglikelihood for the pooled regression is 657.3
and the loglikelihood for a two-class mixture is 681.1 — an increase of 23.8.
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For the 200 replicated data sets the average increase just due to chance is 25.6,
so the data do not support the need for the mixture model. (Note also that the
increase in the loglikelihood is larger than would be expected under the usual
chi-squared reference distribution: with 22 degrees of freedom the loglikelihood
would be expected to increase by only 11 — twice the loglikelihood would be
expected to increase by 22.)

We also fit a mixture model under the assumption that i;; = 4; for all house-
holds, i.e., no predictors of group membership are available. Parameter estimates
for this restricted mixture model are displayed in Table 2; the loglikelihood is
672.0, an increase of 14.7 over the pooled regression. This is larger than would
be expected by chance — only 8% of the 200 replicate data sets had increases
as large. The data seem to support this restricted mixture as an alternative to the
null, pooled model but do not support the seemingly more realistic logit mixture
model. The simpler model is less interesting in that the pooled regression gives
unbiased estimates of the average effect in this case, but the restricted model still
shows that heterogeneity does play a role in masking important gender differences
in health outcomes. The results in the restricted model are consistent with those
of the full mixture with some noteworthy differences. As a baseline under the
restricted model, boys maintain a large advantage (8.5%) in the smaller ‘more
discriminatory’ group (a quarter of the sample), while girls have a small (less
than 3%) advantage in the larger group. The unexpected coefficients on house-
hold size are no longer significant. Distance to the medical center remains an
important determinant of health outcomes in both models. Moreover, both fe-
male education variables strongly reduce pro-son bias in the smaller group, with
secondary education having a 50% greater impact than primary education alone.

There is a bit of paradox in comparing the three models: pooled, restricted
mixture, and logit mixture. Comparisons with the pooled model suggest that the
restricted mixture model is helpful but that the logit mixture model does not add
much beyond this. The increase in the loglikelihood between the restricted and
logit models is smaller than, but similar to, the increase obtained in moving from
the pooled model to the restricted mixture. Thus, direct comparison of the two
mixture models provides some support for the logit model. A Bayesian analogue
for the this last test would provide more insight but would require a full Bayesian
analysis of the mixture model.

6. Concluding comments

The mixture model provides an empirical framework which is consistent with
theoretically- and empirically-based concerns about population heterogeneity with
regard to gender-based differences in health outcomes. When populations are
heterogeneous, running regressions on pooled samples will only yield consistent
estimates of average slope coefficients under special conditions — and then it is



J.J. Morduch, H.S. Stern!Journal of Econometrics 77 (1997) 259-276 273

likely that uncorrected standard errors will be biased upward (so that the null
hypothesis of no discrimination is not rejected frequently enough). With a large
sample, generalized heteroscedasticity-consistent estimators can be used to reduce
this problem, but the mixture model can yield greater precision of estimates by
putting specific structure on the sources of heterogeneity.

While it remains that specific distributional assumptions are required to provide
an identifiable model of the hypothesized heterogeneous population, we have
demonstrated how the robustness of the mixture model results can be assessed
by considering alternative distributional assumptions and model structures. While
equivocal, the results in the present data set suggest that addressing behavioral
heterogeneity is an important approach to shedding more light on differences
in health outcomes in Bangladesh and similar poor economies. Pursuing this
path is practical, and the Bayesian approach to model evaluation developed here
straightforwardly follows the intuition of standard likelihood ratio tests. However,
our results caution that large samples may be needed for precise estimation.

Appendix: Estimation procedure

Maximum likelihood estimates for the model parameters can be computed using
any maximization procedure. The calculations are especially straightforward using
the EM algorithm of Dempster, Laird, and Rubin (1977) for computing maximum
likelihood estimates for problems with incomplete data. The data is incomplete
here in the sense that the indicators of group membership, G, = (G, Gap), are
unobserved. The joint distribution of the full data set Dy, G, is

2 D, — ; 2 Gin
(2

The EM algorithm is an iterative maximization procedure with each iteration con-
sisting of two steps, the E-step and the M-step. We introduce the superscript (¢) to
describe the rth iteration and assume that parameter estimates y(' ”,y(z' 1), f—l),
3¢~ obtained during the previous iteration’s M-step are available. The E-step
computes the expected value of the complete data sufficient statistics which is

equivalent in the current case to finding
25 = B(G| Do a1, 071, 6¢47)
=Pr(Gy = 1 | Dp, xp, 7, “ D61 8-y )

1 1 1
B A )¢(Dh,xwf’ ), 6271y
- —-1 1 1 1
A4 (D x y‘{ ey 4 4GP d(Dp xS, 2 DY

where ¢(x; , 7?) is the normal density with mean u and variance 7% evaluated
at x. The result lg,) represents the posterior probability of household # coming
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from subpopulation i, and it is not generally equal to 0 or 1 since households
might conceivably belong to either subpopulation. In the M-step of the rth it-
eration the complete data likelihood, Eq. (8), is maximized after fixing Gj, at
the expected value computed during the E-step. This M-step maximization is
achieved by separately maximizing the likelihood of the classification portion of
the model, describing the distribution of G, given x;, and the likelihood of the
two normal regression models, describing the distribution of D, given x;, and
Gj. The classification portion of the likelihood resembles the likelihood from
a logistic regression except that the classification variable Gj; is not restricted
to the values 0 and 1. In the regression likelihoods, each household can con-
tribute to the regression estimates of both mixture components since Gj is not
restricted to the values of 0 and 1. Each mixture component requires a weighted
least squares regression that now incorporates the weight Pr(G;; = 1) as well
as the weights that adjust for household heteroscedasticity. The E- and M-steps
are repeated until further iterations do not modify the estimates. Approximate
asymptotic standard errors can be obtained using an extension of the EM algo-
rithm (Meng and Rubin, 1991), or by numerically obtaining the second derivative
matrix of the loglikelihood function and inverting it as was done here.

To assess the robustness of model inferences, the models have also been esti-
mated under the assumption that the regression disturbances have a ¢-distribution
with 4, 10, 20, and 100 degrees of freedom (the last is quite close to the model
with normally distributed errors). The likelihood for the mixture model with #-
distributed regression errors having v degrees of freedom is similar to the normal
likelihood equation (5) with normal densities replaced by ¢, densities. Following
Liu (1994) and Dempster, Laird, and Rubin (1977) the t-regression part of the
likelihood maximization is carried out using iteratively reweighted least squares.
Specifically, the distribution of Dy for group i is taken to be N(x4y;,02/ti)
where 7;, has a gamma distribution with shape and scale parameter v/2. The 7
are treated as missing data. Each E-step now also computes the expected value
of 15 as

v+1
v ((Dh — i "Ry

in addition to computing the expected value of the Gy, according to Eq. (9). The
M-step computes normal regressions in each group, now weighted by the het-
eroscedasticity correction, the probability of group membership, and the
t-weight 7;;. The t-weight serves to downweight outlying or unusual values, tak-
ing us in the direction of least absolute deviation estimators.

In practice, mixture model likelihood functions may have more than one mode,
corresponding to different descriptions of the underlying population. Only the
highest peak of the likelihood function is explored in the discussion in the text.
Large samples or less complex models appear to be less likely to have multiple
modes. For this analysis, fitting a restricted mixture model (without the logistic

—1 - -
E(|Dp 1,07, 870) =

14

(10)
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regression but with residual variances in the two mixture components constrained
to be equal) yields only a single minor mode in addition to the major mode given
in Table 2. The full mixture model, however, yields a number of solutions to
the likelihood equation. In small samples, problems of multiple modes might be
addressed by constructing the model to incorporate appropriate prior information
about plausible sizes of the subpopulations or plausible values of the residual
variance. (Kiefer, 1978, shows that for large enough »n there is a unique consistent
root to the likelihood equation in the restricted model — i.e., where iy = A4;.)
More generally, a full Bayesian analysis, averaging over the different modes,
might more accurately summarize the data but is computationally difficult given
current tools.
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