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74.1 INTRODUCTION

One of the fascinating aspects of aphasia is that lan-
guage breakdown is not unitary. Not all aspects of lan-
guage are affected in the same way and, crucially,
depending on the site and extent of the lesion, brain
injury to the left hemisphere results in a clinically
diverse set of impairments and abilities. Persons with
aphasia may show a constellation of impaired and
spared abilities in auditory comprehension, speech
output, repetition, naming, reading, and writing that
together comprise a particular syndrome.

There is a long history of the characterization of the
aphasia syndromes (Geschwind, 1965; Benson, 1979 for
review), and although there are differences in nomen-
clature, there is general consensus on the clinical fea-
tures that comprise a particular syndrome. However,
syndromes provide a description of clinical behaviors.
They do not provide an explanation of the language
deficits that give rise to these behaviors. For example,
a failure to understand language could be due to any
number of factors—among them, impairment in pro-
cessing the sound structure of language, impairment
in mapping sounds to word meaning, and/or failure
to process the syntactic structure or the semantic struc-
ture of words. To understand the nature of language
deficits in aphasia requires taking a different approach,
one that takes into consideration the potential lan-
guage processes and mechanisms underlying these
deficits. Roman Jakobson (1956) was probably the first
linguist to take such a psycholinguistic approach to
aphasia. Since then, there has been a history and tradi-
tion of using the theoretical framework and experi-
mental tools provided by psycholinguistics to examine
the nature of deficits among the different types of

aphasia (Goodglass, 1993). As discussed, such a study
has provided the framework for much of the recent
work using functional neuroimaging and electrophysi-
ological approaches to the neurobiology of language.

This chapter reviews the contributions that this
approach has made to our understanding of the neuro-
biology of language. We begin by describing those
classical aphasia syndromes and their associated lesion
profiles that have served as the focus of much of the
research on language impairments in aphasia. The psy-
cholinguistic studies that were conducted were
designed to understand the basis of the underlying
deficits giving rise to particular clinical features of
these syndromes and the functional role of the brain
areas involved. The findings have also been used to
provide insight into the functional architecture of lan-
guage, that is, how the system fractionates provides a
window into its structural properties and the mechan-
isms and processes involved in normal language use.

74.2 THE APHASIA SYNDROMES

The aphasia syndromes typically result from damage
to perisylvian areas of the left hemisphere. Although
there have been many syndromes described in the liter-
ature (see Geschwind, 1965 for a review), the three that
have probably been studied in the most detail and have
served as the foundation for psycholinguistic studies
of aphasia are Broca’s, conduction, and Wernicke’s
aphasia. These syndromes provide a rich tapestry of
impaired and spared language abilities. Of importance,
they are defined in terms of the relative performance of
patients among a set of language functions, including
speaking, auditory comprehension, repetition, naming,
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and comprehension and production in reading and
writing. Thus, an absolute score on a particular lan-
guage function cannot be used to classify a patient.
Rather, it is performance on a particular language func-
tion in relation to the other clinical characteristics that
defines a patient’s syndrome.

Focusing solely on a particular language function
will result in grouping patients together who have
different syndromes and potentially different under-
lying deficits. For example, there are a number of
aphasia syndromes that are characterized by poor
auditory comprehension, including Wernicke’s apha-
sia, transcortical sensory aphasia, and global aphasia
(Goodglass & Kaplan, 1972). Similarly, there are a
number of syndromes that are characterized by fluent
speech output, including Wernicke’s aphasia, conduc-
tion aphasia, transcortical sensory aphasia, and anomic
aphasia. It is the relationship between these various
language functions that differentiate between and
among the aphasia types.

Broca’s aphasia is characterized by impairment in
language expression in the face of relatively good audi-
tory comprehension. Speech output of these patients is
typically nonfluent: production is slow, labored, with
many speech errors, and is often dysarthric, (i.e., char-
acterized by motor weakness that affects speech articu-
lation). Additionally, these patients often display
agrammatism in their speech output, with a tendency
to omit freestanding function words such as the and is
and to either delete or substitute grammatical endings.
Repetition is usually similar to or a little better than
spontaneous speech output. Lesions associated with
Broca’s aphasia typically involve the frontal operculum
(Broca’s area, i.e., BA44 and 45) and premotor and
motor regions posterior and superior to the frontal
operculum, and extend to the white matter structures
including the basal ganglia and insula (Damasio, 1998).

Wernicke’s aphasics show a very different clinical
picture. They have fluent well-articulated speech in the
context of impairment in auditory language compre-
hension. These patients often produce paraphasias,
which are errors in their output that are either phono-
logically based (phonemic paraphasias, e.g., top - dop)
or semantically based (verbal paraphasia, e.g., wife -
sister). Some Wernicke’s aphasics produce jargon or
neologisms, which are productions that are phonologi-
cally possible but are not words in the language (e.g.,
tufbei). Although speech output is fluent, containing
grammatical words and endings, sentences are often
described as paragrammatic, characterized by the
inappropriate juxtaposition of words often rendering
the sentence ungrammatical. Additionally, the content
of the discourse is typically empty semantically, partly
because of the overuse of semantically empty high-
frequency words such as thing, is, this. Wernicke’s

patients also have repetition impairment as well as a
naming deficit. The lesions associated with Wernicke’s
aphasia include the posterior superior temporal gyrus
(BA22), often extending to the middle temporal, supra-
marginal, and angular gyri (Damasio, 1998; Dronkers,
Redfern, & Ludy, 1995; Dronkers, Wilkins, Van Valin,
Redfern, & Jaeger, 2004).

In conduction aphasia, repetition is the presenting
deficit in the context of fluent, well-articulated speech
and relatively good auditory language comprehension.
Speech output contains phonemic paraphasias and rel-
atively few semantic paraphasias. The patient appears
to be aware of these errors because they often attempt
to correct them, producing conduite d’approche or suc-
cessive approximations to the target word. The lesions
associated with conduction aphasia include the supra-
marginal gyrus and the white matter structures deep
to it (the arcuate fasciculus). Importantly, the posterior
portion of the superior temporal gyrus (Wernicke’s
area) is typically spared (Damasio, 1998; but see
Hickok et al., 2000).

These clinical characteristics and associated lesion
loci have raised a series of questions about the func-
tional and neural architecture of language. With respect
to the functional architecture of language, it is generally
assumed that both expressive and receptive language
functions comprise different linguistic domains involv-
ing multiple stages of processing. These domains
include phonological/phonetic, lexical, syntactic, and
conceptual/semantic. It is also generally assumed that
information flows from one stage of processing to the
other and that this information flow is interactive, with
activation at one stage of processing influencing activa-
tion at other stages of processing both upstream and
downstream from it (Dell, 1986; Marslen-Wilson &
Warren, 1994). For example, phonetic/phonological infor-
mation affects lexical processing (bottom-up processing),
and lexical processing, in turn, can affect phonetic/
phonological processing (top-down processing).

The clinical characteristics of Broca’s, conduction,
and Wernicke’s aphasia suggest potential deficits in
the representations and processes involved in the
reception and/or expression of speech, words, and
syntax. And it is these domains that we review here.
At the same time, they also provide potential insight
into the neural systems underlying these domains,
allowing for an examination of whether the neural
areas are functionally autonomous.

74.3 SOME CAVEATS AND CHALLENGES

The use of the aphasia syndromes as the framework
to investigate the neurobiology of language has
been met with challenges in the literature that are
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worthwhile to briefly review and consider. In particu-
lar, there have been challenges to the assumption that
clinical syndromes can be used to reliably classify and
study participants with aphasia (Caramazza, 1984), and
there have been challenges to the assumption that there
is one-to-one mapping between clinical syndrome and
underlying neuropathology (Willmes & Poeck, 1993).
This has led to two other approaches over the past 30
years in the investigation of language deficits in
aphasia. The first has focused on detailed case studies
of patients as a means of informing current theories of
language processing (Caramazza, 1986; see Rapp &
Goldrick, 2006 for a review). The single case methodol-
ogy has been used throughout the history of neuropsy-
chology and has provided many insights into not only
how language may fractionate but also what neural
areas give rise to the deficit (Geschwind, 1965 discus-
sion of Dejerine). However, the more recent case study
approach has largely been agnostic with respect to the
underlying neuropathology of the patient (Rapp &
Goldrick, 2006). Thus, a downside of this approach is
that it cannot provide insight into the neural architec-
ture underlying the patient’s deficit, nor can it provide
predictions of patterns of deficits to new patients. In the
second approach, a psycholinguistic question is raised
and then studied in a group of patients unselected for
either syndrome or lesion (see Schuell & Jenkins, 1959).
The assumption here is that the underlying deficit is
the same irrespective of lesion localization. Under these
assumptions, it is impossible to determine whether
there are distinct deficits that arise as a function of a
particular area of damage and whether the basis of the
deficit differs as a function of lesion site.

In the end, it is lesions that produce language
impairments in aphasia. And the rationale for focusing
on syndromes is that they not only present with a con-
stellation of impairments but also are the result of
lesions to particular neural areas. With advances in
neuroimaging techniques over the past 20 years, we
know that lesions of patients are rarely focal and typi-
cally include both cortical and subcortical structures.
No individual with aphasia has exactly the same lesion
profile, and there are differences not only in the extent
of the lesion but also in the degree of damage to a par-
ticular area. With regard to behavioral effects of
lesions, we know that within a syndrome there are dif-
ferences in severity and that not all patients can be
classified into a particular syndrome, in both cases pre-
sumably because of the extent and location of the
lesion. We also have learned that damage in one area
can result in hypometabolism in areas distant from it,
even in the absence of overt structural damage
(Metter, Hanson, Jackson, & Kempler, 1990). Such find-
ings suggest that deficits may reflect neural systems,
rather than solely being due to local pathology.

Taken together, such observations identify the com-
plexities of this research endeavor. That the picture is
more complex than what the classical aphasiologists
from the 1920s to the 1960s had proposed in terms of
clinical diagnosis and lesion locus is not surprising.
However, these facts do not obviate the existence of
the aphasia syndromes or that lesions are localizable
and ultimately produce different patterns of language
impairment broadly in line with the classical aphasia
syndromes (Kreisler et al., 2000; Richardson, Fillmore,
Rorden, LaPointe, & Fridriksson, 2012). The results of
this approach converge with recent neuroimaging find-
ings focusing on the neural substrates of language.

74.4 LANGUAGE DEFICITS
UNDERLYING APHASIA SYNDROMES

It is beyond the scope of this article to review the
extensive literature on psycholinguistic investigations
of aphasia. Rather, we examine two main classes of
findings that have been shown in each of the domains
of phonetics/phonology, the lexicon, and syntax. The
first class of findings has shown similarities in patterns
of deficits across patients presenting with different
aphasia syndromes. Such results provide insight into
the functional architecture of language, typically show-
ing integrity of the structural properties of language.
They also suggest that such processing recruits a
broadly distributed neural system. The second class of
findings has shown deficits in patients presenting with
different aphasia syndromes; however, of interest and
importance, the patterns of deficits differ as a function
of clinical syndrome. Such findings suggest that the
nature of the deficit giving rise to the pathological per-
formance is due to a different functional impairment
presumably reflecting the neural locus of the lesion.

74.4.1 Phonetic/Phonological Impairments

74.4.1.1 Speech Production

Although all aphasic patients make speech produc-
tion errors across a number of language tasks, based on
the clinical picture of the patients, it was generally
assumed that the source of those errors differed. In par-
ticular, given that the lesions of Broca’s aphasics
involved frontal structures typically including motor
areas, they were considered to have phonetic impair-
ments reflecting articulatory planning and articulatory
implementation deficits. In contrast, given that
Wernicke’s and conduction aphasics’ lesions involved
posterior areas, these patients were considered to
have phonological impairments reflecting selection
deficits. Experimental results showed that these
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characterizations were both correct and wrong. In par-
ticular, acoustic analysis of the patterns of production
of a number of parameters of speech showed clear-cut
phonetic impairments for Broca’s aphasics that were
not present in either Wernicke’s or conduction apha-
sics. Broca’s aphasics showed deficits in the timing
relations required for voicing in stop consonants
(voice-onset time) (Blumstein, Cooper, Goodglass,
Statlender, & Gottlieb, 1980; Gandour & Dardarananda,
1984; Kent & Rosenbek, 1983), timing of voicing onset
and amplitude properties required for voicing in frica-
tive consonants (Kurowski, Hazen, & Blumstein, 2003),
and duration and amplitude measures required for the
production manner of articulation for nasal consonants
(Kurowski, Blumstein, Palumbo, Waldstein, & Burton,
2007). Although the two posterior aphasic groups
showed normal articulatory implementation, they did
show more variability in their productions than normal
individuals. Taken together, these findings support the
view that Broca’s aphasics have articulatory planning
and implementation deficits, and that frontal brain
structures including Broca’s area, premotor and motor
regions posterior and superior to the frontal opercu-
lum, and white matter structures deep to them are
functionally involved in these stages of production.
That the posterior patients only showed variability in
their productions in the context of normal articulatory
implementation suggests that speech production not
only recruits frontal structures but also invokes
posterior structures, presumably as part of a feedback
mechanism for error detection, monitoring, and senso-
rimotor integration from auditory (temporal cortex)
and somatosensory (inferior parietal cortex) areas
(Guenther, Ghosh, & Tourville, 2006; Hickok, 2012;
Hickok, Houde, & Rong, 2011; Houde & Nagarajan,
2011; see Blumstein & Baum for discussion of neuroim-
aging studies supporting this view, Chapter 55, this
volume).

In contrast to phonetic deficits, studies of phonolog-
ical analysis of the speech of Broca’s, conduction, and
Wernicke’s aphasia failed to show different patterns
of errors. Analyses of speech output errors showed
that patients from all three groups made similar pho-
nological errors, including phoneme substitutions
(phonemic paraphasias), addition or deletions of
sounds, transposition of sounds either within a word
or between words, and contextual errors based on the
phonological context of the word (Blumstein, 1973).
For all patients, errors reflected structural principles
of the language. In particular, sound substitutions
were more likely to occur between sounds that were
distinguished by a single phonetic feature, and both
addition and deletion errors were more likely to result
in the canonical syllable structure CV (e.g., segments
were typically added if a word began with a vowel,

e.g., “elevator” - /kεləvetr/, sound segments were
added to produce a word with a CV onset, e.g.,
“cloudy” - /kəlawdi/, and consonant clusters were
simplified, “French” - /fεnč/). The similar pattern of
errors irrespective of clinical syndrome suggests that
whether the error occurred at selection, articulatory
planning, or implementation stages of production, the
basic structure of words and the phonological princi-
ples underlying them are preserved. It is not surpris-
ing that when errors occur, they are more likely to be
manifest among phonologically similar sounds and to
result in “simpler” phonological structures.

74.4.1.2 Speech Perception

As described, one of the distinguishing clinical fea-
tures for Wernicke’s aphasics is poor auditory compre-
hension. The question is, what is the basis or bases of
this impairment? Because the primary auditory areas
surface in the temporal lobe and the superior temporal
gyrus has been implicated in speech perception
(Binder, 2000; Hickok & Poeppel, 2007), one likely can-
didate deficit that has been studied in detail is an
impairment in the processing of the sounds of speech.
Luria (1966) proposed that Wernicke’s aphasics have a
deficit in phonemic hearing. In this view, an inability
to correctly perceive the phonological properties of
speech sounds leads to poor auditory comprehension
and results in what appears to be semantic impair-
ments. For example, it is not uncommon for such
patients to select the incorrect picture of a word such
as “pea” if it is presented in an array of phonologically
similar items such as “bee,” “T,” or “key.”

A series of studies was conducted investigating dis-
crimination and identification of both naturally pro-
duced and synthetically constructed stimuli (Csepe,
Osman-Sagi, Molnar, & Gosy, 2001; Leeper, Shewan, &
Booth, 1986). Results showed that Wernicke’s
aphasics displayed severe speech perception deficits
(Basso, Casati, & Vignolo, 1977; Blumstein, Baker, &
Goodglass, 1977; Caplan, Gow, & Makris, 1995; Gow &
Caplan, 1996; Robson, Keidel, Lambon Ralph, & Sage,
2012; see Hickok, 2009 for an alternative view). In
addition, however, Broca’s and conduction aphasics
also showed deficits, although they were milder (see
Hickok, Costanzo, Capasso, & Miceli, 2011 for an alter-
native view). Of interest, the predictive relationship
between performance on these tasks and comprehen-
sion ability was inconsistent across studies; some failed
to show a relationship (Basso et al., 1977; Blumstein
et al., 1977), whereas others did show a relationship
(Miceli, Gainotti, Caltagirone, & Masullo, 1980; Robson
et al., 2012). These findings suggest that Wernicke’s
aphasics do have a speech perception deficit, but that
other aspects of language, particularly semantic pro-
cessing, may also be impaired (Baker, Blumstein, &
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Goodglass, 1981; Basso et al., 1977; Robson, Sage, &
Lambon Ralph, 2012; but see Walker et al., 2011). The
possibility that Wernicke’s aphasics have not only
speech perception impairment but also a deficit in
semantic processing is also supported by the neuroim-
aging literature. As described, it is not uncommon for
the lesion profile of Wernicke’s aphasics to extend into
the middle temporal gyrus, an area that is involved in
semantic processing and appears to be recruited in
accessing stored semantic representations (see Binder,
Desai, Graves, & Conant, 2009 for a review).

The findings that speech perception impairments
emerge not only in Wernicke’s aphasics but also in
milder forms in Broca’s and conduction aphasics are
consistent with neuroimaging results showing that
multiple neural areas are recruited in the processing of
speech. Studies examining phonological contrasts
(Burton, Small, & Blumstein, 2000) and acoustic pho-
netic properties of speech (Blumstein, Myers, &
Rissman, 2005; Joanisse, Zevin, & McCandliss, 2007;
Liebenthal et al., 2010) have shown activation in a neu-
ral network, including temporal (superior temporal
gyrus), parietal (supramarginal gyrus), and frontal
(inferior frontal gyrus) areas. It has been argued that
the functional role of these areas differs with superior
temporal areas (potentially bilaterally) recruited in ear-
lier stages of speech processing, temporoparietal areas
(posterior superior temporal and supramarginal gyri)
involved in phonological processing (Buchsbaum,
Hickok, & Humphries, 2001; Hickok et al., 2008;
Hickok, 2009), and frontal areas engaged in executive
processes related to phonetic category decisions
(Burton et al., 2000; Myers, Blumstein, Walsh, &
Eliassen, 2009; see also Venezia, Saberi, Chubb, &
Hickok, 2012).

Nonetheless, of interest, despite differences in over-
all performance of the patients in speech perception
tasks, their patterns of impairment were similar.
Namely, all patients were more likely to make discrim-
ination errors on stimulus pairs that were distin-
guished by a single phonetic feature than several
features, and they were more likely to make errors dis-
criminating stimulus pairs contrasting in the features
corresponding to place of articulation than for the fea-
ture voicing (Blumstein et al., 1977). Finally, all
patients displayed more deficits in perceiving the
sound structure of nonsense syllables compared with
real words. That Wernicke’s aphasics showed a sys-
tematic pattern of impairment similar to other aphasic
patients indicates that their behavior is not random
and does not reflect a loss of sensitivity to the
phonetic/phonological properties of speech.

The patterns of performance displayed by the
patients reflect the integrity of the structural proper-
ties of the sound structure of language. Sounds

distinguished by a single phonetic feature not only
share more phonological features but also are more
similar acoustically than are sounds distinguished by
multiple features. Thus, it is not surprising that they
are more difficult to discriminate. Nonetheless, despite
the difficulty that all patients have in either discrimi-
nating or categorizing acoustic cues associated with
either voicing or place of articulation, the locus and
shape of the phonetic boundary are similar to those of
normal individuals. The superiority of performance for
real words compared with nonsense syllables is consis-
tent with current models of the functional architecture
of language (Dell, 1986; McClelland & Elman, 1986).
Here, information flow is interactive; namely, informa-
tion flows from phonetic/phonological analysis stages
to activate potential lexical candidates. These candi-
dates, in turn, boost the activation of phonological
units downstream from them. Because nonwords do
not match any words in the lexicon, they may only
weakly activate phonologically similar words (Milberg,
Blumstein, & Dworetzky, 1988). In such a case, they do
not have the same degree of support of the lexical-
semantic network; hence, they are more vulnerable in
tasks that focus on phonological/phonetic properties.

74.5 LEXICAL IMPAIRMENTS

Models of the cognitive architecture of language
have proposed that the words of a language (the men-
tal lexicon) are organized in terms of a network-like
architecture of shared or partially overlapping sound
structure or semantic properties (Gaskell & Marslen-
Wilson, 1999; Plaut, 1995). In this view, a word not
only activates its phonological and semantic represen-
tations but also partially activates words that share
sound structure and semantic properties with it. As a
consequence, accessing a word for either spoken pro-
duction or auditory word recognition requires select-
ing the target word from this set of activated
competitors. Thus, both the production and recogni-
tion of words require a multistage process including
access to the mental lexicon, activation of a network of
potential word candidates, and, ultimately, the selec-
tion of the target word from the set of semantically
related and phonologically related competitors.

One of the most common and least localizing clini-
cal features in aphasia is a word retrieval deficit. This
may be shown either in spoken word production or in
auditory word recognition. In spoken word produc-
tion, patients may fail to come up with a word either
in spontaneous speech output or when presented with
a picture or verbal description of a word (naming)
(Goodglass & Kaplan, 1972). Typically, naming errors
include phonemic paraphasias, where the patient
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makes a sound error on the target word, or verbal
(semantic) paraphasias, where the patient produces an
incorrect word, often semantically or associatively
related to the target word. Clinically, Wernicke’s apha-
sics tend to make more semantic paraphasias, and con-
duction aphasics make more phonemic paraphasias. In
auditory word recognition, Broca’s, conduction, and
Wernicke’s aphasics may fail to select a picture of a
word from an array of pictures whose names are either
phonemically or semantically related to the target
(Baker et al., 1981).

Evidence suggests that although Broca’s, conduc-
tion, and Wernicke’s aphasics display word processing
deficits, it is not because they have lost either the “con-
cept” of a word or its phonological representation.
Rather, they appear to have difficulty accessing or
retrieving the word. Improved naming occurs for these
patients with contextual support provided by either a
phonological cue (e.g., producing [bə] for the word
“bear”) or a semantic cue (“Smoky, the _.”).

The relative preservation of semantic/conceptual
representations has been shown in studies examining
semantic priming. Both Broca’s and Wernicke’s
aphasics show semantic priming in a lexical decision
task (Blumstein, Milberg, & Shrier, 1982; de Salles,
Holderbaum, Parente, Mansur, & Ansaldo, 2012;
Hagoort, 1997; Milberg & Blumstein, 1981). That is,
they display shorter reaction time latencies to target
words preceded by semantically related (“dog!cat”)
compared with semantically unrelated (“ring-cat”)
words. These findings support the integrity of the
lexical-semantic network in these patients. In contrast
to the classical aphasias, however, recent research sug-
gests that degradation of semantic structure does
occur, but in patients with semantic dementia or apha-
sic patients with lesions extending to the anterior tem-
poral lobe (an area not included in the lesion profile of
Wernicke’s aphasics) (Jefferies & Lambon Ralph, 2006;
Walker et al., 2011).

The relative preservation of phonological represen-
tations has been shown in studies examining the
tip-of-the-tongue state in aphasic patients. The tip-of-
the-tongue state is a phenomenon in which subjects
are unable to come up with a word but “feel” that they
know what the word is and, in fact, that the word is
on the “tip of their tongue.” Brown and McNeil (1966)
showed that normal individuals retain the sound
structure properties of words that they failed to
retrieve; they can identify its first letter, the number of
syllables it has, and words that are semantically
related to it. Although aphasics show a similar sensi-
tivity to the sound structure of words they cannot
name (Barton, 1971), Goodglass, Kaplan, Weintraub,
and Ackerman (1976) showed that conduction aphasics
were better able to recall the sound properties of

words compared with both Broca’s and Wernicke’s
aphasics. Thus, they suggested that the differences in
the pattern of performance reflected different stages in
word retrieval.

Despite the relative preservation of the lexical-
semantic and phonological structure of words in
Broca’s, conduction, and Wernicke’s aphasics, these
patients do show deficits in the various stages involved
in lexical access. In particular, a series of studies have
shown that Wernicke’s aphasics are able to activate lex-
ical candidates; however, the lexical competitors
remain active longer (or fail to get inhibited). In con-
trast, Broca’s aphasics also activate lexical candidates;
however, they are unable to resolve competition in
selecting the target word from among competing lexi-
cal candidates. These findings have been shown using
a variety of paradigms, including lexical decision
(Janse, 2006; Milberg, Blumstein, & Dworetzky, 1987)
and eyetracking (Yee, Blumstein, & Sedivy, 2008).
Additional support for selection deficits comes from
both verb generation (Thompson-Schill et al., 1998) and
lexical decision studies (Bedny, Hulbert, & Thompson-
Schill, 2007) that focused on lesion location, in this case
a portion of the inferior frontal gyrus (BA45), and not
clinical diagnosis of aphasia.

The lexical processing deficits of Broca’s and
Wernicke’s aphasics emerge whether the source of the
competition is semantic or phonological. For example,
in the semantic case, the patient must select a word
from competing meanings of ambiguous words pre-
sented in congruent and incongruent contexts (e.g., the
subject is required to make a lexical decision on the
third word of a triplet such as “coin-bank-money” ver-
sus “river-bank-money”) (Bedny et al., 2007; Milberg
et al., 1987). Another study required the patient to
select words that have high versus low selection
demands (e.g., the subject is asked to generate a verb
for the word “scissors” versus “ball”) (Thompson-
Schill et al., 1998).

Several paradigms have been used to investigate the
effects of resolving phonological competitors. One set
of experiments used eyetracking and examined the
potential effects of onset competitors in selecting a tar-
get word (Yee et al., 2008). Here, the subject was asked
to point to a picture given the auditory presentation of
a word from an array that included the picture of the
target word, a word with an onset competitor, and two
semantically and phonologically unrelated foils (e.g.,
the target word is “hammock” and the pictures include
“hammock,” “hammer,” “monkey,” and “chocolate”).
Another series of experiments examined the effects of
acoustically degraded prime stimuli on the magnitude
of semantic priming (Misiurski, Blumstein, Rissman, &
Berman, 2005; Utman, Blumstein, & Sullivan, 2001).
Stimulus pairs included semantically related stimuli
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with and without voicing competitors, “time-clock”
(with a voiced competitor “dime”) and “cat!dog”
(with no voiced competitor, “gat” is not a word).
Similar to normal individuals, Broca’s aphasics
showed semantic priming for phonologically clear,
semantically related pairs, and reduced semantic prim-
ing for degraded prime stimuli without a voiced com-
petitor. In contrast to normal individuals, Broca’s
aphasics lost priming only when the degraded prime
had a voiced competitor.

Taken together, these findings indicate that aphasic
patients have lexical processing impairments. In partic-
ular, aphasics retain the underlying semantic and pho-
nological representations of words, but they show
impairments in accessing them. Moreover, different pat-
terns of performance emerge between Broca’s and
Wernicke’s aphasics, suggesting that the basis of their
deficit differs (see Blumstein, 2009, for review; Janse,
2006). For Wernicke’s aphasics, word candidates stay
active longer either due to an inability to inhibit word
competitors or due to their overactivation. In contrast,
Broca’s aphasics show a deficit in selection processes
and an inability to select among competing semantic
and phonological competitors.

Neuroimaging findings support the view that both
spoken word production and word recognition pro-
cesses engage a temporoparietal and frontal network.
Semantic processing recruits both temporal and frontal
structures (see Binder et al., 2009 for a review);
selection among competing semantic alternatives
recruits the inferior frontal gyrus (Thompson-Schill,
D’Esposito, Aguirre, & Farah, 1997); and selection
among competing phonological alternatives also
recruits the inferior frontal gyrus as well as the poste-
rior superior temporal and supramarginal gyri (Righi,
Blumstein, Mertus, & Worden, 2010).

74.6 SYNTACTIC IMPAIRMENTS

As described, one of the clinical characteristics of
some Broca’s aphasics is agrammatism in speech out-
put in the context of generally good auditory compre-
hension. There is a long and controversial history of
the potential basis of the grammatical deficit in these
patients. Early hypotheses (Kolk & Heeschen, 1990;
Kolk & Van Grunsven, 1985) suggested that the deficit
reflected a compensatory mechanism of the patient to
provide the most semantic content with the least
amount of speech. In this view, the output disorder
reflects an “economy of effort” and thus is secondary
to nonfluent output and difficulty in producing and
articulating speech. Evidence in support of this view
came from analyses of the error patterns in production.
Results showed that there was not only a tendency to

omit function words but also a tendency to simplify
morphological structures, particularly in contexts
where the morphological ending was redundant (e.g.,
“two books” - “two book”) (Dick, Bates, Wulfeck,
Utman, & Gernsbacher, 2001). As shown by analyses
of inflected languages, morphological errors produced
by agrammatic aphasics were in fact substitutions of
one morphological ending for another, not a “loss” of
endings (Grodzinksy, 1990; Menn & Obler, 1990).
Analyses showed that there was a tendency to produce
a linguistically less marked structure such as a verb in
the present tense or in infinitival form rather than a
verb with a past tense or future tense inflection.

A series of seminal studies by Zurif and colleagues
(Caramazza & Zurif, 1976; Goodenough, Zurif, &
Weintraub, 1977; Zurif, Caramazza, & Myerson, 1972),
however, suggested that the agrammatic deficit of
Broca’s aphasics was not limited to speech production,
but rather was a “central” impairment affecting not
only speech production but also comprehension. This
was originally shown using a hierarchical clustering
paradigm in which subjects were presented the written
form of a sentence such as “the dog chased a cat”
(Zurif et al., 1972). With the sentence always in display,
subjects were given a random selection of three cards,
each containing one of the words in the sentence. They
were asked to put “the two words that went best
together.” Results showed that Broca’s aphasics did not
know where/how to cluster the function words. They
were as likely to cluster “the” and “a” with each other
than within their associated noun phrases. Thus,
Broca’s aphasics showed impairment in their linguistic
“intuitions” about the syntactic structure of sentences.

From there, a plethora of studies examined sentence
comprehension in aphasia focusing on syntactic struc-
tures. Results have shown that Broca’s aphasics dis-
played impairments in comprehending sentences
when the only cue to comprehension was syntax (e.g.,
“the lion chased the tiger” versus “the boy ate the
hamburger”) (Caramazza & Zurif, 1976). They had dif-
ficulty in understanding noncanonical syntactic struc-
tures such as passive sentences compared with active
sentences (“the girl is liked by the boy” versus “the
boy likes the girl”), syntactically complex compared
with simple sentences (“the boy who sees the man
likes the girl” versus “the boy likes the girl”) object-
embedded compared with subject-embedded sentences
(“the boy the girl likes reads a book” versus “the girl
likes the boy who reads the book”) and sentences that
did and did not contain traces (Caplan, Baker, &
Dehaut, 1985).

These findings gave rise to a large number of
hypotheses to characterize the underlying impairment,
the details of which are beyond the scope of
this article. The proposals are far-reaching,
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invoking either representational (Grodzinsky, 1986, 2000;
Mauner, Fromkin, & Cornell, 1993) or processing
deficits (Grodzinsky & Friederici, 2006; Love, Swinney,
Walenski, & Zurif, 2008) involving potential impair-
ments in syntactic structures governing movement and/
or binding (Choy & Thompson, 2010; Swinney & Zurif,
1995), thematic role assignment (Saffran, Schwartz, &
Linebarger, 1998), working memory or resource limita-
tions (Caplan & Waters, 1995; Carpenter, Miyake, &
Just, 1995), and time-course delay of processing (Ferrill,
Love, Walenski, & Shapiro, 2012; Love, Swinney, &
Zurif, 2001). See Chapter 47 (Rogalsky) of this volume
for further discussion.

Beyond the debate concerning the underlying
deficit in Broca’s aphasics, there is a more critical
issue—namely, is it truly the case that only Broca’s
aphasics display syntactic comprehension impair-
ments? Unfortunately, much of the literature examin-
ing the basis of syntactic impairments has tested only
Broca’s aphasics. Thus, it is not clear whether other
types of patients also show impairments. Those stud-
ies that have looked at other patient groups or patients
with different lesion sites show similar patterns of
impairment as those of Broca’s aphasics (Caplan et al.,
1995; Caplan, Hildebrandt, & Makris, 1996; Dick et al.,
2001; Zurif & Caramazza, 1976). It is not surprising to
find that structurally complex sentences are more diffi-
cult to understand not only for aphasic patients but
also for neurologically intact subjects tested under
adverse listening conditions (Dick et al., 2001; cf. also
Obleser, Meyer, & Friederici, 2011).

What is not clear from these studies is whether the
basis of the impairment is different across aphasia syn-
dromes. Although some hypotheses have been pro-
posed (Friederici, 2011), no studies have yet been
conducted that distinguish behavioral performance of
patients based on some operational measure of the
purported functional deficit. One challenge inherent in
this research is assessing syntactic comprehension
independent of meaning.

The neuroimaging literature has shown similar con-
flicting findings. Some studies have shown selective
activation of the inferior frontal gyrus in auditory pro-
cessing of syntactic structure (Moro et al., 2001;
Stromswold, Caplan, Alpert, & Rauch, 1996), and
others have shown a broad fronto-temporo-parietal
network (Fedorenko, Nieto-Castañon, & Kanwisher,
2012; Friederici, Meyer, & von Cramon, 2000; Just,
Carpenter, Keller, Eddy, & Thulborn, 1996; see Kaan &
Swaab, 2002 for a review).

Although it remains unclear whether there are func-
tional distinctions in the auditory processing of syntac-
tic structure as a function of clinical syndrome and/or
lesion site, the original observation that only Broca’s
aphasics display agrammatism in production remains.

This leaves open the possibility that these patients do
have a selective syntactic impairment, but it is restricted
to spoken language production. It is for future research
to determine whether this is the case and what the
underlying basis of this impairment may be.

74.7 CONCLUSION

Psycholinguistic studies of the clinical syndromes of
aphasia have provided a unique window into the neu-
robiology of language. Such studies offer insights that
behavioral and neuroimaging studies alone cannot.
Behavioral studies do not provide evidence of
the neural systems underlying a particular deficit.
Neuroimaging studies are unable to determine
whether activation of a neural area indicates that it is
necessary for a particular linguistic function. Coupled
with these approaches, technological advances now
available for detailed mapping of lesion profiles cou-
pled with careful clinical examination and classifica-
tion of patients hold the promise of not only gaining a
deeper understanding of the functional and neural
architecture of language but also providing critical
insights into the bases of language deficits that can
be used in developing rehabilitation programs for
patients with aphasia.
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