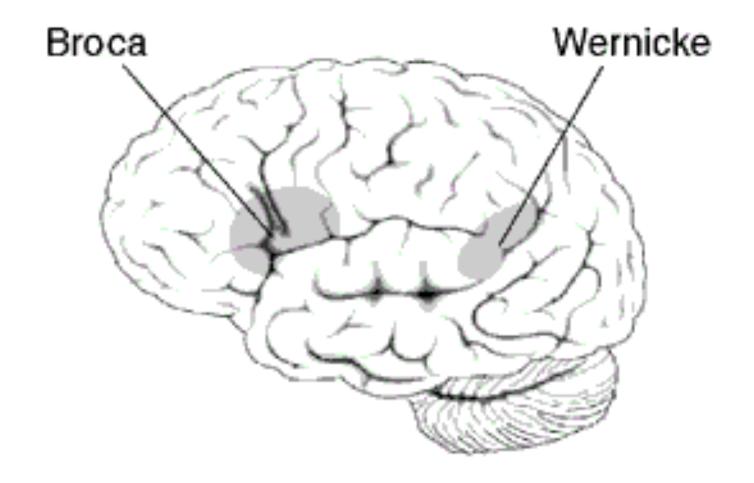
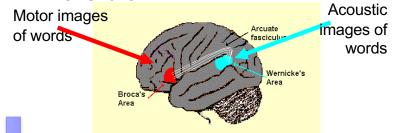
Main bodies of research in the cognitive neuroscience of combinatory syntax & semantics


Violation studies

- Comprehension of expressions that violate your knowledge of how words should combine together
- □ Primarily EEG
- Hemodynamic research on Broca's area
 - Long debate about whether and how Broca's area contributes to syntactic processing
- Basic composition
 - What neural activity reflects the basic operation of composing elements together into larger expressions?

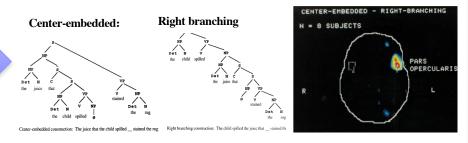

Wernicke's area

Broca's an

How did Broca enter the neuroscience of syntax?

- 1. Paul Broca & Broca's aphasia
- First localization of language function (1861).
- Patient could only produce a single syllable "tan".
- Severe production problem.
 - Broca's aphasia
- Lesion in the posterior part of the left inferior frontal gyrus
 - Broca's area
- 3. The classic model of language in the brain

4. Broca' s aphasia not just a production problem


- Caramazza & Zurif (1976): Broca's aphasics fail on sentences whose interpretation depends on the right syntax. For example, movement that reverses the canonical order of agent and patient elicits errors.
 - Easy: The girl chased the boy.
 - Hard: The boy was chased _ by the girl ...

- 2. Carl Wernicke and Wernicke's aphasia
- A language problem distinct from Broca's aphasia first described by Carl Wernicke (1874).
- Damage to the boundary of the temporal and parietal lobes -->
 Wernicke's area.

- Fluent but disordered speech. Similar writing.
- Impaired understanding ofspeech. Impaired reading.
 - 4. Stromswold et al. (1996): Localization of syntactic comprehension by positron emission tomography
 - Center-embedded structures activate Broca's are more than right-branching ones.

What google had to say about "syntax in the brain" today (Oct 26 2020)

syntax in the brain						× 🕴 ९
Q All	🖾 Images	► Videos	🗉 News	🗷 Shopping	: More	Settings Tools
About 5	51,300,000 rest	ults (0.45 seco	onds)			

The IFG is a region of the **brain** which is found to be the most important aspect within a **syntactic** processing neural net. The IFG is responsible for parsing. It has been postulated that when it comes to **syntactic** knowledge, the left anterior **brain** appears to be involved in this type of processing. Jan 25, 2019

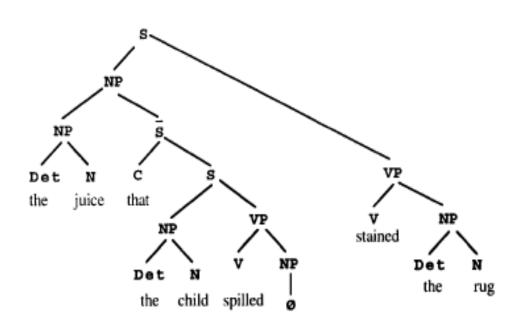
en.wikiversity.org > wiki > Syntax_in_the_Brain

Psycholinguistics/Syntax in the Brain - Wikiversity

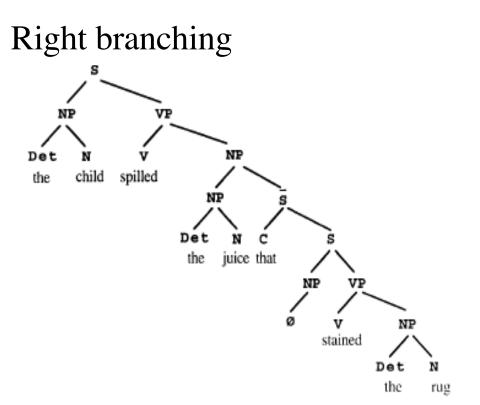
About Featured Snippets

Feedback

What does the evidence look like?


Stromswold et al. (1996): Broca's area lights up for complex syntax

- A PET study contrasting center-embedded and right-branching structures.
 - Center-embedded:
 The juice that the child spilled _____ *stained the rug*.
 - Right branching:
 The child spilled the juice that _____ *stained the rug*.
- Lots of psycholinguistic evidence that center-embedded structures are much harder to comprehend than right-branching structures.


Complex vs. simple sentences

Stromswold et al., 1996:

Center-embedded:

Center-embedded construction: The juice that the child spilled _____ stained the rug

Right branching construction: The child spilled the juice that __ stained the rug

Blocked design.

Complex vs. simple sentences

Stromswold et al., 1996: Broca's area

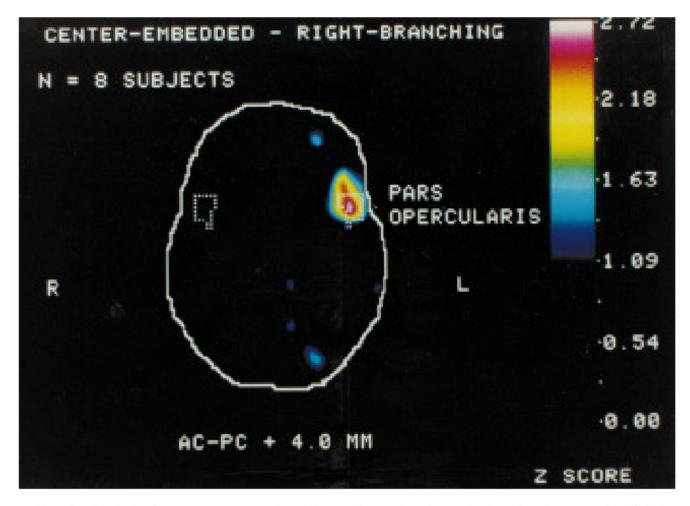


FIG. 2. Statistical parameter map (omnibus subtraction image) showing increased rCBF in the pars opercularis of the left hemisphere during judgments of semantic plausibility of sentences with center-embedded compared to right-branching relative clauses (condition 1 -condition 2).

PET Studies of Syntactic Processing with Auditory Sentence Presentation

David Caplan,* Nathaniel Alpert,† and Gloria Waters*,‡

*Neuropsychology Laboratory, Department of Neurology, and †Division of Nuclear Medicine, Department of Radiology, Massachusetts General Hospital, Fruit Street, Boston, Massachusetts 02114; and ‡Department of Communication Disorders, Boston University

OBJECT CLEFT: SUBJECT CLEFT:

It was **the juice** that the child enjoyed _ It was **the child** that_ enjoyed the juice. VS.

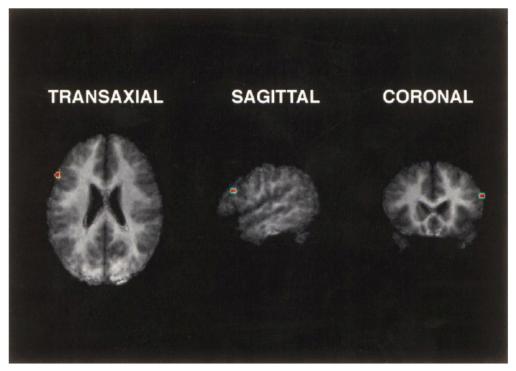


FIG. 1. SPM image of the brain showing increased blood flow in Broca's area when subjects processed auditorily presented cleft object compared to cleft subject sentences.

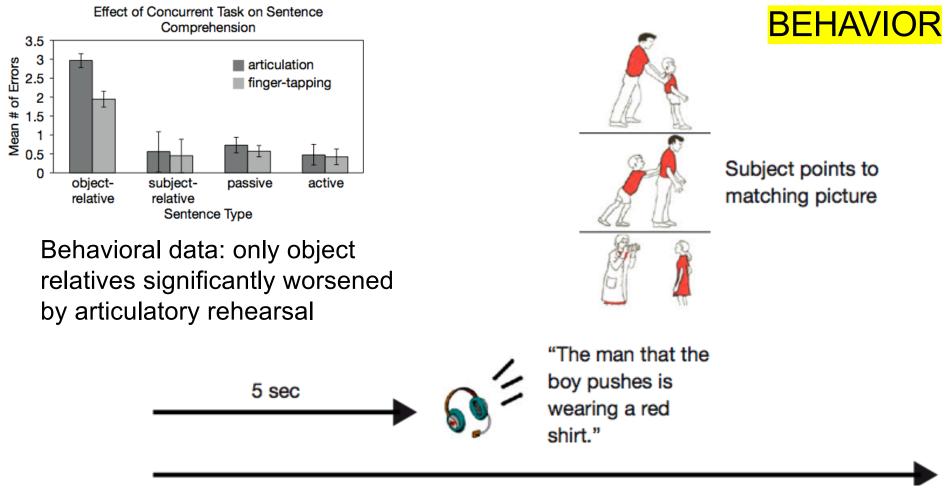
Broca's activation due to syntax or...

- Increased working memory demands?
- How can we test this?

Broca's area, sentence comprehension, and working memory: an fMRI study

Corianne Rogalsky, William Matchin and Gregory Hickok*

Towards mechanism:

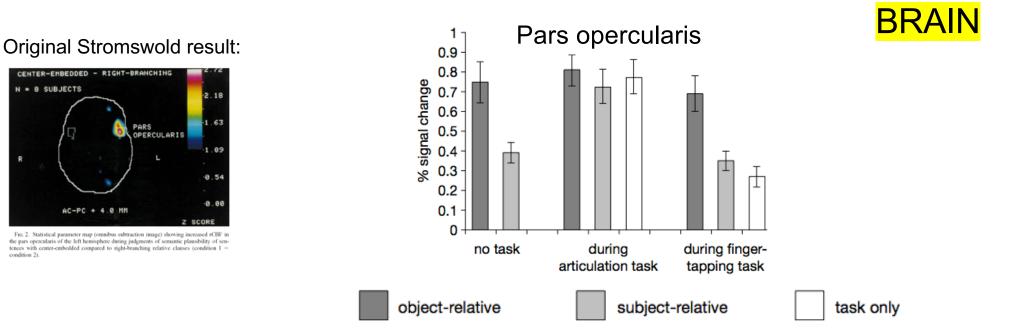

Verbal working memory and articulatory rehearsal

 The decay of phonological information can be prevented by continuously articulating it subvocally (Baddeley's "phonological loop").

Hypothesis:

- Articulatory rehearsal aids the comprehension of syntactically complex sentences.
- Broca's area (as a production area) houses the articulatory rehearsal mechanism.

Rogalsky, Matchin & Hickok (2008): Does a secondary task of articulatory rehearsal eliminate a complexity effect in Broca's area?



"ba da ga da...ba da ga da"

Rogalsky, Matchin & Hickok (2008): Does a secondary task of articulatory rehearsal eliminate a complexity effect in Broca's area?

- fMRI study: participants judge subject and object
 BRAI relatives for plausibility.
 - Object Relative: The money that the robber stole was in the bank vault.
 - Subject Relative: The robber that stole the money was in the bank vault.
 - □ Object Relative: #The robber that the money stole was in the bank vault.
 - Subject Relative: #The money that stole the robber was in the bank vault.

Rogalsky, Matchin & Hickok (2008): Does a secondary task of articulatory rehearsal eliminate a complexity effect in Broca's area?

- Articulatory rehearsal elevates the activation level of the subject relatives, such as that no OR vs. SR effect is observed. Under this secondary task, Broca's activity is saturated.
- Evidence for articulatory rehearsal as a possible source of the syntactic "complexity" effect in Broca's region.
- Does not show though that the LIFG increase for ORs during "no task" is caused by articulatory rehearsal.

Broca.. Production.. Syntax..

- Still no consensus on the role of the LIFG in language/sentence processing.
- However, if comprehension involves some production mechanisms, then some engagement of Broca's area could be expected in comprehension even if the region is fundamentally a production region.
- Further reading:

FEATURE ARTICLE

The Cortical Organization of Syntax

William Matchin¹ and Gregory Hickok^{2,3}

¹Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, 29208, USA, ²Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, 92697, USA ³Department of Language Science, University of California, Irvine, Irvine, CA, 92697, USA

Address correspondence to William Matchin. Discovery 1 Room 202D, 915 Greene St., Columbia SC 29208. Email: matchin@mailbox.sc.edu