Innovation, Reallocation and Growth¹

Daron Acemoglu MIT

NYU, April 11, 2013.

¹ Joint with Ufuk Akcigit (U. Penn), Nick Bloom (Stanford) and Bill Kerr (Harvard)

Motivation (I)

- Recent economic recession has reopened the debate on industrial policy.
- In October 2008, the US government bailed out GM and Chrysler. (Estimated cost, \$82 Billion)
- Similar bailouts in Europe: Estimated cost €1.18 trillion in 2010, 9.6% of EU GDP.
- Many think that this was a success from a short-term perspective, because these interventions
 - protected employment, and
 - encouraged incumbents to undertake greater investments,

Motivation (II)

- But what was the cost of the bailout?
 - More generally, what are the costs of "industrial policy"?
- Bailouts or support for incumbents could increase growth if there is insufficient entry or if they support incumbent R&D.
 - In fact, this is recently been articulated as an argument for industrial policy.
- They may reduce growth by
 - preventing the entry of more efficient firms and
 - slowing down the reallocation process.
- Reallocation potentially important, estimated sometimes to be responsible for up to 70-80% of US productivity growth.

3

Question

- General question: What are the effects of industrial policies on aggregate innovation and productivity growth?
- Specific channel: Firm innovation, dynamics, selection and reallocation.

4

Motivation & Question (III)

- But we need a framework to answer these questions.
- Such a framework should accommodate:
 - different types of policies (subsidies to operation vs R&D),
 - general equilibrium structure (for the reallocation aspect),
 - exit for less productive firms/products (so that the role of subsidies that directly or indirectly prevent exit can be studied), and
 - meaningful heterogeneity at the firm level (important for matching the data at a minimal level and also for selection effects).

Why Heterogeneity Matters

1A: Transition Rates

1B: R&D Intensity

1C: Sales Growth

1D: Employment Growth

Features of the Model

- Starting point: Klette and Kortum's (2004) model of micro innovation building up to macro structure.
 - But Klette and Kortum's model incorporates no heterogeneity, no reallocation or no exit.
- Our framework:
 - general equilibrium: fixed supply of skilled labor
 - exit for less productive firms/products: due to fixed cost of operation
 - meaningful heterogeneity at the firm level: firms enter as high or low type in terms of innovativeness and firm type evolves over time
 selection

, -----

Summary of Results

- The model provides a fairly good fit to micro and macro data.
- Using the estimate of parameter values, industrial policy in the form
 of subsidies to incumbent R&D or subsidies to the continued
 operation of incumbents reduces growth—e.g., a subsidy worth 5% of
 GDP reduces long-run growth from 2.24% to 2.16%.
- This is not because the equilibrium is efficient. In fact, it is highly inefficient.
 - A social planner can increase growth to 3.8% (without manipulating markups).
- A (large) tax on continued operations plus a small subsidy to incumbent R&D can also increase growth to 3.11%.
 - Works by freeing resources to be used in R&D by high-type firms—selection effect.
- Bottom line:optimal policy should go in the opposite direction of industrial policy—to leverage selection and free resources away from inefficient incumbents.

Outline

- Introduction.
- Model.
- Estimation strategy & results.
- Policy experiments.

Outline

MODEL

Baseline Model: Preferences

- Simplified model (abstracting from heterogeneity and non-R&D growth).
- Infinite-horizon economy in continuous time.
- Representative household:

$$U = \int_0^\infty \exp\left(-\rho t\right) \frac{C\left(t\right)^{1-\theta} - 1}{1 - \theta} dt.$$

- Inelastic labor supply, no occupational choice:
 - Unskilled for production: measure 1, earns w^u
 - Skilled for R&D: measure L, earns w^s .
- Hence the budget constraint is

$$C(t) + \dot{A}(t) \le w^{u}(t) + w^{s}(t) \cdot L + r(t) \cdot A(t)$$

• Closed economy and no investment, resource constraint:

$$Y(t) = C(t)$$
.

Baseline Model: Preferences

- Simplified model (abstracting from heterogeneity and non-R&D growth).
- Infinite-horizon economy in continuous time.
- Representative household:

$$U = \int_0^\infty \exp\left(-\rho t\right) \frac{C\left(t\right)^{1-\theta} - 1}{1 - \theta} dt.$$

- Inelastic labor supply, no occupational choice:
 - Unskilled for production: measure 1, earns w^u
 - Skilled for R&D: measure L, earns w^s.
- Hence the budget constraint is

$$C + \dot{A} \leq w^u + w^s \cdot L + r \cdot A$$

• Closed economy and no investment, resource constraint:

$$Y = C$$

Final Good Technology

Unique final good Y:

$$Y = \left(\int_{\mathcal{N}} y_j^{\frac{\varepsilon-1}{\varepsilon}} dj\right)^{\frac{\varepsilon}{\varepsilon-1}}.$$

- $\mathcal{N} \subset [0,1]$ is the set of *active* product lines.
- ullet The measure of ${\mathcal N}$ is less than 1 due to
 - exogenous destructive shock
 - Obsolescence

Intermediate Good Technology

• Each intermediate good is produced by a monopolist:

$$y_{j,f} = q_{j,f}I_{j,f}$$

 $q_{i,f}$: worker productivity, $l_{i,f}$: number of workers.

Marginal cost :

$$MC_{j,f} = \frac{w^u}{q_{j,f}}.$$

- Fixed cost of production, ϕ in terms of skilled labor.
- Total cost

$$TC_{j,f}(y_{j,f}) = w^s \phi + w^u \frac{y_{j,f}}{q_{j,f}}.$$

Definition of a Firm

A firm is defined as a collection of product qualities

Firm
$$f = \mathcal{Q}_f \equiv \left\{q_f^1, q_f^2, ..., q_f^n\right\}$$
.

 $n_f \equiv |\mathcal{Q}_f|$: is the number of product lines of firm f.

Relative Quality

• Define aggregate quality as

$$Q \equiv \left(\int_{\mathcal{N}} q_j^{\varepsilon-1} dj\right)^{rac{1}{\varepsilon-1}}.$$

In equilibrium,

$$Y = C = Q$$

• Define relative quality:

$$\hat{q}_j \equiv \frac{q_j}{w^u}$$
.

R&D and Innovation

Innovations follow a "controlled" Poisson Process

$$X_f = n_f^{\gamma} h_f^{1-\gamma}.$$

 X_f : flow rate of innovation

 n_f : number of product lines.

 h_f : number of researchers (here taken to be regular workers allocated to research).

• This can be rewritten as per product innovation at the rate

$$x_f \equiv \frac{X_f}{n_f} = \left(\frac{h_f}{n_f}\right)^{1-\gamma}$$
.

• Cost of R&D as a function of per product innovation rate x_f :

$$w^{s}G(x_{f})\equiv w^{s}n_{f}x_{f}^{\frac{1}{1-\gamma}}.$$

Innovation by Existing Firms

- Innovations are *undirected* across product lines.
- Upon an innovation:
 - \bigcirc firm f acquires another product line i
 - 2 if technology in j is active:

$$q(j, t + \Delta t) = (1 + \lambda) q(j, t).$$

3 if technology in j is not active, i.e., $j \notin \mathcal{N}$, a new technology is drawn from the steady-state distribution of relative quality, $F(\hat{q})$.

Entry and Exit

- A set of potential entrants invest in R&D.
- Exit happens in three ways:
 - **Quantize Creative destruction**. Firm f will lose each of its products at the rate $\tau > 0$ which will be determined endogenously in the economy.
 - **2** Exogenous destructive shock at the rate φ .
 - **Obsolescence**. Relative quality decreases due to the increase in the wage rate, at some point leading to exit.

$$\hat{q} = \frac{q}{w}$$

$$\hat{q} = \frac{q}{w \uparrow}$$

Without a fixed cost

Static Equilibrium

- Drop the time subscripts.
- Isoelastic demands imply the following monopoly price and quantity

$$p_{j,f}^* = \left(rac{arepsilon}{arepsilon - 1}
ight)rac{1}{\hat{q}_j} ext{ and } c_j^* = \left(rac{arepsilon - 1}{arepsilon}\hat{q}_j
ight)^arepsilon Y$$

In equilibrium,

$$Y = C = Q$$

and

$$w^u = \frac{\varepsilon - 1}{\varepsilon} Q.$$

• Therefore the gross equilibrium (before fixed costs) profits from a product with relative quality \hat{q}_j are:

$$\pi\left(\hat{q}_{j,f}
ight)=\hat{q}_{j}^{arepsilon-1}\left(rac{\left(arepsilon-1
ight)^{arepsilon-1}}{arepsilon^{arepsilon}}
ight)Y.$$

Dynamic Equilibrium

Let us also define normalized values as

$$\tilde{V} \equiv \frac{V}{Y}, \ \tilde{\pi}\left(\hat{q}_{j,f}\right) = \frac{\pi\left(\hat{q}_{j,f}\right)}{Y}, \ \tilde{w}^u \equiv \frac{w^u}{Y} \ \text{and} \ \tilde{w}^s \equiv \frac{w^s}{Y}.$$

Dynamic Equilibrium (continued)

$$r^{*}\tilde{V}\left(\hat{\mathcal{Q}}_{f}\right) = \begin{bmatrix} \sum_{\hat{q}_{j,f} \in \hat{\mathcal{Q}}_{f}} \left\{ \begin{array}{c} \tilde{\pi}\left(\hat{q}_{jf}\right) - \tilde{w}^{s}\phi_{j} \\ + \tilde{V} \\ + \tau \left[\tilde{V}\left(\hat{\mathcal{Q}}_{f} \setminus \left\{\hat{q}_{jf}\right\}\right) - \tilde{V}\left(\hat{\mathcal{Q}}_{f}\right)\right] \end{array} \right\} \\ \left| \hat{\mathcal{Q}}_{f} \right| \max_{\mathsf{x}_{f}} \left\{ \begin{array}{c} -\tilde{w}G\left(\mathsf{x}_{f}\right) \\ + \mathsf{x}_{f} \left[\mathbb{E}_{\hat{q}}\tilde{V}\left(\hat{\mathcal{Q}}_{f} \cup \left(1 + \lambda\right)\hat{q}_{j',f}\right) - \tilde{V}\left(\hat{\mathcal{Q}}_{f}\right)\right] \end{array} \right\} \\ \left| + \varphi\left[0 - \tilde{V}\left(\hat{\mathcal{Q}}_{f}\right)\right] \end{aligned}$$

 τ : creative destruction rate in the economy.

Dynamic Equilibrium (continued)

$$r^{*}\tilde{V}\left(\hat{\mathcal{Q}}_{f}\right) = \begin{bmatrix} \sum_{\hat{q}_{j,f} \in \hat{\mathcal{Q}}_{f}} \left\{ \begin{array}{c} \tilde{\pi}\left(\hat{q}_{jf}\right) - \tilde{w}^{s}\phi_{j} \\ + \frac{\partial \tilde{V}}{\partial \hat{q}_{jf}} \frac{\partial \hat{q}_{jf}}{\partial w^{u}(t)} \frac{\partial w^{u}(t)}{\partial t} \\ + \tau \left[\tilde{V}\left(\hat{\mathcal{Q}}_{f} \setminus \left\{\hat{q}_{jf}\right\}\right) - \tilde{V}\left(\hat{\mathcal{Q}}_{f}\right)\right] \end{array} \right\} \\ = \begin{bmatrix} \hat{\mathcal{Q}}_{f} \mid \max_{\mathsf{x}_{f}} \left\{ \begin{array}{c} -\tilde{w}G\left(\mathsf{x}_{f}\right) \\ + \mathsf{x}_{f}\left[\mathbb{E}_{\hat{q}}\tilde{V}\left(\hat{\mathcal{Q}}_{f} \cup \left(1 + \lambda\right)\hat{q}_{j',f}\right) - \tilde{V}\left(\hat{\mathcal{Q}}_{f}\right)\right] \end{array} \right\} \\ + \varphi \left[0 - \tilde{V}\left(\hat{\mathcal{Q}}_{f}\right)\right] \end{bmatrix}$$

 τ : creative destruction rate in the economy.

Franchise and R&D Option Values

Lemma The normalized value can be written as the sum of franchise values:

$$ilde{V}\left(\hat{\mathcal{Q}}_{f}
ight)=\sum_{\hat{q}\in\hat{\mathcal{Q}}_{f}}\mathrm{Y}\left(\hat{q}
ight)$$
 ,

where the franchise value of a product of relative quality \hat{q} is the solution to the differential equation (iff $\hat{q} \geq \hat{q}_{min}$):

$$r\mathbf{Y}\left(\hat{q}\right)-\frac{\partial\mathbf{Y}\left(\hat{q}\right)}{\partial\hat{q}}\frac{\partial\hat{q}}{\partial\mathbf{w}^{u}\left(t\right)}\frac{\partial\mathbf{w}^{u}\left(t\right)}{\partial t}=\tilde{\pi}\left(\hat{q}\right)-\tilde{\mathbf{w}}^{u}\phi+\Omega-\left(\tau+\phi\right)\mathbf{Y}\left(\hat{q}\right),$$

where Ω is the R&D option value of holding a product line,

$$\Omega \equiv \max_{x_{f}>0} \left\{ -\tilde{w}^{s}G\left(x_{f}\right) + x_{f}\left(\mathbb{E}_{\hat{q}}\tilde{V}\left(\hat{\mathcal{Q}}_{f} \cup \left(1 + \lambda\right)\hat{q}_{j'f}\right) - \tilde{V}\left(\hat{\mathcal{Q}}_{f}\right)\right) \right\},$$

Moreover, exit follows a cut-off rule: $\hat{q}_{min} \equiv \pi^{-1} \left(\tilde{w}^s \phi - \Omega \right)$.

Equilibrium Value Functions and R&D

Proposition

Equilibrium normalized value functions are:

$$\mathbf{Y}\left(\hat{q}
ight) \ = \ rac{ ilde{\pi}\left(\hat{q}
ight)}{r+ au+arphi+arphi+g\left(arepsilon-1
ight)} \left[1-\left(rac{\hat{q}_{\min}}{\hat{q}}
ight)^{rac{r+ au+arphi+g\left(arepsilon-1
ight)}{g}}
ight] \ + rac{\Omega- ilde{w}^{s}\phi}{r+ au+arphi} \left[1-\left(rac{\hat{q}_{\min}}{\hat{q}}
ight)^{rac{r+ au+arphi}{g}}
ight],$$

and equilibrium R&D is

$$x^{*}\left(\hat{q}
ight)=x^{*}=\left\lceil rac{\left(1-\gamma
ight)\mathbb{E}_{\hat{q}}Y\left(\hat{q}
ight)}{ ilde{w}^{s}}
ight
ceil^{rac{1-\gamma}{\gamma}}.$$

Entry

Entry by outsiders can now be determined by the free entry condition:

$$\max_{\boldsymbol{x}^{entry}>0}\left\{-w^{s}\phi+\boldsymbol{x}^{entry}\mathbb{E}V^{entry}\left(\hat{\boldsymbol{q}},\theta\right)-w^{s}G\left(\boldsymbol{x}^{entry},\theta^{E}\right)\right\}=0$$

where $G\left(x^{entry}, \theta^E\right)$, as specified above, gives a number of skilled workers necessary for a firm to achieve an innovation rate of x^{entry} (with productivity parameter θ^E).

- $X^{entry} \equiv mx^{entry}$ is the total entry rate where
 - m is the equilibrium measure of entrants, and
 - x^{entry} innvation rate per entrant.

Labor Market Clearing

Unskilled labor market clearing:

$$1=\int_{\mathcal{N}(t)}I_{j}\left(w^{u}\right) dj.$$

Skilled labor market clearing

$$L^{s} = \int_{\mathcal{N}(t)} \left[\phi + h\left(w^{s}\right)\right] dj + m\left[\phi + G\left(x^{entry}, \theta^{E}\right)\right].$$

Transition Equations

- Finally, we need to keep track of the distribution of relative quality → stationary equilibrium distribution of relative quality F.
- This can be done by writing transition equations describing the density of relative quality.

FULL MODEL

Preferences and Technology in the General Model

- Same preferences.
- Introduce managerial quality affecting the rate of innovation of each firm.
- Some firms start as more innovative than others, over time some of them lose their innovativeness.
 - Young firms are potentially more innovative but also have a higher rate of failure.
- Introduce non-R&D growth (so as not to potentially exaggerate the role of R&D and capture potential advantages of incumbents).

R&D and Innovation

- Innovations follow a controlled Poisson Process.
- Flow rate of innovation for leader and follower given by

$$X_f = (n_f \theta_f)^{\gamma} h_f^{1-\gamma}.$$

 n_f : number of product lines.

 θ_f : firm type (management quality).

 h_f : number of researchers.

Innovation Realizations

With R&D

- Innovations are undirected within the industry.
- After a successful innovation, innovation is realized in a random product line j. Then:
 - \bullet firm f acquires product line j
 - 2 technology in line j improves

$$q(j, t + \Delta t) = (1 + \lambda) q(j, t)$$
.

Without R&D

ullet Firms receive a product line for free at the rate arrho .

Definition of a Firm

 A firm is again defined as a technology pair and a management quality pair

Firm
$$f \equiv (Q_f, \theta_f)$$
,

where

$$Q_f \equiv \left\{q_f^1, q_f^2, ..., q_f^n\right\}.$$

• $n_f \equiv |\mathcal{Q}_f|$: is the number of product lines owned by firm f.

R&D

Entry and Exit

- There is a measure of potential entrants.
- Successful innovators enter the market.
- ullet At the time of initial entry, each firm draws a management quality heta :

$$\Pr\left(\theta = \theta^H\right) = \alpha$$
 $\Pr\left(\theta = \theta^L\right) = 1 - \alpha$

where $\alpha \in (0,1)$ and $\theta^H > \theta^L > 0$.

Exit happens in three ways as in the baseline model.

Maturity Shock

ullet Over time, high-type firms become low-type at the rate u>0 :

$$\theta^H \to \theta^L$$
.

• Convenient to capture the possibility of once-innovative firms now being inefficient (and the use of skilled labor).

Equilibrium

• Equilibrium definition and characterization similar to before (with more involved value functions and stationary transition equations).

DATA AND ESTIMATION

Data: LBD, Census of Manufacturing and NSF R&D Data

- Sample from combined databases from 1987 to 1997.
- Longitudinal Business Database (LBD)
 - Annual business registry of the US from 1976 onwards.
 - Universe of establishments, so entry/exit can be modeled.
- Census of Manufacturers (CM)
 - Detailed data on inputs and outputs every five years.
- NSF R&D Survey.
 - Firm-level survey of R&D expenditure, scientists, etc.
 - Surveys with certainty firms conducting \$1m or more of R&D.
- USPTO patent data matched to CM.
- Focus on "continuously innovative firms":
 - I.e., either R&D expenditures or patenting in the five-year window surrounding observation conditional on existence.

Data Features and Estimation

- 17,055 observations from 9835 firms.
- Accounts for 98% of industrial R&D.
- Relative to the universal CM, our sample contains over 40% of employment and 65% of sales.
- "Important" small firms also included:
 - of the new entrants or very small firms that later grew to have more than 10,000 employees or more than \$1 billion of sales in 1997, we capture, respectively, 94% at 80%.
- We use Simulated Method of Moments on this dataset to estimate the paremeters the parameters of the model.

Creating Moments from the Data

- We target 21 moments to estimate 12 parameters.
- Some of the moments are:
 - Firm entry/exit into/from the economy by age and size.
 - Firm size distribution.
 - Firm growth by age and size.
 - R&D intensity (R&D/Sales) by age and size.
 - Share of entrant firms.

RESULTS

Parameters

Table 1. Parameter Estimates

#	Parameter	Description	Value
1.	ε	CES	1.701
2.	φ	Fixed cost of operation	0.032
3.	L ^S	Measure of high-skilled workers	0.078
4.	θ^H	Innovative capacity of high-type firms	0.216
5.	θ^L	Innovative capacity of low-type firms	0.070
6.	θ^{E}	Innovative capacity of entrants	0.202
7.	α	Probability of being high-type entrant	0.428
8.	ν	Transition rate from high-type to low-type	0.095
9.	λ	Innovation step size	0.148
10.	γ	Innovation elasticity wrt knowledge stock	0.637
11.	φ	Exogenous destruction rate	0.016
12.	Q	Non-R&D innovation arrival rate	0.012

Table 2. Moment Matching

#	Moments	model	data	#	Moments	model	data
1.	Firm Exit (small)	0.086	0.093	12.	Sales Gr. (small)	0.115	0.051
2.	Firm Exit (large)	0.060	0.041	13.	Sales Gr. (large)	-0.004	0.013
3.	Firm Exit (young)	0.078	0.102	14.	Sales Gr. (young)	0.070	0.071
4.	Firm Exit (old)	0.068	0.050	15.	Sales Gr. (old)	0.030	0.014
5.	Trans. large-small	0.024	0.008	16.	R&D/Sales (small)	0.097	0.099
6.	Trans. small-large	0.019	0.019	17.	R&D/Sales (large)	0.047	0.042
7.	Prob. small	0.539	0.715	18.	R&D/Sales (young)	0.083	0.100
8.	Emp. Gr. (small)	0.063	0.051	19.	R&D/Sales (old)	0.061	0.055
9.	Emp. Gr. (large)	-0.007	0.013	20.	5-year Ent. Share	0.363	0.393
10.	Emp. Gr. (young)	0.040	0.070	21.	Aggregate growth	0.022	0.022
11.	Emp. Gr. (old)	0.010	0.015				

2A: Transition Rates

2B: R&D Intensity

2C: Sales Growth

2D: EMPLOYMENT GROWTH

Non-Targeted Moments

Table 3: Non-targeted Moments

Moments	Model	Data
Corr(exit prob, R&D intensity)	0.04	0.05
Exit prob of low-R&D-intensive firms	0.36	0.32
Exit prob of high-R&D-intensive firms	0.37	0.34
Corr(R&D growth, emp growth)	0.48	0.19
Share firm growth due to R&D	0.77	0.73
Ratio of top 7.2% to bottom 92.8% income	13.4	9.3

Comparison to Micro Estimates

- Estimates of the elasticity of patents (innovation) to R&D expenditures (e.g., Griliches, 1990):
 - [0.3, 0.6]
 - This corresponds to 1γ , so a range of [0.4, 0.7] for γ .
 - Our estimate is in the middle of this range.
- Use IV estimates from R&D tax credits.
 - US spending about \$2 billion with large cross-state over-time variation.
 - Literature estimates:

$$\log(R\&D_{i,t}) = \alpha_i + \beta_t + \gamma \log(R\&D_Cost_of_Capital_{i,t})$$

- Bloom, Griffith and Van Reenen (2002) find -1.088 (0.024) on a cross-country panel. Similar estimates from Hall (1993), Baily and Lawrence (1995) and Mumuneas and Nadiri (1996).
- In the model, $\ln R\&D = \frac{\gamma-1}{\gamma} \ln (c_{R\&D}) + \text{constant.}$
- ullet So approximately $\gamma pprox$ 0.5, close to our estimate of $\gamma =$ 0.637.

POLICY EXPERIMENTS

Baseline Results

Table 4. Baseline Model

x ^{entry}	x ^l	x ^h	m	Φ^{I}	Φ^h	$\hat{q}_{I, min}$	$\hat{q}_{h, min}$	g	Wel
8.46	2.80	9.58	73.6	71.16	24.53	13.90	0.00	2.24	100

Note: All numbers except wage ratio and welfare are in percentage terms.

g: growth rate

 x^{out} : entry rate

 x^{low} : low-type innv rate

 x^{high} : high-type innv rate

 Φ^{low} : fraction of low p. lines

 Φ^{high} : fraction of high p. lines

 $\hat{q}_{I,\mathrm{min}}$: low-type cutoff quality

 $\hat{q}_{h, \mathsf{min}}$: high-type cutoff quality

wel: welfare in cons equiv.

Relative Quality Distribution

• Explains why very little obsolescence of high-type products.

Policy Analysis: Subsidy to Incumbent R&D

Table 4. Baseline Model

_										
	x ^{entry}	x^{I}	x^h	m	Φ'	Φ^h	$\hat{q}_{I,\mathrm{min}}$	$\hat{q}_{h, ext{min}}$	g	Wel
	8.46	2.80	9.58	73.6	71.16	24.53	13.90	0.00	2.24	100

• Use 1% and 5% of GDP, resp., to subsidize incumbents R&D:

TABLE 5A. INCUMBENT R&D SUBSIDY ($s_i = 15\%$)

Xentry	X'	X''	m	Φ'	Φ''	$\hat{q}_{I, min}$	$\hat{q}_{h, min}$	g	Wel
8.46	3.05	10.56	68.1	70.74	24.96	13.40	0.00	2.23	99.86
	TA	BLE 5B.	INCU	MBENT	R&D S	UBSIDY	$(s_i = 39)$	9%)	
x ^{entry}	x ^l	x ^h	m	Φ^{I}	Φ^h	$\hat{q}_{I,\mathrm{min}}$	$\hat{q}_{h, \min}$	g	Wel
<i>x</i> ^{<i>entry</i>} 8.46			•••		Φ^{h} 25.97			g 2.16	Wel 98.48

Policy Analysis: Subsidy to the Operation of Incumbents

Table 4. Baseline Model

x ^{entry}	x ^l	x ^h	m	Φ^{I}	Φ^h	$\hat{q}_{I,\mathrm{min}}$	$\hat{q}_{h, min}$	g	Wel
8.46	2.80	9.58	73.6	71.16	24.53	13.90	0.00	2.24	100

• Use 1% of GDP to subsidize operation costs of incumbents:

Table 6. Operation Subsidy ($s_0 = 6\%$)

x ^{entry}	x ^l	x ^h	m	Φ^I	Φ^h	$\hat{q}_{I, min}$	$\hat{q}_{h, min}$	g	Wel
8.46	2.80	9.59	73.7	71.30	24.52	11.74	0.00	2.22	99.82

• Now an important negative selection effect.

Policy Analysis: Entry Subsidy and Selection

Table 4. Baseline Model

x ^{entry}	x ^l	x ^h	m	Φ^I	Φ^h	$\hat{q}_{I, min}$	$\hat{q}_{h, min}$	g	Wel
8.46	2.80	9.58	73.6	71.16	24.53	13.90	0.00	2.24	100

• Use 1% of GDP to subsidize entry:

Table 7. Entry Subsidy ($s_e = 5\%$)

x ^{entry}	x^{I}	x ^h	m	Φ^{I}	Φ^h	$\hat{q}_{I, min}$	$\hat{q}_{h, ext{min}}$	g	Wel
8.46	2.73	9.30	75.3	71.16	24.41	15.91	0.00	2.26	100.15

Understanding the Selection Effect

FIGURE 4. POLICY EFFECT ON PRODUCTIVITY DISTRIBUTIONS

Social Planner's Allocation

Table 4. Baseline Model

x ^{entry}	x ^l	x ^h	m	Φ^{I}	Φ^h	$\hat{q}_{I,\mathrm{min}}$	$\hat{q}_{h, min}$	g	Wel
8.46	2.80	9.58	73.6	71.16	24.53	13.90	0.00	2.24	100

• What would the social planner do (taking equilibrium markups as given)?

TABLE 8. SOCIAL PLANNER.

x ^{entry}	x^{I}	x^h	m	Φ^I	Φ^h	$\hat{q}_{I, ext{min}}$	$\hat{q}_{h, min}$	g	Wel
8.46	2.55	10.47	80.9	54.06	27.76	118.6	1.02	3.80	106.5

Optimal Policy (I)

Table 4. Baseline Model

x ^{entry}	x ^l	x ^h	m	Φ^{I}	Φ^h	$\hat{q}_{I,\mathrm{min}}$	$\hat{q}_{h, \mathrm{min}}$	g	Wel
8.46	2.80	9.58	73.6	71.16	24.53	13.90	0.00	2.24	100

 Optimal mix of incumbent R&D subsidy, operation subsidy and entry subsidy:

TABLE 9. OPTIMAL POLICY ANALYSIS AND WELFARE

Incumbent & Entry Policies $(s_i=17\%,s_o=-246\%,s_e=6\%)$									
x ^{entry}	x^{I}	x^h	m	Φ'	Φ^h	$\hat{q}_{l, ext{min}}$	$\hat{q}_{h, ext{min}}$	g	Wel
8.46	3.04	10.21	75.5	62.19	25.53	96.28	55.88	3.12	104.6

Optimal Policy (II)

Table 4. Baseline Model

x ^{entry}	x ^l	x ^h	m	Φ^I	Φ^h	$\hat{q}_{I,\mathrm{min}}$	$\hat{q}_{h, min}$	g	Wel
8.46	2.80	9.58	73.6	71.16	24.53	13.90	0.00	2.24	100

• Optimal mix of incumbent R&D subsidy and operation subsidy:

TABLE 9. OPTIMAL POLICY ANALYSIS AND WELFARE

	Incumbent Policies ($s_i=12\%$, $s_o=-264\%$)										
x ^{entry}	x^{I}	x^h	m	Φ'	Φ^h	$\hat{q}_{I,\mathrm{min}}$	$\hat{q}_{h, ext{min}}$	g	Wel		
8.46	3.04	10.21	75.3	62.31	25.53	91.38	54.85	3.11	104.6		

Summing up

- Industrial policy directed at incumbents has negative effects on innovation and productivity growth—though small.
- Subsidy to entrants has small positive effects.
- But not because R&D incentives are right in the laissez-faire equilibrium.
- The social planner can greatly improve over the equilibrium.
- Similar gains can also be achieved by using taxes on the continued operation of incumbents (plus small R&D subsidies).
 - This is useful for encouraging the exit of inefficient incumbents who are trapping skilled labor that can be more productively used by entrants and high-type incumbents.

Robustness

- These results are qualitatively and in fact quantitatively quite robust.
- The remain largely unchanged if:
 - We impose $\gamma = 0.5$.
 - We impose $\varrho = 0$.
 - We make the entry margin much less elastic.

Conclusion

- A new and tractable model of micro-level firm and innovation dynamics would reallocation.
- New features:
 - Endogenous exit;
 - Reallocation;
 - Selection effect.
- The model can be estimated and provides a good fit to the rich dynamics in US microdata.
- It is also useful for policy analysis.
 - Industrial policy directed at incumbents has small negative effects.
 - Optimal policy can substantially improve growth and welfare by taxing continued operation of incumbents leverage the selection effect.