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1 Introduction

Interactions in organizations fall into two categories, formal and informal. Formal rules and
organizational structures prescribe rigid procedures on how things have to be done. They
are set in advance, hard to change, and controlled by authorities. Informal interactions
typically involve information sharing and advice how things should be done. They are
spontaneous, easy to adjust, and give discretion to the operator. The formal framework
gives the crucial structure to the informal interactions. The informal handling allows to fine-
tune the implementation in response to new information. We are interested in the interplay
of these two forces and its impact on setting up formal structures.

For concreteness, imagine a principal who anticipates receiving decision-relevant private
information and lacks the ability to act on it herself. When hiring an agent to act on her
behalf, she has a choice between devising a formal procedure for dealing with the information
or handling it informally. Formal procedures may be costly to set up. Informal ones are
likely more vulnerable to opportunistic behavior. That raises the question of the optimal
mix of formal and informal treatments of anticipated private information in the employment
relationship.

We investigate this question in a setting in which formal procedures are contractually
arranged and informal ones correspond to cheap talk. We capture the cost of setting up
formal procedure by having contracts be incomplete. Cheap talk is implicitly costly because
the principal may have an incentive to misrepresent information and the agent may not use
the information in the principal’s best interest. Relying on contracts ensures greater control
over the agent’s action, while cheap talk can be more sensitive to the state of the world.

It is common for employment contracts to only partially pin down how the contracting
parties deal with uncertain future events. An academic’s contract, for example, typically
specifies little more than a wage, benefits, a standard teaching load and a research budget.
It leaves open specific course assignments, scheduling considerations, possibilities for course
reductions, pay for overload teaching, etc. This makes it possible to flexibly respond to
new opportunities and challenges. Taking advantage of this flexibility, however, may require
sharing private information that has been learned after the contract is signed. This can
be a source of inefficiency if there is disagreement about the best use of that information.
Contracts will have to balance the costs of a rigid exercise of authority with those arising
from imperfect information sharing.

Our environment combines features of Simon’s model of the employment relationship
and Crawford and Sobel’s model of strategic information transmission. A principal, who
anticipates privately learning the state of the world, offers a contract to an agent that
specifies a fixed wage and a limited number of actions (what Simon calls the principal’s
“range of authority”) that she can ask the agent to perform. Once the principal learns the
state of the world, she has a choice between having the agent execute one of the actions
specified in the contract or using cheap talk to try to convince the agent to take an action
that is not specified in the contract. Arriving at the choice between an action listed in
the contract and one induced via cheap talk is a two-stage process: At the ex ante stage,
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when writing the contract, the principal anticipates for which states of the world she will
rely on cheap talk or insisting on a contract provision; at the interim stage, during contract
execution, she makes that choice.

We show that every contract creates topics: these are subsets of the state space whose
boundaries are pinned down by adjacent contract actions. Each topic delimits a domain of
the state space that can be the exclusive subject of communication. Near the boundary of a
topic, contract actions are taken. Further inside a topic, communication actions are taken,
if there is communication in the topic. The larger the size of a topic, the greater is the
chance that there is communication in a topic. Within any one topic, communication can
be analyzed separately from communication in any other topic. This latter property has the
effect of relaxing incentive constraints for communication, and, as we show, in some cases
improves it.

There are two dimensions of conflict between the principal and the agent. They disagree
over which action to take, i.e., for every state of the world their ideal actions differ. We term
this the action conflict. An any given state, the size of the action conflict increases in the
distance between the ideal actions. The other source of conflict derives from the wage the
principal needs to pay the agent. We call this the compensation conflict. The less weight
the agent places on the wage in their payoff function, the harder it becomes for the principal
to use wage payments to compensate the agent for taking actions disliked by the agent.
Equivalently, it becomes harder for the principal to compensate the agent the more weight
the agent attaches to their (dis)utility from the action, their hedonic utility. Thus the size
of the compensation conflict increases with the weight on the agent’s hedonic utility.

We find that the sizes of the two dimensions of conflict affect both the complexity of
the contract and the degree to which the principal relies on cheap-talk communication.
We give a condition for what we call extreme conflict. The condition essentially requires
that for any given degree of conflict in one dimension there is sufficiently large conflict in
the other dimension. With extreme conflict optimal contracts are extremely simple – they
specify a single contract action. They also leave no role for cheap talk. In contrast, for
any given size of the action conflict, if there is sufficiently little compensation conflict, the
optimal contract maximizes the number of contract actions. Furthermore, regardless of the
size of the compensation conflict, if there is sufficiently little action conflict then any optimal
contract approximately maximizes the number of contract action used and induces influential
communication. Overall, optimal contracts satisfy a bang-bang property: contracts are either
very simple or approximately maximize the number of contract actions.

For a parameterized version of the model, we completely characterize the optimal menu
of contract actions and the role of communication at the optimum. Within each topic
specified by the contract, there is maximal communication. The placement of contract
actions is in part guided by their impact on communication. Whenever it is feasible to
replace a communication action by a contract action, this relaxes incentive constraints for
the remaining cheap-talk communication. This encourages locating contract actions in places
where this relaxation has the greatest impact. We show that, as a result, in any optimal
contract actions are approximately equidistant and topics are of approximately equal size.
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Figure 1: Optimal equilibria in the three different setups for action conflict 0.05 and com-
pensation conflict 0.5.

For a glimpse at some of the key features of optimal equilibria in our environment consider
a state that is uniformly distributed on the unit interval, an action space equal to the set of
the real numbers, and limit the principal to specifying a single contract action, x. Suppose
that both the principal’s and the agent’s payoffs are given by quadratic loss function, where
the agent prefers the action to match the state while the principal prefers an action that
exceeds the state by the constant 0.05. Finally, suppose that when offering a contract the
principal has to respect the agent’s (ex ante) individual rationality constraint (implying a
compensation conflict of 0.5).

Figure 1 illustrates the optimal equilibria for an environment with contracts but no cheap
talk (in the spirit of Simon, top panel), cheap talk without contracts (Crawford and Sobel,
middle panel), and contracts combined with cheap talk (present paper, bottom panel). In
the blue region of the state space the principal induces the single contract action x. The
contract action satisfies x > 1/2, reflecting the principal’s desire for higher actions (the agent
would prefer x = 1/2). The contract relaxes the incentive constraints for communication.
As a result, the number of actions y induced by cheap talk increases from three without the
contract to four with the contract.

Literature: Simon’s employment contracts specify a fixed wage and a “range of authority”
(our set of contract actions) for the principal. The fact that the contract is agreed upon
before the realization of uncertainty introduces an element of time inconsistency (Strotz
(1955)): At the time the contract is agreed upon it needs to reflect the concerns of the
agent that are embodied in the agent’s individual rationality constraint. Once uncertainty
is resolved and the contract is executed, within the parameters of the contract only the
principal’s preferences matter. We show that in the case of extreme conflict this not only
rules out cheap-talk communication but also reduces the “range of authority” to a singleton.

Krishna and Morgan (2008), like us, examine contracting in the environment studied
by Crawford and Sobel and, when considering imperfect commitment, impose limits on
contractibility. Full revelation, which makes contracts full-detailed complete, is possible but
not optimal. In the uniform quadratic environment, optimal contracts induce full revelation
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for low types and cheap talk with partial pooling for high types; with an extreme bias
contracting is of no value. In our case contracts are incomplete by fiat, for small biases
contract actions are interspersed with communication actions, and with extreme biases it is
optimal to contractually specify a single action.

The literature offers a variety of rationales for why we observe contractual incompleteness,
including the writing costs we use to motivate our bound the number of contract actions (Dye
(1985), Battigalli and Maggi (2002)). Spier (1992) observes that in the presence of writing
(or other transaction) costs, contractual incompleteness may be exacerbated by signaling
incentives of the principal to the point where the contract only specifies a fixed wage. Hart
and Moore (2008) offer a behavioral justification of employment contracts with a fixed wage:
Contracts provide a reference point for feelings of entitlement. The parties are more likely to
feel aggrieved when contracts are flexible and in response shade performance. This creates
incentives to limit variations of aspects of the contract for which there is extreme conflict,
like the wage. Bernheim and Whinston (1998) find that if for some reason contracts have to
be incomplete, it may be optimal to increase their incompleteness further. This resonates
with our observation for the case of extreme bias: when it is impossible to condition contract
actions on the state of the world (which may be unverifiable) it is optimal to only specify
a single contract action even though, up to a point, it would be costless to add contract
actions.1

After we introduce the model in Section 2, we explain the structure of equilibria in Section
3. We illustrate optimal contracts and equilibria in an example in Section 4. Our general
results are stated in Section 5, our results for the uniform-quadratic environment in Section
6.

2 Model

A principal (P, she) employs an agent (A, he) to take an action for her. When hiring
the agent, the principal does not have all relevant information but anticipates privately
learning that information before the agent gets to take the action. The contract between the
principal and the agent specifies a fixed wage and a set of possible actions (Simon (1951)).
After observing the information, the principal has a choice: she can mandate one of the
contract actions, or instead, can communicate with the agent by proposing an alternative
action (Crawford and Sobel (1982)). The agent has to execute any contract action that he
receives; he can freely choose how to respond to proposed communication actions.2

Principal and agent engage in contract-writing game G. At the beginning, the principal
offers a contract X = (x, w) to the agent; it consists of a set of contract actions x =

1If instead, as in Blume, Deimen and Inoue (2022), contracts could coarsely condition on the state of the
world it would always be optimal to use the maximal number of actions.

2Alternatively and equivalently, in the spirit of Matthews (1989), in the case of communication, we could
have the principal provide the agent with information about the state of the world, upon which the agent
proposes an action, which the principal either accepts or vetoes by mandating one of the (status quo) contract
actions. This would leave the principal always in the role of the final decision maker.
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{x1, . . . , xK}, xk ∈ R with xk < xk+1 and a specification of a fixed wage w ∈ R to be paid by

the principal to the agent. The set of contract actions may be empty. We assume a bound K̂
on the number of contract actions included in a contract.3 Each accepted contract induces a
contract subgame ΓX . At the beginning of a contract subgame, the principal privately learns
the state of the world t ∈ [0, 1] (we sometimes refer to the state as the principal’s ‘type’). She
then chooses between mandating a contract action x ∈ x and sending a cheap talk message
m ∈ M , where M is an (infinite measurable) space. She does that by sending a message µ
from the generalized message space M ∪ x. Upon observing the message µ, the agent takes
action a = x if µ = x ∈ x and otherwise an action a = y ∈ R.

If the contract is accepted, state t ∈ [0, 1] is realized, and the agent takes action a ∈ R, the
principal’s payoff equals UP (a, t, b)−w and the agent’s payoff equals ξUA(a, t)+(1−ξ)w. The
parameter b ≥ 0 measures the degree of misalignment of preferences over the action between
principal and agent. We refer to the disagreement about the optimal action between principal
and agent that is parameterized by b as the action conflict. The parameter ξ ∈ [0, 1) indicates
the importance the agent attaches to the hedonic utility UA(a, t) relative to the wage utility
w. We call the parameter ξ that captures the difficulty of compensating the agent for an
unfavorable action with a higher wage the compensation conflict. If the contract offer is
rejected, the agent receives a reservation utility u. We assume that the principal is financially
unconstrained and always finds it worthwhile to offer a contract that the agent is willing to
accept.

The state is commonly known to be distributed according to a distribution F with contin-
uous density f that is strictly positive on the support [0, 1]. Using subscripts for derivatives,
we assume that UA, UP ∈ C2, UA

11 < 0, UP
11 < 0, UA

12 > 0, UP
12 > 0 and there exist a∗A(t)

and a∗P (t, b) such that UA
1 (a

∗
A(t), t) = 0, UP

1 (a
∗
P (t, b), t, b) = 0 and a∗P (t, b) > a∗A(t) for all

t ∈ [0, 1] and b > 0. In the uniform-quadratic environment UP (a, t, b) = −(t + b − a)2,
UA(a, t) = −(t− a)2, and F is the uniform distribution.

A strategy for the principal in the contract subgame ΓX is given by σ : [0, 1] → ∆(M∪x),
where ∆(M ∪x) denotes the set of probability distributions over M ∪x. A strategy for the
agent in ΓX is of the form ρ : M ∪ x → R, with the restriction that for all x ∈ x, ρ(x) = x.

For every contract subgame ΓX , let E(X) denote the set of its Nash equilibrium strategy
profiles, with typical element eX ∈ E(X). We say that a contract-equilibrium pair (X, eX)
induces an action a ∈ R if there is a set of types t ∈ [0, 1] and a generalized message µ in the
support of σ(t) for which ρ(µ) = a, such that a is taken with strictly positive probability.

Our goal is to characterize subgame-perfect equilibria of the contract-writing game G that
are optimal for the principal. If we denote the set of all possible contracts by X = X(K̂),

then a strategy for the principal in the contract-writing game G is
(
X,

(
σX′)

X′∈X

)
and a

strategy for the agent is
(
ρX

′)
X′∈X. Any contract-equilibrium pair (X, eX) that the agent

anticipates must meet the agent’s ex ante participation constraint. Therefore, the principal

3This can be motivated by increasing writing costs (Dye (1985)) that prohibit arbitrarily detailed con-
tracts.
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– when writing the contract – solves

max
X ∈ X(K̂)
eX ∈ E(X)

E
[
UP (ρ(σ(t)), t, b)

]
− w s.t. ξE

[
UA(ρ(σ(t)), t)

]
+ (1− ξ)w ≥ u.

Optimality and our assumption that the principal always finds it worthwhile to satisfy
the agent’s participation constraint imply that the agent’s participation constraint always
binds. Therefore, since the wage w is entirely determined by the set of contract actions
x, we can, and do from hereon, identify any contract X with the set of contract actions
(suppressing the wage), and equivalently rewrite the principal’s problem as

max
X ∈ X(K̂)
eX ∈ E(X)

(1− ξ)E
[
UP (ρ(σ(t)), t, b)

]
+ ξE

[
UA(ρ(σ(t)), t)

]
. (1)

Thus, ex ante, when writing the contract, the principal maximizes weighted joint surplus.
We sometimes refer to the principal in this stage as the ex-ante principal. The ex ante
principal’s payoff function is U ξ(a, t, b) := (1− ξ)UP (a, t, b)+ ξUA(a, t) and her ideal point is
a∗ξ(t, b). By contrast, at the interim stage, when the principal has learned the state and sends
a generalized message to the agent, the principal’s objective is to maximize her own payoff
UP (a, t, b) from the agent’s action, and we sometimes refer to her as the interim principal.

3 The structure of equilibria of contract subgames

Fix a contract X. Consider the equilibria of the contract subgame ΓX . Note that the ideal
points of the interim principal and the agent satisfy a∗P (t, b) > a∗A(t) for all t ∈ [0, 1] and
b > 0. Therefore, independent of X there is a strictly positive lower bound on the distance
between communication actions that are induced in any equilibrium.4 This implies that there
is a finite upper bound on the total number of actions (contract actions and communication
actions) that can be induced in any equilibrium of the contract-writing game G.

The interim principal’s sorting condition UP
12 > 0 then implies that for each equilibrium

in which J actions a1 < a2 < . . . < aJ are induced, there are J+1 critical types 0 = θ0 < θ1 <
· · · < θJ = 1, such that all types in (θj−1, θj) strictly prefer to induce action aj, j = 1, . . . , J.
Type θj is indifferent between actions aj and aj+1 for j = 1, . . . , J − 1. As a result, every
equilibrium is essentially (modulo the specification of behavior of types θj) equivalent to an
equilibrium in which the type set is partitioned into finitely many intervals with endpoints
θj−1 and θj for the jth interval. Types belonging to the same interval induce the same action,
and types belonging to different intervals induce different actions. If the types in (θj−1, θj)
induce a communication action, we refer to (θj−1, θj) as a communication interval. If instead
they induce a contract action, we refer to (θj−1, θj) as a contract interval. The agent’s sorting
condition then implies that if (θj−1, θj) and (θj, θj+1) are both communication intervals, the

4This follows immediately from Lemma 1 in Crawford and Sobel (1982) (CS). The fact that, unlike CS,
we have contract actions in addition to communication actions does no affect the applicability of their proof.
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agent indeed prefers to take a higher action in response to messages sent by types in (θj, θj+1)
than in response to messages sent by types in (θj−1, θj), as is required for aj+1 > aj for all
j = 1, . . . , J − 1. Similarly, if (θj−1, θj) is a contract interval and (θj, θj+1) a communication
interval, the agent’s sorting condition implies that the agent prefers to take a higher action
in response to messages sent by types in (θj, θj+1) than the contract action induced by types
in (θj−1, θj) (an analogous observation applies to the case in which the roles of contract and
communication intervals are reversed). Hence:

Observation 1 All equilibria of contract subgames are (essentially) interval partitional and
monotonic.

It is common to refer to the indifference requirement for critical types θj, j = 1, . . . , J−1,
as those types’ arbitrage condition. Let a∗(θ′, θ′′) denote the agent’s best reply to prior beliefs
concentrated on the interval (θ′, θ′′). Then the arbitrage conditions take the following form:

UP (aj, θj, b)− UP (aj+1, θj, b) = 0 for all j = 1, . . . , J − 1, where

aj = a∗(θj−1, θj) for all j for which aj is a communication action, (A)

and the remaining actions are contract actions in X.

Given a contract X, two contract actions x′, x′′ ∈ X are adjacent if there is no contract
action x ∈ X with x′ < x < x′′. Consider the set of types for which the interim principal’s
ideal point lies between x′ and x′′, i.e., {t ∈ [0, 1]|x′ ≤ a∗P (t, b) ≤ x′′}. Any pair of adjacent
contract actions, for which there exist types t′ and t′′ with x′ = a∗P (t

′, b) and x′′ = a∗P (t
′′, b),

determines an inner topic

T (x′, x′′) := (x′, x′′, {t ∈ [0, 1]|x′ ≤ a∗P (t, b) ≤ x′′}).

Whenever there do not exist types t′ or t′′ with x′ = a∗P (t
′, b) or x′′ = a∗P (t

′′, b), we refer
to T (x′, x′′) as improper inner topic. Note that improper inner topics can be empty. In a
similar fashion, we define two outer topics. The minimal contract action x1 in X determines
the bottom topic

T (x1) := (x1, {t ∈ [0, 1]|a∗P (t, b) ≤ x1}),

which can be empty. The maximal contract action xK in X determines the top topic

T (xK) := (xK , {t ∈ [0, 1]|a∗P (t, b) ≥ xK}),

which can be empty. A topic T is either an inner, an improper inner, or an outer topic.
Each topic T induces a game in its own right, with the type distribution restricted to T

and the only contract actions being the ones defining the topic. Refer to that game as a T -
game and call an equilibrium of that game a T -equilibrium. Evidently, every T -equilibrium
is itself interval partitional and induces a finite number of actions; except for the actions
defining the topic T , these are communication actions.
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Let n(T ) denote the number of communication actions induced in a T -equilibrium. Then,
if T = T (x′, x′′) is an inner topic, there are n(T ) + 1 critical types θT ,i, i = 0, . . . , n(T ).
These critical types satisfy

UP (x′, θT ,0, b)− UP (a∗(θT ,0, θT ,1), θT ,0, b) = 0 (2)

UP (a∗(θT ,i−1, θT ,i), θT ,i, b)− UP (a∗(θT ,i, θT ,i+1), θT ,i, b) = 0 for i = 1, . . . , n(T )− 1 (3)

UP
(
a∗(θT ,n(T )−1, θT ,n(T )), θT ,n(T ), b

)
− UP

(
x′′, θT ,n(T ), b

)
= 0. (4)

Condition (2) ensures that the principal with critical type θT ,0 is indifferent between
insisting on the contract action x′ and inducing the minimal communication action in topic
T (x′, x′′). Conditions (3) are the familiar arbitrage conditions for adjacent communication
actions, and condition (4) is the requirement that the principal with critical type θT ,n(T ) is
indifferent between the maximal communication action in topic T (x′, x′′) and insisting on
the contract action x′′.

Since each topic T induces a game in its own right, the equilibria of any contract subgame
satisfy a separability condition. They are composed of T -equilibria. Essentially, once we fix
an equilibrium for each topic, we have an equilibrium for the entire contract subgame.

Observation 2 Suppose the topics in a contract subgame are Tk, k = 1, . . . , K + 1. Then
for any choices of equilibrium outcomes O(Tk) of the corresponding Tk-games, there exists an
equilibrium of the entire contract subgame whose outcome agrees with O(Tk) in each Tk-game.

4 Example

In this section we give examples of optimal contract-equilibrium pairs. We consider contracts
with at most two contract actions, K̂ = 2, and an agent who gives equal weight to wage
and hedonic payoffs, ξ = 0.5. See Figure 2 for an illustration. The red dashed lines indicate
the boundaries of the topics T1 = [0, x1 − b], T2 = [x1 − b, x2 − b], and T3 = [x3 − b, 1]. All
types that are marked blue induce a contract action x1, or x2; all remaining types induce
a communication action yi. Notice that each contract action is induced by types from
neighboring topics. Critical types θj are indifferent between inducing the action below or
above.

Consider first low levels of action conflict b. Note that for b = 0.02 and b = 0.05, the
optimal contract actions are approximately equal to x1 ≈ 0.33 and x2 ≈ 0.70. The distinctive
feature of the optimal contract-equilibrium pairs is the induced number of communication
actions. While there is one (two) action in each topic for b = 0.05 (b = 0.02), the number
increases to 5 in each topic for b = 0.005 and to a total number of 53 communication actions
for b = 0.0005. By comparison, the numbers N(b) for cheap talk games without contract are
N(0.05) = 3, N(0.02) = 5, N(0.0005) = 32. Contracts facilitate information exchange by
communication. Note that the lengths of the communication intervals are increasing within
a topic but not across topics.
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b = 0.5
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0 1

x1 x2

θ1

b = 2.5
t

0 1

x1

Figure 2: Optimal contract-equilibrium pairs for K̂ = 2, ξ = 0.5, and different values of b.

Finally, consider larger levels of action conflict. For b = 0.5 no communication action
is induced, but the state space is split into two segments: types below θ1 induce action x1

and types above action x2. For b = 2.5 we have ‘extreme conflict’: The optimal contract-
equilibrium pair is extremely simple: only one contract action x1 = 0.5 + (1 − ξ) · b = 1.75
is induced and there is no role for communication.

5 Optimal contract-equilibrium pairs

In this section, we establish general properties of optimal contract-equilibrium pairs. We
find that optimal contracts are extremely simple when there is ‘extreme conflict’. Conflict
is extreme when given the action conflict there is sufficient compensation conflict, or given
the compensation conflict there is sufficient action conflict. If either condition is met, there
is substantial disagreement between the ex ante and the interim principal over the optimal
action. In this case, the optimal contract has only one contract action and that contract
action is implemented with certainty. Thus, there is no communication. By contrast, if there
is little conflict, we show that at the optimum, contracts are detailed and there is influential
communication.

5.1 Extreme conflict

Recall that conflict in our environment has two dimensions: (i) At every state t ∈ [0, 1],
a∗P (t, b) > a∗A(t), i.e., the interim principal prefers a higher action than the agent – there is
state conflict. (ii) For every state, for ξ > 0 the ex ante and the interim principal disagree on
the optimal action – this is a consequence of there being compensation conflict, the difficulty
of compensating the agent for the disutility of taking an unfavorable action with a more
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favorable wage. If there is significant conflict in one dimension while fixing the other, we
have extreme conflict.

We define extreme conflict with reference to a minimal compact set A∗ ⊂ R, which
includes all actions induced in any optimal contract-equilibrium pair irrespective of the
compensation conflict (while fixing the environment otherwise). Existence of such a set is
shown in the appendix in Lemma A.1.

Definition 1 There is extreme conflict if[
a′, a′′ ∈ A∗, a′ < a′′ and U ξ(a′, 1, b) ≤ U ξ(a′′, 1, b)

]
⇒ UP (a′, 0, b) < UP (a′′, 0, b).

t0 1

a∗P (0, b)a∗ξ(1, b)a′ a′′

Figure 3: Extreme conflict: the preferred action of the interim principal a∗P (0, b) for the lowest
type is higher than the preferred action of the ex-ante principal a∗ξ(1, b) for the highest type.

The definition of extreme conflict captures that the interim principal has a much stronger
preference for higher actions than the ex ante principal, a∗ξ(t, b) < a∗P (t, b). Figure 3 illus-
trates. In the case of extreme conflict, the lowest type of the interim principal t = 0 prefers
an action a∗P (0, b) that is higher than the preferred action a∗ξ(1, b) of the highest type of
ex-ante principal t = 1. By concavity of the payoffs this implies that all types t ∈ [0, 1] of
the ex-ante principal prefer lower actions than all types t ∈ [0, 1] of the interim principal.
Note that the necessary condition for extreme conflict is that ξ > 0; for ξ = 0 there is never
extreme conflict. Finally, considering the uniform-quadratic example with a constant bias b,
the condition for having extreme conflict is that ξb ≥ 1.

If a contract-equilibrium pair induces more than one action, for any pair of those actions
there must be one interim principal type that is indifferent between them. Extreme conflict
then implies that for any such pair of actions, the ex ante principal strictly prefers the lower
of the two actions. Hence, the ex ante principal would be better off simplifying the contract
by having only one contract action, which coincides with the lowest of the actions that are
induced in the original contract-equilibrium pair. Further improvements may be possible by
picking the single contract action optimally. This is formalized in the following result.

Proposition 1 With extreme conflict, any contract in an optimal contract-equilibrium pair
(X, eX) specifies exactly one contract action. That contract action, x∗ = argmaxa Et[U

ξ(a, t, b)]
is also the only action that is induced in eX .

Proof. Suppose there is extreme conflict. Consider any contract-equilibrium pair (X, eX)
that induces J > 1 actions a1 < . . . < aJ , any of which may be either a contract or a
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communication action. We will show that (X, eX) can be improved upon with a contract-
equilibrium pair (X ′, eX

′
) that uses only a single contract action.

Since, by assumption, actions a1 and a2 are both induced, there is a type θ1 ∈ (0, 1)
for which the interim principal is indifferent between those actions, i.e., UP (a1, θ1, b) =
UP (a2, θ1, b). Therefore, the cross-partial condition for the interim principal implies that
UP (a1, 0, b) > UP (a2, 0, b). By assumption a1 < a2, and by Lemma A.1 both a1 and a2 belong
to A∗. The last two observations combined with the fact that there is extreme conflict imply
that U ξ(a1, 1, b) > U ξ(a2, 1, b).

Hence, the cross-partial conditions for the interim principal and the agent jointly imply
that U ξ(a1, t, b) > U ξ(a2, t, b) for all t ∈ [0, 1]. This and the strict concavity of U ξ in its first
argument for all t imply that U ξ(a1, t, b) > U ξ(aj, t, b) for all t ∈ [0, 1] and all j > 1. It
follows that ∫ 1

0

U ξ(a1, t, b)f(t)dt >
J∑

j=1

∫ θj

θj−1

U ξ(aj, t, b)f(t)dt,

where types in the intervals (θj−1, θj) induce action aj, j = 1, . . . , J , θ0 = 0, and θJ = 1.
Hence, an alternative contract-equilibrium pair (X ′, eX

′
) in which the set X ′ = {a1} is a

singleton and the equilibrium eX
′
induces only action a1 improves on (X, eX).

Among all contract-equilibrium pairs (X̃, eX̃) in which the contract consists of a single

contract action, the one with X̃ = {x∗}, where x∗ = argmaxa Et[U
ξ(a, t, b)] is optimal for the

ex ante principal. This contract is overall optimal because it strictly dominates a contract
without any contract actions, which would induce the single (communication) action

y∗ = argmax
a

Et[U
A(a, t)] < x∗.

2

Under extreme conflict, the ex ante principal cannot leave any choice for the interim prin-
cipal. Consider the contract with the single ex-ante-optimal contract action. Any additional
lower action (which would be preferred by some types of the ex ante principal) will never be
taken by the interim principal. Any additional higher action (which would be preferred by
some types of the ex ante principal) will always be taken by the interim principal – which
makes it suboptimal to include this option to begin with. The informational advantage of
the interim principal is thus of no use for the ex ante principal. Moreover, the extreme dis-
agreement between ex ante principal and interim principal implies that the conflict between
interim principal and agent prohibits any communication.

5.2 Little conflict

Optimal contracts under extreme conflict are extremely simple and completely crowd out
communication. By contrast, in this section, we show that under some additional assump-
tions with little conflict optimal contracts are detailed and coexist with rich communication
behavior. Say that communication in a contract-equilibrium pair is influential if at least
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two actions are induced by communication. Then, we find that with sufficiently little con-
flict, every contract-equilibrium pair induces at least K̂ − 2 contract actions and exhibits
influential communication.

In this section, we assume that UP (a, t, 0) = UA(a, t), that b ≥ 0, and that UP
13(·) > 0

everywhere. We thus have a∗P (t, b) > a∗A(t) for all b > 0 and any increase in b moves
the interim principal’s preferences away from the agent’s. We also require three regularity
conditions to hold.

The first of these is condition (M), which is familiar from Crawford and Sobel (1982).
For any fixed value of the action conflict b, call a sequence θ = (θ0, θ1, . . . , θN) a backward
solution if UP (a∗(θj, θj+1), θj, b)− UP (a∗(θj−1, θj), θj, b) = 0, 0 < j < N and θ0 > θ1.

We assume that, for a given value of b, if θ̂ and θ̃ are two backward solutions
with θ̂0 = θ̃0 and θ̂1 > θ̃1, then θ̂j > θ̃j for all j ≥ 2. (M)

In words, for any two backward solutions, an increase of θ1 implies an increase of all θj,
j ≥ 2.

The second regularity condition is a continuity requirement. Refer to any contract with
K = 0, i.e., with no contract actions, as a null contract (the contract still specifies the
wage needed to attract the agent). Every null contract that is accepted turns the contract
subgame into a standard cheap-talk game. Let V A(b) denote the agent’s maximal equilibrium
payoff in the cheap-talk game with bias b.5 We make the following Convergence Assumption
concerning the cheap-talk game:

For every ε > 0 there exists bε > 0 such that for all b with 0 < b < bε the agent’s
maximal equilibrium payoff V A(b) in the cheap-talk game with bias b satisfies

|V A(b)− E[UA(a∗A(t), t)]| < ε.6 (C)

Thus as the action conflict converges to zero, the agent’s maximal cheap-talk equilibrium
payoff converges to the agent’s first-best payoff.

Finally, consider any two actions x, x ∈ R with x < x for which x is the principal’s
ideal point for some type t ∈ (0, 1), i.e., x = a∗P (t, b). We assume that if θ ∈ (0, 1) satisfies
UP (x, θ, b) = UP (x, θ, b), then .

UA(x, θ)− UA(x, θ)

UP
2 (x, θ, b)− UP

2 (x, θ, b)
UP
1 (x, θ, b)f(θ) +

∫ t

θ

UA
1 (x, s)f(s)ds < 0. (N)

This condition ensures that the ex ante principal strictly gains from inserting additional
contract actions between any two such actions that are not too far part. It is satisfied in the
familiar example with quadratic payoffs, constant bias, and a uniform type distribution. It
also holds if payoff functions are of the form UA(a, t) = V (|t−a|), UP (a, t, b) = V (|t+b−a|),
and the type distribution has a non-decreasing density (conditions, which are also sufficient
for condition (M) to hold).

5Note that this is well defined since for any b > 0 the cheap-talk game has essentially only finitely many
equilibria and for b = 0 there is an equilibrium in which the agent receives his ideal action in every state of
the world.

6Agastya, Bag and Chakraborty (2015) provide sufficient conditions on primitives for this hold.
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Lemma 1 Suppose that (X, eX) is a contract-equilibrium pair that induces two adjacent
contract actions x < x that are not separated by communication. Then, if there exists
t ∈ (0, 1) with x = a∗P (t, b) and condition (N) is satisfied, one can find x′ ∈ (x, x), such that
given the contract X ′ = X ∪ {x′}, there is a contract-equilibrium pair (X ′, eX

′
) that the ex

ante principal strictly prefers to (X, eX).

Proof of Lemma 1. If there exists t′ ∈ [0, 1] for which x = a∗P (t
′, b), let t = t′ and otherwise

let t = 0. Given any (x, x), define θl, θh as the types that satisfy UP (x, θl, b) = UP (x′, θl, b)
and UP (x, θh, b) = UP (x′, θh, b). These types are well defined since x and x are induced by
assumption.

When adding a contract action x′ ∈ (x, x), payoffs and incentives outside of [t, t] remain
unchanged. Hence, we can limit attention to this interval. The ex ante principal’s payoff in
[t, t] is ∫ θl

t

(1− ξ)UP (x, s, b) + ξUA(x, s)f(s)ds

+

∫ θh

θl

(1− ξ)UP (x′, s, b) + ξUA(x′, s)f(s)ds

+

∫ t

θh

(1− ξ)UP (x, s, b) + ξUA(x, s)f(s)ds.

The derivative with respect to x′ equals(
(1− ξ)UP (x, θl, b) + ξUA(x, θl)

)
f(θl)

dθl
dx′

+
(
(1− ξ)UP (x′, θh, b) + ξUA(x′, θh)

)
f(θh)

dθh
dx′ −

(
(1− ξ)UP (x′, θl, b) + ξUA(x′, θl)

)
f(θl)

dθl
dx′

+

∫ θh

θl

(
(1− ξ)UP

1 (x
′, s, b) + ξUA

1 (x
′, s)

)
f(s)ds

−
(
(1− ξ)UP (x, θh, b) + ξUA(x, θh)

)
f(θh)

dθh
dx′ .

Evaluating this expression at x′ = x and using the principal’s indifference between x and
x′ = x at θl this simplifies to

ξ
(
UA(x, θl)− UA(x, θl)

)
f(θl)

dθl
dx′

∣∣∣∣
x′=x

+

∫ θh

θl

(
(1− ξ)UP

1 (x
′, s, b) + ξUA

1 (x
′, s)

)
f(s)ds

∣∣∣∣
x′=x

.

Differentiating the interim principal’s indifference condition at θl, U
P (x, θl, b) ≡ UP (x′, θl, b),

with respect to x′ gives us

UP
2 (x, θl, b)

dθl
dx′ − UP

1 (x
′, θl, b)− UP

2 (x
′, θl, b)

dθl
dx′ = 0,
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which is equivalent to
dθl
dx′ =

UP
1 (x

′, θl, b)

UP
2 (x, θl, b)− UP

2 (x
′, θl, b)

.

Evaluation this expression at x′ = x, inserting it into the expression for the derivative of
the ex ante principal’s payoff in [t, t], and using the fact that at x′ = x we have θl = θ and
θh = t, we obtain

ξ(UA(x, θ)− UA(x, θ))f(θ)
UP
1 (x, θ, b)

UP
2 (x, θ, b)− UP

2 (x, θ, b)
+

∫ t

θ

(
(1− ξ)UP

1 (x, s, b) + ξUA
1 (x, s)

)
f(s)ds.

By the definition of θ and since and a∗P (t, b) > a∗A(t) for all t ∈ [0, 1], we have UP
2 (x, θ, b) < 0,

UP
2 (x, θ, b) > 0, UP

1 (x, s, b) < 0 for s ∈ [θ, t], UA
1 (x, s) < 0 for s ∈ [θ, t], and UA(x, θ) >

UA(x, θ). This implies that the first term in the above sum is positive, while the second is
negative. Since the goal is to show that the overall expression is negative, we can take ξ = 1
to obtain an upper bound. Condition (N) implies that the expression with ξ = 1 is strictly
negative and hence that the ex ante principal gains from inserting an additional contract
action x′ ∈ (x, x) provided it is sufficiently close to x. 2

We are now in a position to characterize optimal contract-equilibrium pairs when conflict
is small in either dimension. With small compensation conflict, optimality requires that
the contract is maximally detailed (subject to the writing-cost constraint). With small
action conflict, optimal contracts are close to being maximally detailed and accompanied by
influential cheap-talk communication. Overall, independent of the size of action conflict and
compensation conflict, we get a bang-bang result: optimal contracts are either close to being
simple or close to being maximally detailed. Our previous result showed that with extreme
conflict optimal contracts are simple. Here we establish that with little conflict they are
(close to) maximally detailed.

Proposition 2 i. For all K̂ and all b > 0, there exists ξ > 0 such that for all ξ ∈ (0, ξ),

every optimal contract-equilibrium pair induces K̂ contract actions.

ii. For all K̂, there exists b > 0 such that for all b ∈ (0, b) and all ξ ∈ (0, 1), every optimal

contract-equilibrium pair induces influential communication and at least K̂ − 2 contract
actions.

iii. In any optimal contract-equilibrium pair, either K ≥ K̂ − 2 or K ≤ 2.

Proof of Proposition 2. (i) Fix b > 0. To start, let ξ = 0. We will show that any contract-

equilibrium pair (X, eX) that induces fewer than K̂ contract actions can be improved upon.
First, consider the case that the maximal action an that (X, eX) induces is a contract

action.
If n = 1, then either there is an action a′ > a1 that the principal prefers to a1 for a positive

measure set of states, or there is such an action a′′ < a1. In either case, the principal gains
from adding the preferred action.
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If n > 1 and the next lower action an−1 that is induced by (X, eX) is also a contract
action, we can raise payoffs by adding a contract action x′ with an−1 < x′ < an : Both of the
actions an−1 and an are induced by sets of states (tn−2, tn−1) and (tn−1, 1) that have positive
measure. At state tn−1 the principal is indifferent between an−1 and an. Since UP

11 < 0, at
state tn−1 the principal strictly prefers action x′ to both an−1 and an. Continuity of UP then
implies that there is a positive measure of states at which the principal prefers inducing
action x′ to inducing either an−1 or an.

If n > 1, and an−1 is a communication action, consider two possibilities: First, suppose
that there is a type t̂ who induces action an and for whom a∗P (t̂, b) > an. Then, if we introduce
a new contract action an + ε with ε > 0 sufficiently small, there will be a positive measure
of types who strictly prefer inducing an + ε to inducing an. All these types induce an in
(X, eX). Given the modified contract, there will therefore be an equilibrium in which these
types induce action an + ε and all of the remaining types induce the same actions as before.

Second, if a∗P (t, b) ≤ an for all types t who induce action an in (X, eX), replace the
communication action an−1 by an equivalent contract action and replace the contract action
an in X by an − ε. Type t = 1 is one of the types who induces action an in (X, eX). Hence,
by assumption a∗P (1, b) ≤ an, and therefore ∂

∂a
UP (1, an, b) ≤ 0. Combining this observation

with the cross-partial condition, we have

∂

∂a

∫ 1

tn−1

UP (t, an, b)f(t)dt =

∫ 1

tn−1

∂

∂a
UP (t, an, b)f(t)dt < 0.

Thus the principal’s expected payoff for types who induce an in X strictly increases if we
replace an in X by an − ε, for sufficiently small ε > 0. Denote the replacement contract by
X ′. Types t for whom a∗P (t, b) ≤ an−1 face the same incentives under X ′ as they did under
X. Types who induce action an−1 under contract X can still do so, or switch to an if that is
an improvement. Hence, for sufficiently small ε there is a contract-equilibrium pair (X ′, eX

′
)

that the principal ex ante strictly prefers to (X, eX).
Consider now the case that the maximal action an that the contract-equilibrium pair

(X, eX) induces is a communication action. Let aj∗ be the minimal action induced by
contract-equilibrium pair (X, eX) such that all actions aj with j ≥ j∗ induced by (X, eX) are
communication actions. With condition (M), any two backward solutions (tn = 1, tn−1, . . .)
and (t′n = 1, t′n−1, . . .), with t′n−1 > tn−1 satisfy t′j > tj for all j with j∗ ≤ j ≤ n − 1.
Actions a(tj−1, tj) and a(t′j−1, t

′
j) satisfy a(t′j−1, t

′
j) > a(tj−1, tj) for j

∗ ≤ j ≤ n−1. Backward
solutions (t′n = 1, t′n−1, . . .) and the corresponding actions a(t′j−1, t

′
j) are continuous in t′n−1.

This implies that for t′n−1 > tn−1 sufficiently close to tn−1, we can find ε > 0 such that
type t′j∗ is indifferent between actions aj∗ + ε and a(tj∗ , tj∗+1), and all actions a(t′j, t

′
j+1),

j = j∗, . . . , n− 1, are close to the actions a(tj, tj+1), j = j∗, . . . , n− 1. Replace the contract
X by a contract X ′ with an additional contract action aj∗ + ε. Then the argument we just
gave implies that there is a contract-equilibrium pair (X ′, eX

′
) with the same number of

equilibrium actions (i.e., one fewer communication action and one more contract action),
actions aj with j < j∗ unchanged, critical types tj with j < j∗ − 1 unchanged, and critical
types tj with j ≥ j∗ − 1 replaced by new critical types t′j > tj. The equilibrium actions a′j in
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(X ′, eX
′
) for j ≥ j∗ satisfy a′j > aj. The interim principal’s expected payoff conditional on

t ∈ (tj−1, tj) from action a′j would satisfy∫ tj

tj−1

UP (t, a′j, b)f(t)dt >

∫ tj

tj−1

UP (t, aj, b)f(t)dt

for all j ≥ j∗ and for ε > 0 sufficiently small. This implies that if we consider only the
impact of the raised actions on the interim principal’s overall expected payoff, that payoff
strictly increases. In addition, fixing the new equilibrium actions a′j for j ≥ j∗, the interim
principal re-optimizes, which is reflected in the replacement of tj by t′j for j ≥ j∗ − 1. This
also increases the interim principal’s expected payoff.

This establishes that no contract-equilibrium pair (X, eX) that induces fewer than K̂
contract action can be optimal when ξ = 0.

Let (X̂, eX̂) be a contract-equilibrium pair that solves the ex ante principal’s optimization
problem for ξ = 0. Notice (i) that with ξ = 0 the expected payoff of the ex ante principal
equals the expected payoff of the interim principal and (ii) that the existence of the contract-

equilibrium pair (X̂, eX̂) does not depend on the magnitude of ξ. Let V P (K) denote the
maximal expected payoff of the interim principal from contract-equilibrium pairs with no
more than K contract actions. Our observation for ξ = 0 implies that V P (K̂) equals the

interim principal’s payoff from (X̂, eX̂) and that V P (K̂) > V P (K), for all K < K̂. Let

V̂ P = V P (K̂) denote the interim principal’s and V̂ A the agent’s expected payoffs from the

contract-equilibrium pair (X̂, eX̂). Since the contract-equilibrium pair (X̂, eX̂) is feasible

for all ξ, with K̂ contract actions the ex ante principal can achieve a payoff of at least
(1 − ξ)V̂ P + ξV̂ A. If instead the ex ante principal used only K < K̂ contract actions, her
payoff would be bounded from above by (1− ξ)V P (K) + ξ× 0, where we use the fact that 0
is an upper bound on the agent’s expected payoff. Evidently, there is exists ξ ∈ (0, 1) such

that for all ξ ∈ [0, ξ), we have (1− ξ)V̂ P + ξV̂ A > (1− ξ)V P (K) + ξ × 0, ∀K < K̂.

(ii) We begin by showing that for every K̂, there exists b > 0 such that for all b ∈ (0, b)
there is influential communication in every optimal contract-equilibrium pair.

Let V P (b) denote the principal’s maximal payoff over equilibria that maximize the agent’s
payoff in the cheap-talk game with bias b. Since we are interested in small values of b, we can
fix b̂ > 0 and restrict attention to b ∈ [0, b̂]. All actions a ∈ R that are taken in an equilibrium
of the cheap-talk game satisfy a ∈ [a∗A(0), a

∗
A(1)] . The set Z := [a∗A(0), a

∗
A(1)]× [0, 1]× [0, b̂]

is compact. Since UP is continuous, it is uniformly continuous on Z. Hence, for all ε > 0,
there exists b1 > 0 such that for all (a, t, b) ∈ Z with b ∈ [0, b1)∣∣UP (a, t, b)− UA(a, t)

∣∣ < ε

2

and therefore ∣∣V P (b)− V A(b)
∣∣ < ε

2
. (5)

Fix N > K̂. Let ΦN denote the set of all measurable functions ϕ : T → R that take
on no more than N different values in R. Define V A

N := maxϕ∈ΦN
E[UA(ϕ(t), t)] as the
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maximal agent payoff that can be achieved with no more than N actions. Define V P
N (b) :=

maxϕ∈ΦN
E[UP (ϕ(t), t, b)] as the maximal principal payoff that can be achieved with no more

than N actions when the bias equals b. For any finite set of actions Ã ⊂ R, for all but
a finite number of types t, we have maxa∈Ã UA(a, t) < UA(a∗A(t), t). Hence, for every N ,
V A
N < E[UA(a∗A(t), t)]. Since limb→0 V

P
N (b) = V A

N , we can find b2 > 0 and V P
N < E[UA(a∗A(t), t)]

such that for all b ∈ [0, b2) we have V P
N (b) < V P

N < E[UA(a∗A(t), t)].
By our convergence assumption, it is the case that for all ε there exists b3 > 0 such that

|V A(b) − E[UA(a∗A(t), t)]| < ε
2
for all b < b3. Combined with (5), this implies that for all ε

and b < min{b1, b3}, we have |V P (b)− E[UA(a∗A(t), t)]| < ε.
Choose ε < min{E[UA(a∗A(t), t)−V A

N ,E[UA(a∗A(t), t)−V P
N ]} and b < min{b1, b2, b3}. Then

V A
N < V A(b) and V P

N (b) < V P (b) and therefore for b < min{b1, b2, b3}, we have (1−ξ)V P
N (b)+

ξV A
N < (1 − ξ)V P

N + ξV A
N < (1 − ξ)V P (b) + ξV A(b). Thus, there exists b such that for all

b ∈ (0, b) the maximal payoff with a null contract exceeds the maximal payoff that can be

achieved with no more than N induced actions. Since we assumed that N > K̂ this implies
that there exists b such that for all b ∈ (0, b) the maximal payoff with a null contract exceeds
the maximal payoff that can be achieved using no more than one communication action.
Hence, for all b ∈ (0, b), any optimal contract-equilibrium pair must induce no fewer than
two communication actions, and therefore influential communication.

Now, in order to reach a contradiction, suppose that there is influential communication in
an optimal contract-equilibrium pair but the number K of contract actions that are induced
satisfies K < K̂ − 2. Then either there are two adjacent communication actions or there
is a contract action (not necessarily directly) between two communication actions. In case
there are two adjacent communication actions, we can replace both with contract actions
x′ and x′′, where x′ < x′′. Let θ′ ∈ (0, 1) be the type for which the interim principal is
indifferent between x′ and x′′. Then a∗P (θ

′, b) < x′′ and a∗P (1, b) > x′′. Therefore, there exists

t ∈ (θ′, 1) for which a∗P (t, b) = x′′. Since after replacement we have K < K̂, by Lemma 1 we
can strictly improve on the contract-equilibrium pair (X, eX) by introducing an additional
contract action, contrary to our assumption that (X, eX) was optimal. Next, consider the
case in which there is a contract action (not necessarily directly) between two communication
actions. Then we can find a pair of a contract action x and a communication action y that are
adjacent and satisfy x < y. Let θ′ ∈ (0, 1) be the type for which the principal is indifferent
between x and y. Then, using the fact that y is a communication action, a∗P (θ

′, b) < y
and a∗P (1, b) > y. Therefore, there exists t ∈ (θ′, 1) for which a∗P (t, b) = y. Hence, letting
x = x and replacing the communication action y with the contract action x = y, we can
satisfy the requirement in condition (N) that there exists t ∈ [0, 1] for which a∗P (t, b) = x.

Since after replacement we have K < K̂, by Lemma 1 we can strictly improve on the
contract-equilibrium pair (X, eX) by introducing an additional contract action, contrary to
our assumption that (X, eX) was optimal.

(iii) To derive a contradiction, suppose that there is an optimal contract-equilibrium pair

(X, eX) with 2 < K < K̂ − 2. Since K > 2, three contract actions are induced. Hence,
we can choose three adjacent actions that are induced, at least one of which is a contract
action. From K < K̂−2 it follows that if any of the three chosen actions are communication
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actions, we can replace them by contract actions, without changing payoffs. The fact that
one of the three chosen actions was a contract action to begin with implies that after the
replacement, we continue to have K < K̂. After the replacement, three adjacent contract
actions x′, x′′, and x′′′ with x′ < x′′ < x′′′ are induced. Thus by assumption, there are types
θ′, θ′′ ∈ (0, 1) such that at θ′ (θ′′) the principal is indifferent between x′ and x′′ (x′′ and
x′′′). Therefore, there exists t ∈ (θ′, θ′′) for which a∗P (t, b) = x′′. Hence, letting x = x′ and
x = x′′, we can satisfy the requirement in condition (N) that there exists t ∈ [0, 1] for which

a∗P (t, b) = x. Since after replacement we haveK < K̂, by Lemma 1 we can strictly improve on
the contract-equilibrium pair (X, eX) by introducing an additional contract action, contrary
to our assumption that (X, eX) was optimal. 2

6 Uniform quadratic environment

In this section we characterize optimal contract-equilibrium pairs in the uniform-quadratic
environment when there is significant interplay of contracting and communication. For this,
we assume that the bias is small enough for optimality to require the use of communication
actions (Proposition 2), in addition to contract actions. Our main characterization below
then shows that topics are of similar size: the number of induced communication actions
within each topic typically differs by one but at most by four.

For any contract X = {x1, x2, . . . , xK}, we use the following notation: T1 := T (x1),
Tk := T (xk−1, xk), k = 2, . . . , K, and TK+1 := T (xK). Notice that in this environment
the type set that is associated with any inner topic is of the form [xk−1 − b, xk − b]. We

suppose K̂ ≥ 5. Thus by Proposition 2 at least 3 contract actions will be used in any
optimal contract-equilibrium pair. Having three contract actions implies by Lemma B.2 in
the appendix that the lowest and highest contract actions satisfy x1 ≥ −b and xK ≤ 1 + b.
Hence for topic TK+1 we have the associated type set [xK−b, 1]; for topic T1 we have [0, x1−b]
if x1 ≥ b, otherwise, T1 is empty and we have [0, x2 − b] for the improper inner topic T2.

Definition 2 An n-step T -equilibrium is a T -equilibrium that induces n ∈ N0 commu-
nication actions.

For any topic T , we denote the maximal number n for which there is an n-step T -
equilibrium by N(T ). Moreover, for any topic Tk with an nk-step Tk-equilibrium, we denote
the corresponding communication actions by yk,i, i = 1, . . . , nk. For each of those communi-
cation actions, there is a minimal type θk,i−1 and a maximal type θk,i willing to induce that
action (these might equal 0 or 1). We refer to (θk,i−1, θk,i) as the ith communication interval
in Tk. This is the set of types who strictly prefer to induce action yk,i. Figure 4 illustrates.

Notice that, unlike in the leading CS example, here the boundary conditions are en-
dogenous and belong to the interior of a topic. For example for an inner topic, types in
(xk−1 − b, θk,0) induce the contract action xk−1; types in (θk,nk

, xk − b) induce the contract

action xk; and, the remaining types induce the communication actions yk,i =
θk,i+θk,i−1

2
,

i = 1, . . . , nk.
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Topic Tk:
θ

xk−1 − b
xk−1

θk,0 θk,1

yk,1 yk,nk

θk,nk

. . .

xk
xk − b

Figure 4: Types in topic Tk induce contract actions xk and xk−1, and communication actions
yk,i, i = 1, . . . , nk.

We can now state our result that shows that topics are of similar size. Note that for
K̂ ≥ 5 most topics are inner topics.

Proposition 3 For every optimal contract-equilibrium pair (X, eX) and all inner topics T
and T ′ generated by the contract X,

|N(T )−N(T ′)| ≤ 1,

and for all topics |N(T )−N(T ′)| ≤ 4.

The result illustrates the interplay of the formal structure of the contract and the informal
interaction through communication. The contract is used to structure communication and
it sets guardrails for what communication can be used for. The different topics in which
communication takes place are of roughly equal size. The intuition for this equality stems
from the well-known fact that in the uniform quadratic environment communication intervals
increase in size the higher the types – within a topic. This implies that communication
becomes less informative if a topic gets larger. On the other hand, more communication
actions are better than fewer and there is no interaction between topics. Therefore it is
optimal to equalize the number of communication actions across all topics.

The proof of the proposition proceeds through a sequence of steps, summarized in lemmas
stated in the appendix. We begin by showing how the number of possible communication
actions in each topic is constrained by the size of that topic (Lemma B.4). We then express
the ex ante principal’s payoff in each topic as a function of the number of communication
actions in that topic (Lemma B.5). In Lemma B.6 we show that it is optimal to maximize
this number in each topic.

As a consequence, when considering increasing the size of one topic at the expense of
another, the principal faces a tradeoff: communication opportunities shift from the shrinking
to the growing topic. To satisfy communication incentives, it is necessary in large topics to
have large communication intervals, which limits the efficacy of communication. Therefore
to benefit most from communication, it is preferable to try to equalize the size of topics. This
is formalized in our key result in Lemma B.8, where we show that the maximal numbers
of communication actions in two neighboring inner topics can at most differ by one. To
extend our result of similar sizes of neighboring inner topics to all inner topics, we show
that switching two neighboring inner topics, say Tk and Tk+1 along with the corresponding
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respective Tk- and Tk+1- equilibrium behavior, preserves incentive compatibility and leaves
the principal’s ex ante payoff unchanged (Lemma B.7). Figure 5 illustrates.

t

Tk Tk+1

t

T ′
k+1 T ′

k

Figure 5: Topics and translated topics.

To complete the picture, in Lemma B.8 we also establish bounds on the differences in
the number of communication actions in adjacent topics that need not be inner topics.
Specifically, if T1 is nonempty, this difference between T1 and T2 is at most one; if T1 is
empty, T2 has at most one communication action, implying that T3 to TK have at most two;
and the difference between the numbers of communication actions in TK and TK+1 is at most
two. Topics that are not inner topics cannot be switched with other topics. Hence, adding
the numbers of possible differences of communication actions across all topics, we get that
for any arbitrary two topics they can differ by at most four.

Finally, when there influential communication in T2, then T1 is non-empty (Lemma B.9).
As a consequence, with sufficiently little conflict – and therefore a large number of com-
munication actions – the maximal difference across all topics in the proposition reduces to
|N(T )−N(T ′)| ≤ 3.
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A Appendix

A set A = [aℓ, ah] ⊂ R is a set of candidate actions if for every ξ ∈ [0, 1) and every optimal
contract-equilibrium pair (X, eX), all actions a ∈ R that are induced by that contract-
equilibrium pair satisfy a ∈ A. The following observation shows that independent of the
compensation conflict we can restrict attention to a compact subset of the action space.

Lemma A.1 There exists a set of candidate actions A.

Let A := {A ⊂ R|A is a set of candidate actions} and A∗ :=
⋂

A∈AA. It is easily seen
that A∗ is a nonempty closed interval and the smallest set of candidate actions. In the sequel
we will refer to A∗ as the set of relevant actions. The following observation is immediate.

Observation A.1 For every ξ ∈ [0, 1) and every optimal contract-equilibrium pair, all ac-
tions a ∈ R that are induced by that contract-equilibrium pair satisfy a ∈ A∗.

Proof of Lemma A.1. Strict concavity and the cross-partial condition imply that the
interim principal strictly prefers the higher (lower) of any two actions less than a∗A(0) (greater
than a∗P (1, b)). Therefore, any contract-equilibrium pair that does not induce at least one
action a ∈ [a∗A(0), a

∗
P (1, b)] induces at most two actions. Moreover, these two actions a′ < a′′

satisfy a′ < a∗A(0) < a∗P (1, b) < a′′.
Any contract-equilibrium pair that does not induce at least one action a ∈ [a∗A(0), a

∗
P (1, b)]

while inducing two actions a′ < a′′ (satisfying a′ < a∗A(0) < a∗P (1, b) < a′′) can be improved
upon: Let t̂ be the type who satisfies UP (a′, t̂, b) = UP (a′′, t̂, b). Evidently, we can find a
and a such that a′ < a < a∗A(0) < a∗P (1, b) < a < a′′ and UP (a, t̂, b) = UP (a, t̂, b). Given
the actions a and a, the interval of types for which the interim principal chooses the lower
action remains the same. For all types in that interval both interim principal and agent, and
therefore the ex ante principal, prefer the action a to the action a′. Similarly, the interval of
types for which the interim principal chooses the higher action remains the same, and for all
types in that interval both interim principal and agent, and therefore the ex ante principal,
prefer the action a to the action a′′.

Combining these observations, it follows that every optimal contract-equilibrium pair
induces at least one action a ∈ [a∗A(0), a

∗
P (1, b)].

Let

uP := min
a∈[a∗A(0),a∗

P
(1,b)]

t∈[0,1]

UP (a, t, b).

Since any optimal contract-equilibrium pair induces at least one action in the interval
[a∗A(0), a

∗
P (1, b)], uP is a lower bound on the interim principal’s utility, regardless of the

type. It is well-defined since UP is continuous and [a∗A(0), a
∗
P (1, b)]× [0, 1] is compact. Strict

concavity of UP in its first argument implies that there exists ah > a∗P (1, b) such that
uP > UP (a, 1, b) for all a > ah.
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Similarly, there exists aℓ < a∗A(0) such that UP (a, 0, b) < uP for all a < aℓ.
Combining these two observations with the cross-partial condition that holds for UP

implies that the interim principal would never induce an action that is outside the interval
[aℓ, ah] . 2

B Uniform quadratic case

Lemma B.1 Any contract-equilibrium pair (X, eX) in ΓX can induce at most one contract
action x′ with x′ ≤ b and at most one contract action x′′ with x′′ ≥ 1 + b.

Proof of Lemma B.1. Consider any contract with 1 + b ≤ xK−1 < xK . Then, since all
types θ of the interim principal have ideal points θ + b ≤ 1 + b and their payoff functions
are strictly concave in the action taken, they all strictly prefer xK−1 over xK . Hence, the
interim principal would never induce xK . An analogous argument establishes the first part
of the statement. 2

Lemma B.2 For every optimal contract-equilibrium pair (X, eX) in ΓX that induces K ≥ 3
contract actions, the lowest of those actions, x1, satisfies x1 ≥ −b, and the highest of those
actions, xK, satisfies xK ≤ 1 + b.

Proof of Lemma B.2. Bound on x1:
Consider a contract-equilibrium pair (X, eX) in ΓX in which K ≥ 3 contract actions are

induced and x1 < −b. We will show that there exists a contract-equilibrium pair (X ′, eX
′
) in

ΓX′
that raises both the interim principal’s and the agent’s expected payoffs, and therefore

the ex ante principal’s payoff.
Let ℓ denote the length of the interval of types who induce contract action x1 in equilib-

rium eX of ΓX . Since x1 is induced by assumption, we know that ℓ > 0. Since none of the
types θ ≥ x2 − b induce action x1, it follows that x2 ≥ b+ ℓ.

Let X ′ be the contract obtained from X by replacing x1 with x′
1 = x2 − ℓ, and otherwise

leaving the contract unchanged. Since K ≥ 3, it follows from Lemma B.1 that x2 − b < 1.
We have x′

1 − b = x2 − ℓ− b ≥ (b+ ℓ)− ℓ− b = 0. Hence [x′
1 − b, x2 − b] ⊂ [0, 1].

Evidently, there exists an equilibrium eX
′
in ΓX′

in which (1) all types θ ≥ x2 − b induce
the same actions as they did in the equilibrium eX of ΓX and (2) for every type θ with
ℓ < θ < x2 − b who induced action a in the equilibrium eX of ΓX , type θ − ℓ induces action
a− ℓ in the equilibrium eX

′
of ΓX′

.
In the equilibrium eX

′
in ΓX′

types in [x′
1 − b, x′

1 − b+ ℓ/2) induce action x′
1 and types in

(x′
1 − b+ ℓ/2, x2 − b] induce action x2. Hence, the agent’s expected payoff from types in the

interval [x′
1 − b, x2 − b] in the equilibrium eX

′
in ΓX′

equals

−
∫ ℓ/2

0

(s− b)2ds−
∫ ℓ

ℓ/2

(s− (ℓ+ b))2ds.
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In contrast, the agent’s expected payoff from types in the interval [0, ℓ] in the equilibrium
eX in ΓX equals

−
∫ ℓ

0

(s− x1)
2ds.

Hence, the agent gains from replacing equilibrium eX in ΓX with equilibrium eX
′
in ΓX′

if

−
∫ ℓ

0

(s− x1)
2ds < −

∫ ℓ/2

0

(s− b)2ds−
∫ ℓ

ℓ/2

(s− (ℓ+ b))2ds.

This inequality is equivalent to

ℓx1 − x2
1 < −b2 +

1

4
ℓ2.

Since ℓ > 0 and x1 < 0 by assumption, a sufficient condition for the latter inequality to be
satisfied is that

−x2
1 < −b2.

Since x1 < 0 by assumption, the latter inequality holds as long as x1 < −b. Hence, if x1 < −b,
replacing the contract-equilibrium pair (X, eX) with (X ′, eX

′
) raises the agent’s payoff.

It remains to show that the interim principal also gains from replacing the pair (X, eX)
with the pair (X ′, eX

′
). For this purpose, it suffices to show that every type x′

1 − b + l ∈
[x′

1 − b, x2 − b] of the interim principal has a higher expected payoff in the equilibrium
eX

′
of ΓX′

than does type l ∈ [0, ℓ] in the equilibrium eX of ΓX . The interim principal’s
payoff when her type is l ∈ [0, ℓ] in the equilibrium eX of ΓX equals −(l + b − x1)

2. Her
payoff when her type is x′

1 − b + l ∈ [x′
1 − b, x2 − b] in the equilibrium eX

′
of ΓX′

equals
at least −(x′

1 − b + l + b − x′
1)

2 = −l2. Since we assumed that x1 < −b, it follows that
−(l + b− x1)

2 < −l2. Thus for every type x′
1 − b+ l ∈ [x′

1 − b, x2 − b], the interim principal
has a higher expected payoff in the equilibrium eX

′
of ΓX′

than does type l ∈ [0, ℓ] in the
equilibrium eX of ΓX .

Since both the agent and the interim principal gain from replacing the pair (X, eX) with
the pair (X ′, eX

′
), we obtain the desired contradiction to the assumption that (X, eX) is

optimal for the ex ante principal.
An analogous argument establishes the bound on xK . 2

Lemma B.3 For any inner and improper inner topic Tk, in any nk-step Tk-equilibrium, the
critical types θk,i i = 0, . . . , nk satisfy the difference equation

θk,i − θk,i−1 =
θk,nk

− θk,0
nk

− 2b (nk − 2i+ 1) , for i = 1, . . . , nk, (6)

with boundary conditions

θk,0 =
(2nk + 1)xk−1 + xk − 2b(1 + nk)

2

2(1 + nk)
, θk,nk

=
xk−1 + (2nk + 1)xk − 2b(1 + nk)

2

2(1 + nk)
. (7)
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For outer topic TK+1, the boundary conditions are of the form

θK+1,0 =
2nK+1xK + 1− 2bnK+1(nK+1 + 1)

2nK+1 + 1
, θK+1,nK+1

= 1. (8)

If the outer topic T1 is nonempty, then for this topic the boundary conditions are of the form

θ1,0 = 0, θ1,n1 =
2x1n1 − 2bn1(n1 + 1)

2n1 + 1
. (9)

Proof of Lemma B.3. By Lemma B.1 and Lemma B.2, we have that x2 ≥ b and
xK ≤ 1 + b. Consider topics Tk for k = 2, . . . , K.

For the remainder of the proof, we suppress the index k for the critical types and for the
number of steps in topic Tk, writing θi for θk,i as well as n for nk. The interim principal’s
arbitrage conditions for critical types θi with 0 < i < n are

θi + b− θi−1 + θi
2

=
θi+1 + θi

2
− θi − b

and hence, for these critical types we have

θi+1 − θi = θi − θi−1 + 4b for 0 < i < n (10)

as usual. The arbitrage conditions for the two remaining critical types, θ0 and θn, are

θ0 + b− xk−1 =
1

2
(θ1 + θ0)− θ0 − b and (11)

θn + b− 1

2
(θn + θn−1) = xk − θn − b. (12)

Fixing θ0 and θ1, iterating the expression in equation (10), and summing the resulting interval
lengths θi′ − θi′−1 between θ0 and θi gives us

θi − θ0 = i(θ1 − θ0) + 4b
1

2
i(i− 1) for i = 1, . . . , n, (13)

which implies that
θi − θi−1 = θ1 − θ0 + 4b(i− 1) (14)

and

θ1 − θ0 =
θn − θ0

n
− 2b(n− 1). (15)

Hence,

θi − θi−1 =
1

n
(θn − θ0)− 2b (n− 2i+ 1) , (16)

which establishes (6) in the statement of the Lemma. Equations (13) and (15) imply

θi =
i

n
(θn − θ0) + θ0 − 2bi(n− i). (17)
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Using (17) to substitute for θ1 in (11) we obtain

θn = (2n+ 1)θ0 + 2bn(n+ 1)− 2nxk−1. (18)

Using (17) to substitute for θn−1 in (12), we obtain

θ0 = (2n+ 1)θn + 2bn(n+ 1)− 2nxk. (19)

Solving the system of equations (18) and (19) gives us θ0 and θn.
Finally, with n = 0, the arbitrage condition becomes θ0 + b− xk−1 = xk − θ0 − b, which

is equivalent to (7).
The results for k = 1 and k = K + 1 can be proven analogously. 2

Lemma B.4 For every inner and improper inner topic Tk, in any nk-step Tk-equilibrium,
xk − xk−1 > 2bnk(nk + 1). In any nK+1-step TK+1-equilibrium, 1 − (xK − b) > 2bn2

K+1. In
any n1-step T1-equilibrium, x1 > 2bn2

1.

Proof of Lemma B.4. In the proof, we suppress the index k for the topic on the critical
types, thus writing θi for what would otherwise be θk,i as well as n for nk.

If there is a nontrivial interval of types in topic Tk who induce a communication action,
then this action must be strictly greater than xk−1. Therefore, for communication in topic Tk,
we must have θ0 > xk−1− b, from the arbitrage condition for θ0. In addition, rearranging the
arbitrage condition, we have θ1− θ0 = 2θ0+4b− 2xk−1. The right-hand side of this equation
is strictly increasing in θ0 and, since θ0 > xk−1 − b, bounded from below by 2(xk−1 − b) +
4b− 2xk−1 = 2b. To summarize, we need to respect the constraints

θ0 > xk−1 − b, and (20)

θ1 − θ0 > 2b. (21)

Using (21), equation (6) in Lemma B.3 for i = 1 implies that we need to satisfy the condition

θn − θ0
n

− 2b(n− 1) > 2b. (22)

The minimal length θ1 − θ0 of the first step is greater than 2b (by (21)). Each of the
(n − 1) additional steps adds 4b to the length of the previous step, according to equation
(6) in Lemma B.3. Therefore, it follows that the length of the nth step, θn − θn−1, is greater
than 2b+ (n− 1)4b. Using the arbitrage condition (θn + b− 1

2
(θn + θn−1) = xk − θn − b) for

θn, this implies that θn + b < xk − [b+ 2(n− 1)b+ b]. Hence,

θn < xk − 2nb− b. (23)

Combine (20), (22), and (23) to obtain xk−2nb−b−(xk−1−b)

n
−2b(n−1) > 2b, which is equivalent

to
xk − xk−1 > 2bn(n+ 1). (24)
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The results for k = 1 and k = K + 1 can be proven analogously. 2

Denote the ex ante principal’s payoff from an n-step T -equilibrium by Πξ(n, T ).

Lemma B.5 For every inner topic Tk, in an nk-step Tk-equilibrium, the principal’s ex ante
payoff in topic Tk is given by

Πξ(nk, Tk) =
(xk−1 − xk)((xk−1 − xk)

2 + 4b2(1 + nk)
2(3 + 2nk + n2

k − 3(1− ξ)))

12(1 + nk)2
. (25)

In an nK+1-step TK+1-equilibrium, the principal’s ex ante payoff in topic Tk+1 is given
by

Πξ(nK+1, TK+1) =
(−1 + xK)3 − 3b(−1 + xK)2(1− ξ) + b2(−1 + xK)

(
4nK+1(1 + nK+1)

(
1 + nK+1 + n2

K+1

)
+ 3(1− ξ)

)
3(1 + 2nK+1)2

+
b3

(
−1 + 4nK+1

(
−1 + nK+1

(
nK+1(2 + nK+1)− 3(1 + nK+1)

2(1− ξ)
)))

3(1 + 2nK+1)2
.

In an n1-step T1-equilibrium, the principal’s ex ante payoff in topic T1 is given by

Πξ(n1, T1) =
1

3(1 + 2n1)2
(−x3

1 + b2x1(4n1(1 + n1)(−2 + (n1 − 2)n1)− 3(1− ξ))+

3bx2
1(1− ξ) + b3(1 + 4n1(2 + n1(3− n1 − 2n2

1(2 + n1) + 3(1 + n1)
2(1− ξ))))).

Suppose T1 is empty, then the principal’s ex ante payoff in an n2-step T2-equilibrium in
improper inner topic T2 is given by

Πξ(n2, T2) =− 1

12(1 + n2)2
[−4b3(1 + n2)

2 + (3 + 4n2(2 + n2))x
3
1 + 3x2

1x2 − 3x1x
2
2 + x3

2

− 12b(1 + n2)
2x2

1(1− ξ)− 4b2(1 + n2)
2((3 + n2(2 + n2))(x1 − x2) + 3(−2x1 + x2)(1− ξ))].

Proof of Lemma B.5. In the proof, we suppress the index k for the topic on the critical
types, thus writing θi for what would otherwise be θk,i and n for nk.

For n = 0, the ex ante principal’s payoff in [xk−1 − b, xk − b], is given by

−
∫ θ0

xk−1−b
(1− ξ) ((s+ b)− xk−1)

2+ ξ (s− xk−1)
2 ds−

∫ xk−b

θ0

(1− ξ) ((s+ b)− xk)
2+ ξ (s− xk)

2 ds.

This reduces to

−(1− ξ)
1

3

(
(θ0 − xk−1 + b)3 + (xk − b− θ0)

3)− ξ
1

3

(
(θ0 − xk−1)

3 + (xk − θ0)
3)

=
(xk−1 − xk)((xk−1 − xk)

2 + 12b2ξ)

12
.
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For n ≥ 1, the ex ante principal’s payoff from an n-step equilibrium in [xk−1 − b, xk − b],
is given by

−
∫ θ0

xk−1−b

(1− ξ) ((s+ b)− xk−1)
2 + ξ (s− xk−1)

2 ds

−
n∑

i=1

∫ θi

θi−1

(1− ξ)

(
(s+ b)− θi−1 + θi

2

)2

+ ξ

(
s− θi−1 + θi

2

)2

ds

−
∫ xk−b

θn

(1− ξ) ((s+ b)− xk)
2 + ξ (s− xk)

2 ds.

The interim principal’s payoff over the range [θ0, θn], in which she induces communication
actions rather than contract actions in Tk, equals

−
n∑

i=1

∫ θi

θi−1

(
(s+ b)− θi−1 + θi

2

)2

= − 1

12

n∑
i=1

(θi − θi−1)
3 − (θn − θ0) b

2.

Analogously, the agent’s payoff over that range is

−
n∑

i=1

∫ θi

θi−1

(
θi−1 + θi

2
− s

)2

= − 1

12

n∑
i=1

(θi − θi−1)
3 .

Using (6) in Lemma B.3 and noting that

n∑
i=1

(
θn − θ0

n
+ 2b(2i− n− 1)

)3

=
(θn − θ0)

3

n2
+ 4b2(θn − θ0)(n+ 1)(n− 1),

the ex ante principal’s payoff in [xk−1 − b, xk − b] reduces to

− (1− ξ)
1

3
(θ0 − xk−1 + b)3 − ξ

1

3

(
(θ0 − xk−1)

3 + b3
)

− 1

12

(θn − θ0)
3

n2
− 1

3
b2(θn − θ0)(n

2 − 1)− (1− ξ)(θn − θ0)b
2

− (1− ξ)
1

3
(xk − b− θn)

3 − ξ
1

3

(
(xk − θn)

3 − b3
)
.

We can now insert the values of θn and θ0 given in equation (7) from Lemma B.3. Simplifying,
we obtain

Πξ(nk, Tk) =
(xk−1 − xk)((xk−1 − xk)

2 + 4b2(1 + n)2(3 + 2n+ n2 − 3(1− ξ)))

12(1 + n)2
.

The results for k = 1, 2 and k = K + 1 can be proven analogously. 2
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Lemma B.6 For all k, the N(Tk)-step equilibria maximize the ex ante principal’s payoff
among the equilibria in topic Tk.

Proof of Lemma B.6. Consider k = 3, . . . , K. We compare the principal’s payoff derived
in Lemma B.5 for nk and nk − 1 steps. The payoff difference in topic Tk is equivalent to

Πξ(nk, Tk)− Πξ(nk − 1, Tk) =
(1 + 2nk)(xk−1 − xk)

12n2
k(1 + nk)2

(4b2n2
k(1 + nk)

2 − (xk − xk−1)
2).

Lemma B.4 implies that the expression is strictly positive.
The results for k = K + 1 and k = 1, 2 can be proven analogously. 2

We say that the contract X ′ = {x1, . . . , xk−1, x
′
k, xk+1, . . . , xK} switches the topics Tk and

Tk+1 of contract X = {x1, . . . , xk−1, xk, xk+1, . . . , xK} if x′
k = xk+1 − (xk − xk−1).

Lemma B.7 Let X ′ switch the inner topics Tk and Tk+1 of contract X. Then, for any
equilibrium eX in ΓX with nκ communication actions in Tκ, κ = 1, . . . , K + 1, there exists a
payoff-equivalent equilibrium eX

′
in ΓX′

with communication actions y′κi = yκi, i = 1, . . . , nκ

for all κ ∈ {1, . . . , k − 1, k + 2, . . . , K + 1} with nκ ̸= 0, y′k+1,i = yk,i + (xk+1 − xk) for
i = 1, . . . , nk if nk ̸= 0, and y′k,i = yk+1,i − (xk − xk−1) for i = 1, . . . , nk+1 if nk+1 ̸= 0.

Proof of Lemma B.7. Denote the set of communication actions in the equilibrium eX by
Y and in the postulated equilibrium eX

′
by Y ′. Without loss of generality, let the equilibrium

eX be in pure strategies. For any two actions a and a′ > a, let θ(a, a′) denote the type who
is indifferent between those two actions. Since Tk and Tk+1 are inner topics, θ(a, a′) is well
defined for all a, a′ ∈ Tk ∪ Tk+1 = T ′

k+1 ∪ T ′
k .

For all actions a ∈ X∪Y , let T (a) be the set of types t ∈ [0, 1] who strictly prefer inducing
that action to inducing any other action in X ∪ Y . Similarly, for all actions a ∈ X ′ ∪ Y ′,
let T ′(a) be the set of types t ∈ [0, 1] who strictly prefer inducing action a to inducing any
other action in X ′ ∪ Y ′. We begin by identifying for each action a ∈ X ′ ∪ Y ′ the set of types
T ′(a). There are four ranges of types to consider.

Types t ≤ xk−1 − b: Since these types have ideal points that are no larger than xk−1,
they strictly prefer action xk−1 to any higher action in X ′∪Y ′. The set of actions in X ′∪Y ′

that are less than or equal to xk−1 is the same as in X ∪ Y. Therefore all of the types below
t ≤ xk−1 − b have an incentive to induce the same actions given X ′ ∪ Y ′ that they prefer to
induce given X ∪ Y.

Types t ∈ (xk−1−b, x′
k−b): The distance between the actions xk−1 and y′k,1 is the same as

that between xk and yk+1,1: y
′
k,1−xk−1 = yk+1,1−(xk−xk−1)−xk−1 = yk+1,1−xk. Therefore,

θ(xk−1, y
′
k,1) = θ(xk, yk+1,1)− (xk −xk−1). Similarly, θ(y′k,i, y

′
k,i+1) = θ(yk+1,i, yk+1,i+1)− (xk −

xk−1) for i = 1, . . . , nk+1 − 1 and θ(y′k,nk+1
, x′

k) = θ(yk+1,nk+1
, xk+1) − (xk − xk−1). This

implies that types in the interval (xk−1 − b, θ(xk−1, y
′
k,1)) strictly prefer to induce action

xk−1, types in the interval (θ(xk−1, y
′
k,1), θ(y

′
k,1, y

′
k,2)) strictly prefer to induce action y′k,1,

types in the interval (θ(y′k,i, y
′
k,i+1), θ(y

′
k,i+1, y

′
k,i+2)) strictly prefer to induce action y′k,i+1, for
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i = 1, . . . , nk+1 − 2, types in the interval (θ(y′k,nk+1−1, y
′
k,nk+1

), θ(y′k,nk+1
, x′

k)) strictly prefer to
induce action y′k,nk+1

, and types in the interval (θ(y′k,nk+1
, x′

k), x
′
k− b) strictly prefer to induce

action x′
k.

Types t ∈ (x′
k − b, xk+1 − b): The distance between the actions x′

k and y′k+1,1 is the same
as that between xk−1 and yk,1: y′k+1,1 − x′

k = yk,1 + (xk+1 − xk) − (xk+1 − (xk − xk−1)) =
yk,1−xk−1. Therefore, θ(x

′
k, y

′
k+1,1) = θ(xk−1, yk,1)+(xk+1−xk). Similarly, θ(y′k+1,i, y

′
k+1,i+1) =

θ(yk,i, yk,i+1) + (xk+1 − xk) for i = 1, . . . , nk − 1 and θ(y′k+1,nk
, xk+1) = θ(yk,nk

, xk) + (xk+1 −
xk). This implies that types in the interval (x′

k − b, θ(x′
k, y

′
k+1,1)) strictly prefer to induce

action x′
k, types in the interval (θ(x′

k, y
′
k+1,1), θ(y

′
k+1,1, y

′
k+1,2)) strictly prefer to induce action

y′k+1,1, types in the interval (θ(y′k+1,i, y
′
k+1,i+1), θ(y

′
k+1,i+1, y

′
k+1,i+2)) strictly prefer to induce

action y′k+1,i+1, for i = 1, . . . , nk−2, types in the interval (θ(y′k+1,nk−1, y
′
k+1,nk

), θ(y′k+1,nk
, x′

k)),
strictly prefer to induce action y′k+1,nk

, and types in the interval (θ(y′k+1,nk
, xk+1), xk+1 − b),

strictly prefer to induce action xk+1.
Types t ≥ xk+1 − b: Since these types have ideal points that are no less than xk+1, they

strictly prefer action xk+1 to any lower action in X ′ ∪ Y ′. The set of actions in X ′ ∪ Y ′ that
are greater than or equal to xk+1 is the same as in X ∪ Y. Therefore all of the types above
xk+1−b have an incentive to induce the same actions given X ′∪Y ′ that they prefer to induce
given X ∪ Y.

Taking action y ∈ Y ′ is optimal for the agent given prior beliefs concentrated on T ′(y).
This follows since, as we have seen, (a) for actions y ∈ Y ∩ Y ′ the set T ′(y) is the set of
types who induce y in eX and (b) for each action y ∈ Y ′ \ Y the set T ′(y) and the action
y are translated by the same amount, guaranteeing that y remains the midpoint of T ′(y).
To specify the interim principal’s strategy in eX

′
(up to a set of types of measure zero) let

the behavior of types t ≤ xk−1 − b and t ≥ xk+1 − b remain unchanged from eX when we
replace the contract X by X ′. Have types in the interval

(
θ(y′k,i−1, y

′
k,i), θ(y

′
k,i, y

′
k,i+1)

)
send

the same message that is sent by types in the interval (θ(yk+1,i−1, yk+1,i), θ(yk+1,i, yk+1,i+1))
in eX . And, let types in the interval

(
θ(y′k+1,i−1, y

′
k+1,i), θ(y

′
k+1,i, y

′
k+1,i+1)

)
send the same

message that is sent by types in the interval (θ(yk,i−1, yk,i), θ(yk,i, yk,i+1)) in eX . To complete
the description of eX

′
, have the agent’s strategy prescribe to take action y in response to the

message sent by types in T ′(y) according to the specified interim principal’s strategy for all
y ∈ Y ′, and, for some arbitrary action ŷ ∈ Y ′, to take that action after all other messages.

Next, we show that the equilibrium eX
′
in ΓX′

is payoff equivalent to the equilibrium eX

in ΓX . Note first that each type t ∈ [0, 1]\(Tk∪Tk+1) induces the same action in eX as in eX
′
.

Hence for all these types, payoffs do no vary with the two equilibria. Next consider types
in Tk ∪ Tk+1. For each a ∈ X ∪ Y with xk−1 ≤ a ≤ xk+1, define P (a) := T (a) ∩ (Tk ∪ Tk+1)
and let P be the collection off all these sets. (Note that P (a) = T (a) for a ̸= xk−1, xk+1.)
Similarly, for each a ∈ X ′ ∪ Y ′ with xk−1 ≤ a ≤ xk+1, define P ′(a) := T ′(a) ∩ (Tk ∪ Tk+1)
and let P ′ be the collection off all these sets. By construction there is a bijection from
P to P ′ with the following properties: (a) for each P (a) ∈ P the image P ′(a′) under this
bijection satisfies that P ′(a′) is the Minkowski sum of P (a) and {d} and a′ = a+ d for some
d ∈ R; and, (b) types in P (a) induce action a in equilibrium eX and types in P (a′) induce
action a′ in equilibrium eX

′
. This implies that for almost all types in Tk ∪ Tk+1, payoffs
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are the same in equilibrium eX
′
as they are in eX . Combining the observations about types

t ∈ [0, 1] \ (Tk ∪ Tk+1) and types t ∈ Tk ∪ Tk+1, it follows that expected equilibrium payoffs
are the same in equilibrium eX of ΓX and equilibrium eX

′
of ΓX′

. 2

Lemma B.8 For every optimal contract-equilibrium pair (X, eX) and all inner topics T and
T ′ generated by the contract X,

|N(T )−N(T ′)| ≤ 1.

If T1 is non-empty, T1 and T2 satisfy

|N(T2)−N(T1)| ≤ 1.

If T1 is empty, T3 and T2 satisfy

|N(T2)−N(T3)| ≤ 1.

Moreover, TK and TK+1 satisfy

|N(TK+1)−N(TK)| ≤ 2.

Proof. We first establish the following claim.

Claim 1 Suppose that Tk and Tk+1 are inner topics that satisfy N(Tk+1) > N(Tk)+1. Then
the derivative of Πξ(N(Tk), Tk) + Πξ(N(Tk+1), Tk+1) with respect to xk is strictly positive.
And, if N(Tk+1) + 1 < N(Tk) the derivative is strictly negative.

By Lemma B.5, the sum of the payoffs in Tk and Tk+1 is given by

1

12(nk + 1)2
(xk−1 − xk)

(
(xk−1 − xk)

2 + 4b2(1 + nk)
2
(
3 + 2nk + n2

k − 3(1− ξ)
))

+
1

12(nk+1 + 1)2
(xk − xk+1)

(
(xk − xk+1)

2 + 4b2(1 + nk+1)
2
(
3 + 2(nk+1) + n2

k+1 − 3(1− ξ)
))

.

The derivative of this sum with respect to xk equals

1

12

(
−4b2nk(nk + 2) + 4b2nk+1(nk+1 + 2)− 3(xk−1 − xk)

2

(1 + nk)2
+

3(xk − xk+1)
2

(1 + nk+1)2

)
.

By Lemma B.4, the assumption that nk and nk+1 attain their maximal feasible values implies

2b(nk+1 + 1)(nk+1 + 2) ≥xk+1 − xk > 2bnk+1(nk+1 + 1)

2b(nk + 1)(nk + 2) ≥xk − xk−1 > 2bnk(nk + 1).
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We use these bounds to show that the derivative is positive under the stated condition. To
derive a lower bound on the derivative, replace (xk+1−xk) by its lower bound 2bnk+1(nk+1+1)
(as it enters positively) and replace (xk − xk−1) by its upper bound 2b(nk +1)(nk +2) (as it
enters negatively) in the derivative. Replacing yields

1

12

(
−4b2nk(nk + 2) + 4b2nk+1(nk+1 + 2)

)
− 1

12

(
3(2b(nk + 1)(nk + 2))2

(1 + nk)2
+

3(2bnk+1(nk+1 + 1))2

(1 + nk+1)2

)
=− b2

3

(
nk(nk + 2)− nk+1(nk+1 + 2) + 3(nk + 2)2 + 3n2

k+1

)
=
2

3
b2(2nk+1 − 2nk − 3)(2 + nk + nk+1),

The derivative is thus strictly positive for nk+1 > nk +
3
2
. Since nk+1 and nk are integers,

this holds if nk+1 > nk + 1.
Similarly, to show that the derivative is negative under the stated condition, we derive an

upper bound on the derivative. Replacing (xk+1−xk) by its upper bound 2b(nk+1+1)(nk+1+
2) (as this enters positively) and replacing (xk − xk−1) by its lower bound 2bnk(nk + 1) (as
this enters negatively) in the derivative yields

1

12

(
−4b2nk(nk + 2) + 4b2nk+1(nk+1 + 2)

)
− 1

12

(
3(2bnk(nk + 1))2

(1 + nk)2
+

3(2b(nk+1 + 1)(nk+1 + 2))2

(1 + nk+1)2

)
=− 2

3
b2(2nk − 2nk+1 − 3)(2 + nk + nk+1).

The derivative is thus strictly negative for nk+1 +
3
2
< nk. Since nk+1 and nk are integers,

this holds if nk+1 + 1 < nk. This establishes the claim (analogous claims hold for k = 1, 2
and k = K + 1).

In order to derive a contradiction to the statement of the lemma, suppose that for some k
and some s ≥ 2, Tk and Tk+s are inner topics with |N(Tk)−N(Tk+s)| > 1 for some optimal
contract-equilibrium pair (X, eX). Then, by Lemma B.7, there exists a payoff-equivalent
contract-equilibrium pair (X ′, eX

′
) for which the contract X ′ switches the topics Tk+s−1 and

Tk+s of the contract X. By, if necessary, repeatedly applying this argument we can conclude

that there exists a payoff equivalent contract-equilibrium pair (X̃, eX̃) with adjacent inner

topics T̃k and T̃k+1 such that |N(T̃k)−N(T̃k+1)| > 1. This, however, is ruled out by Claim 1
for optimal contract-equilibrium pairs. 2

Lemma B.9 For every optimal contract-equilibrium pair (X, eX) with n2 > 1, x1 ≥ b.
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Proof. We establish the claim by showing that the derivative of Πξ(n2, T2) with respect to
x1 is strictly positive for n2 > 1, if x1 < b.

Assume that x1 < b. The derivative of Πξ(n2, T2) with respect to x1 is given by

1

(12(1 + n)2)
(−3(3+8n+4n2)x2

1−6x1x2+3x2
2+4b2(1+n)2(3+2n+n2−6(1−ξ))+24b(1+n)2x1(1−ξ)).

We use the following bounds to show that the derivative is strictly positive under the stated
condition.

−b ≤ x1 < b (by Lemma B.2 and by assumption)

−b+ 2bn(n+ 1) < x2 < b+ 2b(n+ 1)(n+ 2) (by Lemmas B.2 and B.4)

0 ≤ (1− ξ) ≤ 1 (by assumption)

A lower bound on the derivative is given by

1

(12(1 + n)2)
[−3(3 + 8n+ 4n2)b2 − 6b(b+ 2b(n+ 1)(n+ 2)) + 3(−b+ 2bn(n+ 1))2

+ 4b2(1 + n)2(3 + 2n+ n2 − 6 · 1) + 24b(1 + n)2(−b) · 1]

=
1

(12(1 + n)2)
[8b2(1 + n)2(2n2 + n− 9)].

This is strictly positive for n > 1. 2

Proof of Proposition 3. Suppose that (for arbitrary topics) |N(T )−N(T ′)| > 4.
Then, by Lemma B.8, T and T ′ cannot both be inner topics. By Lemma B.8, we have

|N(TK+1)−N(TK)| ≤ 2. Combining this fact with our observation that
∣∣∣N(T̃ )−N(T̃ ′)

∣∣∣ ≤ 1

for any two inner topics and repeatedly applying Lemma B.7 rules out that one of the two
topics T and T ′ is an inner topic and the other is TK+1.

Suppose that x1 ≥ b. Then all topics Tk with k = 2, . . . , K are inner topics. Furthermore,
by Lemma B.8 we have that |N(T2) − N(T1)| ≤ 1. This rules out the topics T and T ′ are
T1 and T2. Combining the fact |N(T2) − N(T1)| ≤ 1 with the observation that for all inner

topics T̃ and T̃ ′ we have
∣∣∣N(T̃ )−N(T̃ ′)

∣∣∣ ≤ 1 and repeatedly applying Lemma B.7, implies

that |N(T )−N(T ′)| ≤ 1 whenever one of the topics T and T ′ is an inner topic and the
other is T1. A second implication, using the fact that |N(TK+1)−N(TK)| ≤ 2, is that for all
topics T and T ′, we have |N(T )−N(T ′)| ≤ 3.

Suppose that x1 < b. Then all topics Tk with k = 3, . . . , K are inner topics.
We can divide this case into two subcases: Either T2 has two or more communication

actions, or it has either no or only one communication action.
If there are two or more communication actions in T2, then by Lemma B.8 we get a

contradiction to the assumption defining this subcase, that x1 < b. This takes us back
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to the case with x1 ≥ b for which we established that for all topics T and T ′, we have
|N(T )−N(T ′)| ≤ 3.

If there are fewer than two communication actions in T2, then, remembering that x1 < b
the topic T1 is empty, we have |N(T1)−N(T2)| ≤ 1. Furthermore, by Lemma B.8, we have

that |N(T2)−N(T3)| ≤ 1; |N(TK+1) − N(TK)| ≤ 2; and we have
∣∣∣N(T̃ )−N(T̃ ′)

∣∣∣ ≤ 1 for

any two inner topics T̃ and T̃ ′; and, using Lemma B.7 we can repeated exchange any to
adjacent inner topics. The combination of these facts implies that for all topics T and T ′,
we have |N(T )−N(T ′)| ≤ 4. 2
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