
Algorithms for Solving Dynamic Games with
Imperfect Information

Branislav Bošanský

Artificial Intelligence Center,
Department of Computer Science,
Faculty of Electrical Engineering,

Czech Technical University in Prague

bosansky@fel.cvut.cz

October 29, 2018

Dynamic Games with Imperfect Information

Why do we need dynamic games?

How does imperfect information complicate solving dynamic
games?

What are (some of) the algorithms for solving these dynamic
games?

Possible Applications of Dynamic Games

Attackers execute their attacks
step by step, leaving traces that
can be spotted.

Dynamic examples of Adversarial
Machine Learning problems
(boiling frog, red herring).

Simple Network Security Scenario – Flip-It Game

Flip-it Game in a network

players aim to gain control over the hosts in the
network

the defender initially controls all hosts

both players choose which node to
attack/protect simultaneously (in case of a tie,
the control of the node does not change)

players only observe the result of their last move

there are different rewards/costs for each node

Simple Network Security Scenario – Flip-It Game

How can we solve this game?

Repeat the same strategy

In a structured environment, there is a clear dependency on
the history (if a defender is unsuccessful in gaining control of a
node N4, that means that one of nodes N2, N3 is
compromised).
If a reaction to an opponent’s move is not part of the
game-theoretic reasoning, it can be easily exploited by the
opponent.

Solve as a dynamic game:

with a fixed number of turns – Extensive-Form Games (EFGs)
without a fixed number of turns – Partially Observable
Stochastic Games (POSGs)

Dynamic games inherently model uncertainty in outcomes,
rewards, or deception.

Outline

Essentials

Quick Introduction to Dynamic Games
Baseline Algorithm for Solving Extensive-Form Games

State-of-the-art algorithms for Solving Extensive-Form Games

Solving Partially Observable Stochastic Games

Challenges and Vision

Not covered by this tutorial:

Continuous games

Purely heuristic algorithms with no guarantees (e.g., like
IS-MCTS [Ciancarini and Favini, 2010])

General-sum games and recent results in Stackelberg
equilibrium computation [Cerny et al., 2018]

Extensive-Form Representation

Extensive-form games (EFGs) provide a compact representation
(compared to normal-form games) to model games with finite and
fixed number of turns.

They are visualized as game trees:

nodes correspond to game states
edges correspond to actions performed by a player in a state

Extensive-Form Games (EFGs)

Formal Definition [Shoham and Leyton-Brown, 2009]:

players N = {1, 2, . . . , n}
actions A
choice nodes (histories) H
action function χ : H → 2A

player function ρ : H → N
terminal nodes Z
successor function ϕ : H×A → H∪Z
utility function u = (u1, u2, . . . , un) ; ui : Z → R

Strategies in Extensive-Form Games

A strategy in dynamic games has to reflect all possible situations
an agent can encounter in a game (due to moves of the opponent
and/or stochastic events). Strategy prescribes which action should
be played in any situation that can arise.

A pure strategy of player i in an EFG is an assignment of an action
for each state where player i acts

Si :=
∏

h∈H,ρ(h)=i

χ(h)

Strategies in EFGs

What are actions and strategies in this game?

A1 = {2− 0, 1− 1, 0− 2}; S1 = {2− 0, 1− 1, 0− 2}

A2 = {no, yes}; S2 = {(no, no, no), (no, no, yes), . . . , (yes, yes, yes)}

EFGs with Imperfect Information

When players are not able to observe the state of the game
perfectly, we talk about imperfect information games. The states
that are not distinguishable to a player belong to a single
information set.

Formal Definition [Shoham and Leyton-Brown, 2009]:

G = (N ,A,H,Z, χ, ρ, ϕ, γ, u) is a perfect-information EFG.

I = (I1, I2, . . . , In) where Ii is a set of equivalence classes
on choice nodes of a player i with the property that
ρ(h) = ρ(h′) = i and χ(h) = χ(h′), whenever h, h′ ∈ I for
some information set I ∈ Ii
we can use χ(I) instead of χ(h) for some h ∈ I

Strategies in EFGs with Imperfect Information

What are actions and strategies in this game?

A1 = {2− 0, 1− 1, 0− 2}; S1 = {2− 0, 1− 1, 0− 2}

A2 = {no, yes}; S2 = {no, yes}

Strategies in EFGs with Imperfect Information

Mixed strategies are defined as for normal-form games –
a probability distribution over pure strategies.

In EFGs, behavioral strategies are more common:

A behavioral strategy of player i is a product of probability
distributions over actions in each information set

βi :
∏
I∈II

∆(χ(I))

There is an important class of imperfect-information games in
which the expressiveness of mixed and behavioral strategies
coincide – perfect recall games. Informally, in games with perfect
recall no player forgets any information she previously knew.

Perfect Recall in EFGs

Definition

Player i has perfect recall in an imperfect-information game G if
for any two nodes h,h′ that are in the same information set for
player i , for any path consisting of decisions of player i ,
h0, a0, . . . , hn, an, h from the root of the game tree to h and for any
path h0, a

′
0, . . . , h

′
m, a

′
m, h

′ from the root to h′, it must be the case
that:

1 n = m

2 for all 0 ≤ j ≤ n, hj and h′j are in the same equivalence class
for player i , and aj = a′j

Definition

We say that an EFG has a perfect recall if all players have perfect
recall. Otherwise we say that the game has an imperfect recall.

Perfect vs. Imperfect Recall

1
Conditioning on a complete history
induces exponentially large
strategies.

They are easier to solve.

Strategies can be compactly
represented.

Unnecessary information can be
forgotten; hence, the strategies can
be (exponentially) smaller.

Much harder to solve (e.g., see
[Koller and Megiddo, 1992,
Cermak et al., 2018]).

Nash equilibrium (in behavioral
strategies) might not exist.

1Figures are from [Shoham and Leyton-Brown, 2009].

Imperfect Recall Game with no NE

2

2Figure from [Wichardt, 2008].

Solving Imperfect Information Extensive-Form Games

Backward induction does not work, there is a dependence between
the information sets.

The algorithms (typically) need to consider the game as a whole:

We can solve an EFG as a normal-form game.

We can use so-called sequence form to formulate a linear
program that has a linear size in the size of the game.

State-of-the-art algorithms:

Double Oracle for Extensive-Form Games (DOEFG)
[Bosansky et al., 2014]

Counterfactual Regret Minimization (CFR)
[Zinkevich et al., 2008, Tammelin, O. 2014]

Excessive Gap Technique (EGT)
[Hoda et al., 2010, Kroer et al., 2018]

LP Algorithms for Extensive-Form Games

Algorithms based on linear programming

Imperfect Information EFG

Induced Normal-Form Game

XZ XW YZ YW

ACE 3 3 1 1

ACF 3 3 1 1

ADE −2 −2 3 3

ADF −2 −2 3 3

BCE 2 0 2 0

BCF 1 3 1 3

BDE 2 0 2 0

BDF 1 3 1 3

Normal form representation is too verbose. The same leaf is stated
multiple times in the table.

We can avoid it by using sequences.

Sequences in Extensive-Form Games

Definition

An ordered list of actions of player i executed from the root of the
game tree to some node h ∈ H is called a sequence σi . Set of all
possible sequences of player i is denoted Σi .

Sequences in Extensive-Form Games

4(Σ1) 5(Σ2)

∅ ∅
A X

B Y

AC Z

AD W

BE

BF

Definition

An ordered list of actions of player i executed from the root of the
game tree to some node h ∈ H is called a sequence σi . Set of all
possible sequences of player i is denoted Σi .

Extended Utility Function

4(Σ1) 5(Σ2)

∅ ∅
A X

B Y

AC Z

AD W

BE

BF

We need to extend the utility function to operate over sequences:

g : Σ1 × Σ2 → R,

where g(σ1, σ2) =

u(z) iff z corresponds to a leaf (terminal history) represented
by sequences σ1 and σ2

0 otherwise

Extended Utility Function

4(Σ1) 5(Σ2)

∅ ∅
A X

B Y

AC Z

AD W

BE

BF

In games with chance a combination of sequences can lead to
multiple nodes/leafs. g(σ1, σ2) =∑

z∈Z′ C(z)u(z) iff Z ′ is a set of leafs that correspond to
history represented by sequences σ1 and σ2, and C(z)
represents the probability of leaf z being reached due to
chance

0 otherwise

Extended Utility Function

4(Σ1) 5(Σ2)

∅ ∅
A X

B Y

AC Z

AD W

BE

BF

Examples:

g(∅,W) = 0

g(AC ,W) = 0

g(BF ,W) = 3

g(A,X) = 0

. . .

Realization Plans

4(Σ1) 5(Σ2)

∅ ∅
A X

B Y

AC Z

AD W

BE

BF

We need to express a mixed strategy using sequences. We need to
be prepared for all situations.

Let’s assume that the opponent (player 2) will play everything and
assign a probability that certain sequence σ1 will be played.

A realization plan (ri (σi)) is a probability that sequence σi will be
played assuming player −i plays such actions that allow actions
from σi to be executed.

Realization Plans

4(Σ1) 5(Σ2)

∅ ∅
A X

B Y

AC Z

AD W

BE

BF

Examples:

r1(∅) = 1

r1(A) + r1(B) = r1(∅)
r1(AC) + r1(AD) = r1(A)

r1(BE) + r1(BF) = r1(B)

r2(∅) = 1

r2(X) + r2(Y) = r2(∅)
r2(Z) + r2(W) = r2(∅)

Best Response

4(Σ1) 5(Σ2)

∅ ∅
A X

B Y

AC Z

AD W

BE

BF

We now have almost everything – a strategy representation
and an extended utility function.
We will have a maximization objective and need a best
response for the minimizing player.
A player selects the best action (the one that minimizes the
expected utility) in each information set.
An expected utility after playing an action in an information
set corresponds to a sum of (1) utility values of leafs and (2)
information sets that are immediately reached.

Sequence Form Linear Program (SQF)

We are now ready to state the linear program:

max
r1,v

v(root) (1)

s.t. r1(∅) = 1 (2)

0 ≤ r1(σ1) ≤ 1 ∀σ1 ∈ Σ1 (3)∑
a∈A(I1)

r1(σ1a) = r1(σ1) ∀σ1 ∈ Σ1, ∀I1 ∈ inf1(σ1) (4)

∑
I ′∈inf2(σ2a)

v(I ′) +
∑
σ1∈Σ1

g(σ1, σ2a)r1(σ1) ≥ v(I) ∀I ∈ I2, σ2 = seq2(I), ∀a ∈ A(I)

(5)

seqi (I) is a sequence of player i to information set,

I ∈ Ii , vI is an expected utility in an information set,

infi (σi) is an information set, where the last action of σi has been
executed,

σia denotes an extension of a sequence σi with action a

Sequence Form LP - Example

max
r1,v

v(inf2(X)) + v(inf2(Z)) (6)

r1(∅) = 1; r1(A) + r1(B) = r1(∅) (7)

r1(AC) + r1(AD) = r1(A), (8)

r1(BE) + r1(BF) = r1(B) (9)

v(inf2(X)) ≤ 0 + g(AC ,X)r1(AC) + g(AD,X)r1(AD) (10)

v(inf2(Y)) ≤ 0 + g(AC ,Y)r1(AC) + g(AD,Y)r1(AD) (11)

v(inf2(Z)) ≤ 0 + g(BE ,Z)r1(BE) + g(BF ,Z)r1(BF) (12)

v(inf2(W)) ≤ 0 + g(BE ,W)r1(BE) + g(BF ,W)r1(BF) (13)

Sequence Form LP - Example

min
r2,v

v(inf1(A)) (14)

r2(∅) = 1; r2(X) + r2(Y) = r2(∅) (15)

r2(Z) + r2(W) = r2(∅) (16)

v(inf1(A)) ≥ v(inf1(AC)), v(inf1(B)) ≥ v(inf1(BE)) (17)

v(inf1(AC)) ≥ g(AC ,X)r2(X) + g(AC ,Y)r2(Y) (18)

v(inf1(AD)) ≥ g(AD,X)r2(X) + g(AD,Y)r2(Y) (19)

v(inf1(BE)) ≥ g(BE ,Z)r2(Z) + g(BE ,W)r2(W) (20)

v(inf1(BF)) ≥ g(BF ,Z)r2(Z) + g(BF ,W)r2(W) (21)

Simple Network Security Scenario – Flip-It Game

SQF for Flip-it Game in a network

Depth Size (# Nodes) Time [s] LP Time [s]

3 15,685 1 1

4 495,205 23 8

5 16,715,941 – –

Advantages/Disadvantages of SQF

(+) the fastest exact algorithm (if the LP fits into memory)

(+) quite easy to implement

(−) scales poorly due to memory limitations

(−) very difficult to make it domain-specific

Incremental Strategy Generation

Large linear programs can be solved by an incremental construction
of the LP. In game theory, the method has been known as
double-oracle algorithm. There are 4 steps that repeat until
convergence [Bosansky et al., 2014]:

1 create a restricted game – a simplified game where the
players are allowed to choose only from a limited set of
sequences of actions,

2 solve the restricted game – formalize the restricted game as
a sequence-form LP and solve it,

3 compute the best response – each player computes a best
response in the original game to the strategy from the
restricted game,

4 expand the restricted game – if the best responses strictly
improve the expected value, they are added as possible actions
into the restricted game.

Double Oracle Algorithm for EFGs

The original game. Sequences that form the restricted game will
be highlighted.

Double Oracle Algorithm for EFGs

Sequences AC and xz are added to the restricted game (as default
sequences of actions).

Double Oracle Algorithm for EFGs

Sequence yu is added to the restricted game as a best response of
the minimizing player.

Double Oracle Algorithm for EFGs

Sequence BE is added to the restricted game as a best response of
the maximizing player.

Double Oracle Algorithm for EFGs

There is no action defined for the node with history ByE . The
algorithm turns that node into a temporary leaf and assigns a
temporary utility value for that leaf.

Double Oracle Algorithm for EFGs

The algorithm turns the temporary leaf into a node when an action
s or t is added into the restricted game.

Characteristics of DOEFG

Generalization of the double oracle principle to structured strategy
spaces (such as sequences/realization plans).

Creating a valid restricted game is more complicated than adding a
single strategy (one may need to create temporary leaves).

DOEFG converges in at most linear number of iterations in the size
of the game tree (compared to the exponential number of
iterations when using strategies).

Simple Network Security Scenario – Flip-It Game

DOEFG for Flip-it Game in a network

Depth # Nodes SQF [s] SQF LP [s] DOEFG [s]

3 15,685 1 1 1

4 495,205 23 8 9

5 16,715,941 – – 508

Advantages/Disadvantages of DOEFG

(+) can solve much larger domains compared to SQF

(+) in a domain-independent way, the algorithm identifies
necessary strategies to consider in a large EFG

(+) best-response algorithms can be significantly improved for
specific domains/problems

(−) not that easy to implement

(−) the sequence-form linear program of the restricted game can
be a bottleneck

Simple Network Security Scenario – Flip-It Game

DOEFG with ordered moves for BR algorithm for Flip-it
Game in a network

Depth # Nodes SQF [s] SQF LP [s] DOEFG [s] DOEFG ordered [s]

3 15,685 1 1 1 1

4 495,205 23 8 9 5

5 16,715,941 – – 508 168

For depth 6 (size ≈ 4x109 nodes), DOEFG with ordered moves for BR reached
error 0.1 in 2 hours.

Approximate Algorithms for Extensive-Form Games

Algorithms based on Counterfactual Regret Minimization

Approximate Algorithms for Extensive-Form Games

Instead of computing the optimal strategy directly, one can employ
learning algorithms and learn the strategy via repeated (simulated,
or self-) play.

The algorithm minimizes so called regret and these algorithms are
also known as no-regret learning algorithms.

Main idea:

in each iteration, traverse through the game tree and adapt
the strategy in each information set according to the learning
rule

this learning rule minimizes the (counterfactual) regret

the algorithm minimizes the overall regret in the game

the average strategy converges to the optimal strategy

Regret and Counterfactual Regret

Player i ’s regret for not playing an action a′i against opponent’s
action a−i

ui (a
′
i , a−i)− ui (ai , a−i)

In extensive-form games we need to evaluate the value for each
action in an information set (counterfactual value)

vi (s, I) =
∑
z∈ZI

πs−i (z [I])πsi (z |z [I])ui (z),

where

ZI are leafs reachable from information set I

z [I] is the history prefix of z in I

πsi (h) is the probability of player i reaching node h following
strategy s

Regret and Counterfactual Regret

Counterfactual value for one deviation in information set I ; strategy
s is altered in information set I by playing action a : vi (sI→a, I)

at a time step t, the algorithm computes counterfactual regret for
current strategy

r ti (I , a) = vi (sI→a, I)− vi (sI , I)

the algorithm calculates the cumulative regret

RT
i =

T∑
t=1

r ti (I , a), RT ,+
i (I , a) = max{RT

i (I , a), 0}

strategy for the next iteration is selected using regret matching

st+1
i (I , a) =

RT ,+
i (I ,a)∑

a′∈A(I) R
T ,+
i (I ,a′)

if the denominator is positive

1
|A(I)| otherwise

Simple Network Security Scenario – Flip-It Game

CFR for Flip-it Game in a network3

3With the game tree pre-built in memory (took 1088s).

Extensions of Counterfactual Regret Minimization

There are many variants of the vanilla CFR algorithm:

MCCFR – CFR updates are not performed in the complete
game, but using outcome sampling (faster iterations)
[Lanctot, 2013, Brown and Sandholm, 2016]

CFR-BR – the second player performs a best-response (BR)
update instead of a CFR update (ideal for games where a
domain-specific BR algorithm is available)
[Johanson et al., 2011]

CFR-D – decomposition of CFR updates by subgames
(helpful if the game is too large to keep all information sets in
memory) [Burch et al., 2014]

CFR+ – main modification of the baseline CFR algorithm
that significantly improves convergence [Tammelin, O. 2014]

Extensions of Counterfactual Regret Minimization (CFR+)

CFR+ differs from CFR in three aspects:

only positive regrets are kept in cumulative regrets RT
i

players are alternating in the updates

in the computation of the average strategy, first d iterations
are ignored, later iterations are more important compared to
first iterations

Sometimes, even the current strategy reaches low exploitability.

Extensions of Counterfactual Regret Minimization (CFR+)

4

4Figure from [Tammelin, O. 2014].

Advantages/Disadvantages of CFR

(+) practical optimization algorithm

(+) easy to implement [Lanctot, 2013, p.22]

(+) memory requirements can be reduced with domain-specific
implementation (or CFR-D)

(−) CFR converges very slowly if a close approximation is required
(CFR+ is better)

(−) performance in other domains than poker is largely unknown
(in some cases slower than DOEFG)

Continual Resolving and Deepstack

Is there no hope for a provably algorithm that behaves similarly to
perfect information games?

Recently, new methods that allow limited-lookahead algorithm for
imperfect information games for poker
[Moravcik et al., 2017, Brown and Sandholm, 2017].

Key properties:

Use (a more complex) heuristic function to evaluate positions
at the end of the depth-limited game tree
Solve an EFG with a limited lookahead (e.g., using CFR or
other algorithm)
Use a specific gadget construction when advancing to next
turn of the game.

One cannot assign a heuristic value just to a state (as in perfect
information games), but to all states players consider possible.

Continual Resolving and Deepstack

5

5Picture from [Moravcik et al., 2017].

Generalization of Continual Resolving

Adaptation of continual resolving technique to other (security)
domains is not straightforward:

the actions are generally not observable (the defender does
not know which host the attacker infected)

the size of information sets (in number of possible states)
increases exponentially with number of turns in the game

the size of the information sets is changing for the
heuristic/neural network
the size of the information sets becomes impractical for large
horizon

the number of turns can be very large (e.g., Advanced
Persistent Threats (APTs))

Modeling Games with Long/Infinite Horizon

We can use the formalism of Partially Observable Stochastic
Games (POSGs).

There are several possible objectives in POSGs:

discounted sum – future rewards are discounted with factor
γ < 1

undiscounted sum – e.g., attacker aims to compromise
certain host while minimizing costs

reachability / safety criteria – e.g., defender wants to
ensure that certain hosts will not be compromised

many others

Partially Observable Stochastic Games (POSGs)

POSGs are generally difficult to solve

technically, one aims to solve an infinitely large extensive-form
game with an infinite game tree and utilities defined over
histories

players need to consider their beliefs about the true state of
the world, and beliefs the opponent has about the world, and
the belief the opponent has about player’s belief over the
state of the world, and so on – nested beliefs

one cannot avoid reasoning about the beliefs in this way
without losing (approximate) optimality guarantees

However, using a fixed horizon is often too artificial (Why should
the Flip-it Game stop after K iterations?).

Subclasses of Partially Observable Stochastic Games

From the practical/application perspective, we do not need to
solve general POSG.

The goal can be to find robust (defensive) strategy against an
attacker – we can assume worst-case subclasses of POSGs:

One-Sided POSGs
[Chatterjee and Doyen, 2014, Horak et al., 2017]

the attacker has perfect information

POSGs with public actions/observations [Ghosh, et al., 2004]

POSG with public actions generalize poker to infinite/indefinite
horizon (continual resolving approaches should still apply)
POSG with public observations are more general (e.g., both
players can learn observations that change their beliefs)

Solving One-Sided Partially Observable Stochastic Games

One-Sided POSGs can be solved by adapting single-player
algorithms designed for Partially Observable Markov Decision
Processes (POMDPs).

We adapted Heuristic Search Value Iteration (HSVI) algorithm for
solving games by [Horak et al., 2017]:

showing that value function of One-Sided POSGs is a convex
Lipschitz function in the belief of the defender,

defining dynamic-programming operator that corresponds to
solving a game at every stage,

showing that the algorithm converges to value of the game.

The scalability is currently limited, but many of the possible
improvements have not been tried/adapted yet.

Conclusions

... to conclude ...

Why Solving Dynamic Games

Dynamic Games provide much more realistic model for many
real-world problems.

There already exists a variety of algorithms for solving zero-sum or
non-zero-sum games.

Many of the existing algorithms can be tuned-up to improve
scalability:

DO can benefit from domain-specific best responses

CFR can benefit from domain-specific transitions between the
information sets

Most of the SOTA algorithms were developed thanks to poker
application – competition in dynamic security games?

Challenges

It is not an easy task.

Start with the baseline algorithm:

Provides a clear benchmark for further improvement.

What if the baseline already scales well and all that is needed
is a minor modification?

Typical bottlenecks:

history dependent strategies (perfect recall) – Does the game
(outcomes, strategies) really depends on the entire history?

domain-dependent simplifications (which states/strategies can
be safely removed?)

Try to generalize the methods.

Maybe a better, fundamentally different algorithm (or a
representation) can be designed.

Thank you

bosansky@fel.cvut.cz

References I

[Bosansky et al., 2014] Bosansky, B., Kiekintveld, C., Lisy, V., and Pechoucek,
M. (2014).

An Exact Double-Oracle Algorithm for Zero-Sum Extensive-Form Games
with Imperfect Information.

Journal of Artificial Intelligence Research, 2014.

[Bowling et al., 2015] M. Bowling, N. Burch, M. Johanson, O. Tammelin.

Heads-up limit holdem poker is solved.

Science 347 (6218) (2015) 145–149.

[Brown and Sandholm, 2016] Brown, N. and Sandholm, T. (2016).

Strategy-Based Warm Starting for Regret Minimization in Games.

In Proceedings of AAAI Conference on Artificial Intelligence.

[Brown and Sandholm, 2017] Brown, N. and Sandholm, T. (2017).

Safe and Nested Subgame Solving for Imperfect-Information Games

In Proceedings of 31st Conference on Neural Information Processing
Systems (NIPS 2017).

References II

[Burch et al., 2014] Burch, N., Johanson, M., and Bowling, M. (2014).

Solving Imperfect Information Games Using Decomposition.

In Proceedings of AAAI Conference on Artificial Intelligence.

[Cerny et al., 2018] Cerny, J., Bosansky, B., and Kiekintveld, C. (2018).

Incremental Strategy Generation for Stackelberg Equilibria in
Extensive-Form Games.

In Proceedings of the ACM Conference on Economics and Computation.

[Cermak et al., 2018] J. Čermák, B. Bošanský, K. Horák, V. Lisý,
M. Pěchouček. (2018)

Approximating maxmin strategies in imperfect recall games using a-loss
recall property.

International Journal of Approximate Reasoning 93:290–326.

[Ciancarini and Favini, 2010] Ciancarini, P. and Favini, G. P. (2010).

Monte Carlo tree search in Kriegspiel.

Artificial Intelligence, 174:670–684.

References III

[Chatterjee and Doyen, 2014] Chatterjee, K., and Doyen, L. (2014)

Partial-observation stochastic games: How to win when belief fails.

ACM Transactions on Computational Logic (TOCL) 15(2):16.

[Ghosh, et al., 2004] Ghosh, M. K.; McDonald, D.; and Sinha, S. (2004)

Zero-Sum Stochastic Games with Partial Information.

Journal of Optimization Theory and Applications 121(1):99–118.

[Hoda et al., 2010] S. Hoda, A. Gilpin, J. Peña, T. Sandholm, (2010)

Smoothing Techniques for Computing Nash Equilibria of Sequential
Games.

Mathematics of Operations Research 35 (2) (2010) 494–512.

[Horak et al., 2017] Horak, K., Bosansky, B., and Pechoucek, M. (2017).

Heuristic Search Value Iteration for One-Sided Partially Observable
Stochastic Games

In Proceedings of AAAI Conference on Artificial Intelligence.

References IV

[Johanson et al., 2011] Johanson, M., Bowling, M., Waugh, K., and Zinkevich,
M. (2011).

Accelerating best response calculation in large extensive games.

In Proceedings of the 22nd International Joint Conference on Artificial
Intelligence (IJCAI), pages 258–265.

[Koller and Megiddo, 1992] D. Koller, N. Megiddo. (1992)

The Complexity of Two-person Zero-sum Games in Extensive Form,

Games and Economic Behavior 4:528–552.

[Kroer et al., 2018] Kroer, C., Waugh, K., Klnc-Karzan, F., Sandholm, T.
(2018).

Faster algorithms for extensive-form game solving via improved smoothing
functions.

Mathematical Programming, 1–33.

References V

[Lanctot, 2013] Lanctot, M. (2013).

Monte Carlo Sampling and Regret Minimization for Equilibrium
Computation and Decision Making in Large Extensive-Form Games.

PhD thesis, University of Alberta.

[Moravcik et al., 2017] M. Moravč́ık, M. Schmid, N. Burch, V. Lisý, D. Morrill,
N. Bard, T. Davis, K. Waugh, M. Johanson, M. Bowling, Deepstack:
Expert-level Artificial Intelligence in Heads-up No-limit Poker, Science.

[Shoham and Leyton-Brown, 2009] Shoham, Y. and Leyton-Brown, K. (2009).

Multiagent Systems: Algorithmic, Game-Theoretic, and Logical
Foundations.

Cambridge University Press.

[Tammelin, O. 2014] O. Tammelin, (2014)

CFR+,

CoRR, abs/1407.5042.

References VI

[Wichardt, 2008] Wichardt, P. C. (2008).

Existence of nash equilibria in finite extensive form games with imperfect
recall: A counterexample.

Games and Economic Behavior, 63(1):366–369.

[Zinkevich et al., 2008] M. Zinkevich, M. Johanson, M. H. Bowling,
C. Piccione. (2007)

Regret minimization in games with incomplete information.

In Advances in Neural Information Processing Systems, pp. 1729–1736.

