
ECE-GY 9223 Reinforcement Learning Spring 2019

Lecture 4 — Feb 19, 2019

Prof. Quanyan Zhu Scribe: Tao Li

1 Overview

In the last lecture we discuss about value iteration in computations for MDPs and in this lecture
we continue our discussion by introducing policy iteration. Besides, a function approximation
technique: neural networks is also included and we demonstrate an optimal-control-based
approach for dealing with multilayer neural networks, where Pontryagin’s Maximum Principle
is applied to solve the optimal control problem derived from neural networks.

2 Policy Iteration

Generally, in value iteration, an infinite number of iterations are required to reach the optimal
cost-to-go function, whereas policy iteration, an alternative to value iteration, always terminates
finitely. In policy iteration, we start with an initial proper policy µ0 and generate a sequence of
policies µ1, µ2, · · · by the following scheme:

initialization k=0, pick an arbitrary policy µ0,

policy evaluation at time k, compute Jµk by solving the linear system: Jµk = Tµk(Jµk),

policy improvement find a better policy µk+1 computed as

µk+1 ∈ arg min
u∈U(i)

n∑
j=0

pij(u) (g(i, u, j) + Jµk(i)) ,

termination let k ← k + 1 and repeat the policy evaluation and policy improvement step until
Jµk+1

= Jµk .

The following remarks establish the validity of policy iteration.

Remark 1. Policy iteration always terminates in a finite number of steps, since the number of
proper policies is finite (the state and action space are finite).

Remark 2. The cost improves at each step, i.e. Jµk+1
≤ Jµk .

Proof. We first prove that Tµk+1
(Jµk) ≤ Jµk . By definition,

Tµk+1
(Jµk)(i) =

n∑
j=0

pij(µk+1(i)) (g(i, µk+1, j) + Jµk(j)) .

1



Since µk+1 is the solution to the minimization problem: minµ∈U(i)

∑n
j=0 pij(u) (g(i, u, j) + Jµk(j)),

Tµk+1
(Jµk)(i) ≤

n∑
j=0

pij(µk) (g(i, µk(i), j) + Jµk(j))

= Tµk(Jµk)(i) = Jµk(i).

Hence, Tµk+1
(Jµk) ≤ Jµk . Then, by monotonicity of Tµk ,

Tnµk+1
(Jµk) ≤ Jµk ,

which gives Jµk+1 ≤ Jµk by letting k → +∞.

Remark 3. Jµk+1
= Jµk implies that µk+1 is the optimal policy, i.e. policy evaluation terminates

at the optimal one.

Proof. From policy improvement step,

Tµk+1
Jµk = TJµk .

With Jµk+1
= Jµk and Jµk+1

= Tµk+1
Jµk+1

, we have

Jµk+1
= Tµk+1

Jµk+1
= TJµk = TJµk+1

,

which implies that Jµk+1
= J∗.

Remark 4. J∗ is the “largest” J that satisfies the constraint J ≤ TJ : for J ≤ TJ , with the
monotonicity of T , we have

J ≤ TnJ,

and let n → +∞, we obtain J ≤ J∗. More explicitly, J∗(i) is the solution to the following linear
programming problem:

maximize
∑n

i=1 J(i)
subject to J(i) ≤

∑n
j=0 pij(u) (g(i, u, j) + αJ(j)) , i = 1, . . . , n, u ∈ U(i)

Remark 5. An interesting interpretation of policy iteration is that it behaves like an Actor-Critic
System[1](see Fig 1). In this interpretation, the policy evaluation is viewed as the work of critic,
evaluating the performance of the current policy, i.e. computing Jµk , while the policy improvement
acts as an actor, choosing an optimal control µk+1 based on the latest evaluation Jµk .

3 Neural Networks

As discussed in previous lectures, our goal is to find the optimal cost-to-go function J(i)∗ in a
MDP problem. However, solving the Bellman that J(i)∗ satisfies is usually challenging, since it
suffers from the curse of dimensionality. One possible approach to tackle it is to construct an
approximate representation J(i, r) ≈ J∗(i), where only a few parameters r are needed[1]. Among
various approximation methods, neural networks, adopting a compositional approach, has some
really encouraging success in practice. In this section, we shall briefly introduce the architecture

2



Figure 1: actor-critic system

x σ σ(x)

Figure 2: neuron

of neural networks from a viewpoint of optimal control. In addition, Maximum principle is also
included for solving the optimal control problem drived from the training process of neural networks.

We start from a basic unit in neural networks: neuron. A neuron is a nonlinear and scalar-valued
function σ : R→ R and the following examples of neurons have been widely used in practice.

Example 1. sign function

sgn(x) :=


−1 if x < 0
0 if x = 0
1 if x > 0

Example 2. sigmoid function

f(x) =
1

1 + e−x

Example 3. Rectifier linear units(ReLu):

R(x) = max(0, x)

Example 4. Leaky ReLu:

f(x) =

{
x if x > 0
αx if x ≤ 0

3



(a) example 1: sign function (b) example 2: sigmoid function

(c) example 3: ReLu function (d) example 4: Leaky ReLu function

Figure 3: Four different neurons

3.1 Multilayer Neural Network

The reason why neural networks is, to some extent, superior to traditional approximation tech-
niques, like wavelets and framelets, is that neural networks use compositions of simple functions to
approximate complicated ones, i.e., the neural network approach is compositional, whereas classical
approximation theory is usually additive[2]. Thus, it is necessary to investigate a multilayer neural
network and its mathematical foundation and we shall begin with its building block.

In general case, a neuron can also act on a vector input in a componentwise way, i.e.

σ



x1
x2
...
xn


 =


σ(x1)
σ(x2)

...
σ(xn)


A simplified block diagram, the building block of neural networks, is illustrated in Fig 4 and the
multilayer neural networks is shown in Fig 5

Remark 6. The number of neurons at each layer can be different

Remark 7. The goal is to choose weights W and b so that f̃ ≈ f , where f is the given function to
be approximated by neural networks and f̃ is the composition of each layer of neurons.

Remark 8 (viewpoint of dynamical systems). At layer k, we have

yk = σ(Wkyk−1 + bk), k = 1, · · ·L,

where y0 is the input x and the dimension of Wk, bk are determined by the number of neurons at

4



Figure 4: A simplified block diagram

Figure 5: multilayer neural networks

the corresponding layer. If mk denote the number of neurons of layer k, then we have yk


mk

=

 Wk


mk×mk−1

 yk−1


mk−1

+

 bk


mk

.

Therefore, the following dynamical system is introduced(see Fig 6):

zk = Wkyk−1 + bk, k = 1, · · ·L
yk = σ(zk) y0 = x.

5



Figure 6: dynamical viewpoint for neural networks

A more formal formulation is included in the following subsection.

3.2 Reformulation: Optimal Control

The very essential task for deep learning is to find a parametric function approximator for some
given function f : X → Y, which maps inputs in X to labels Y , based on a given data set of pairs
{xi ∈ X, yi = f(xi) ∈ Y }Ni=1. The process for finding the function approximator or equivalently the
process for finding the best parameters, since the approximator is parametric, is referred as training.
As mentioned in the last remark, for each pair of (xi, yi), there is a corresponding dynamical system,
which is given by, in a more abstract way, the following

yik = F (k, yik−1, θk), θk = (Wk, bk)

yi0 = xi.

If we define the loss function as JL =
∑N

i=1 gL(f(xi), yiL), where gL(·) is a kind of error metric,
measuring the distance from yiL to f(xi). Furthermore, the loss function can be regularized by

adding a penalty term JR =
∑L−1

k=0 gk(θk). Therefore, the supervised learning problem can be
reformulated as an optimal control problem:

min
{θk}

JL + αJR

subject to yik = F (k, yik−1, θk), y
i
0 = xi

Remark 9. Pontryagin’s maximum principle can be applied to solve the optimal control problem,
which shall be detailed in the next subsection. For more details, refer to [3] and references therein.

6



3.3 Maximum Principle in Discrete time

Pontryagin’s maximum principle is proposed by Lev Pontryagin and his students to find the optimal
control for a dynamical system under some constraints, by which the problem is reduced to a
maximization of Hamiltonian associated with the original optimal control problem. For more, see
[4][5]. Based on the optimal control problem formulated in last section, we are now in a position
to detail Maximum principle in a discrete time setting.

In general, we consider a discrete time dynamical system: given an initial point x0 ∈ Rn and
f : Rn+m → Rn

xk+1 = fk(xk, µk), k = 0, · · ·N − 1,

where xk ∈ Rn, µk ∈ Rm. The objective is to find an optimal control (µ0, µ1, . . . , µN−1) and a cor-
responding state sequence (x0, x1, . . . , xN ) such that the following objective function is minimized

J(µ0, µ1, . . . , µN−1) = gN (xN ) +

N−1∑
k=0

gk(xk, µk), (1)

and straightforward computation gives1:

∇µN−1J =∇µN−1gN (fN−1(xN−1, µN−1)) +∇µN−1gN−1(xN−1, µN−1)

= ∇µN−1fN−1 · ∇xN gN +∇µN−1gN−1,

∇µN−2J =∇µN−2gN (fN−1(fN−2(xN−2, µN−2), µN−1))

+∇µN−2gN−1(fN−2(xN−2, µN−2), µN−1) +∇µN−2gN−2(xN−2, µN−2)

=∇µN−2fN−2 · ∇xN−1fN−1 · ∇xN gN
+∇µN−2fN−2 · ∇xN−2gN−1 +∇µN−2gN−2

=∇µN−2fN−2
(
∇xN−1fN−1 · ∇xN gN +∇xN−2gN−1

)
+∇µN−2gN−2,

∇µN−3J =∇µN−3gN (fN−1(fN−2(fN−3(xN−3, µN−3), µN−2), µN−1))

+∇µN−3gN−1(fN−2((fN−3(xN−3, µN−3), µN−2), µN−1)

+∇µN−3gN−2((fN−3(xN−3, µN−3), µN−2) +∇µN−3gN−3(xN−3, µN−3)

=∇µN−3fN−3 · ∇xN−2fN−2 · ∇xN−1fN−1 · ∇xN gN
+∇µN−3fN−3 · ∇xN−2fN−2 · ∇xN−2gN−1

+∇µN−3fN−3 · ∇xN−2gN−2 +∇µN−3gN−3(xN−3, µN−3)

=∇µN−3fN−3(∇xN−2fN−2 · ∇xN−1fN−1 · ∇xN gN +∇xN−2fN−2 · ∇xN−1gN−1 +∇xN−2gN−2)

+∇µN−3gN−3(xN−3, µN−3)

...

∇µkJ =∇µkfk(∇xk+1
fk+1 · . . . · ∇xN−1fN−1 · ∇xN gN

+∇xk+1
fk+1 · . . . · ∇xN−2fN−2 · ∇xN−1gN−1

+ . . .+∇xk+1
gk+1) +∇µkgk.

1In order to better present the iterative scheme for computing ∇µkJ , we are not following the normal way to
present chain rule, and this doesn’t affect the deduction.A more rigorous discussion about compatibility of dimension
is attached as appendix

7



Hence, we have a compact representation for ∇µkJ :

∇µkJ = 1T


∇µkfk · ∇xk+1

fk+1 · . . . · ∇xN−1fN−1 · ∇xN gN
∇µkfk · ∇xk+1

fk+1 · . . . · ∇xN−2fN−2 · ∇xN−1gN−1
...
∇µkfk · ∇xk+1

gk+1

+∇µkgk

= 1T

∇µkfk ·

∇xk+1

fk+1 · . . . · ∇xN−1fN−1 · ∇xN gN
∇xk+1

fk+1 · . . . · ∇xN−2fN−2 · ∇xN−1gN−1
...
∇xk+1

gk+1


+∇µkgk. (2)

If we define Pk as

Pk =


∇xkfk · . . . · ∇xN−1fN−1 · ∇xN gN
∇xkfk · . . . · ∇xN−2fN−2 · ∇xN−1gN−1
...
∇xkfk · ∇xk+1

gk+1

∇xkgk

 ,
and with a little abuse of notation, we introduce the tensor sum ⊕ as following(assume that the
compatibility for dimension is always guaranteed):

Pk ⊕ g =

[
Pk
g

]
,

then we obtain following equations:

∇µkJ = 1T (∇µkfkPk+1) +∇µkgk, (3)

Pk = ∇xkfkPk+1 ⊕∇xkgk, k = 1, 2, · · · , N − 1, (4)

PN = ∇xN gN . (5)

In fact, (3) tells that the gradient of J equals to the gradient of Hamiltonian Hk, i.e. ∇µkJ =
∇µkHk, where Hk is defined as

Hk , gk(xk, µk) + 1T (fk(xk, µk)Pk+1).

Suppose that
(
µ∗0, µ

∗
1, . . . , µ

∗
n−1
)

is an optimal control and (x∗0, x
∗
1, · · · x∗N ) is the corresponding

state trajectory. Assume that the constraint sets Uk are convex. Then for all k = 0, . . . , N − 1,
first order condition gives

∇TµkH(x∗, µ∗k, Pk+1)(µk − µ∗k) ≥ 0, ∀µk ∈ Uk,

where P1, . . . , PN are obtained from the adjoint equation (4)(5). Also, as proposed in [2], by pushing
the compositional approach to an infinitesimal limit, it is possible for us to produce nonlinear
functions approximation using continuous dynamical systems, which offers more flexibility and in
this case the associated optimal control problem is introduced as

minimize V (t) =
∫ t1
t0
l(x(t), u(t), t)dt+M(x(t1))

subject to ˙x(t) = f(x(t), u(t), t), x(t0) = x0 ∈ Rn

where V (t) can be interpreted as the running cost and M(x(ti)) as the error metric, as suggested
in [3].

8



Appendix A

In this appendix, we shall address the dimension-compatibility issue in section 3.3. Assume that
xk ∈ Rn, µk ∈ Rm and fk : Rn+m → Rn, gk : Rn+m → Rn for k = 0, · · · , N − 1, whereas
gN : Rn → R. Then, we have ∇xkfk ∈ Rn×n,∇µkfk ∈ Rn×m,∇xkgk ∈ R1×n,∇µkgk ∈ R1×m and
∇xgN ∈ R1×n. As shown in the computation of (1), chain rule yields

∇µN−1J = ∇µN−1fN−1 · ∇xN gN +∇µN−1gN−1.

However, it is impossible to multiply a n ×m matrix with a n−dimensional vector. Actually, by
chain rule, the gradient of J with respect to µN−1 should be

∇µN−1J = ∇xN gN · ∇µN−1fN−1 +∇µN−1gN−1,

and this is also true for all ∇µkJ. With the same reason, Pk, actually should be written as

Pk =


∇xN gN · ∇xN−1fN−1 . . . · ∇xkfk

∇xN−1gN−1 · ∇xN−2fN−2 · . . . · ∇xkfk
...

∇xk+1
gk+1 · ∇xkfk

∇xkgk

 ∈ R(N−k+1)×n,

With ∇µkfk ∈ Rn×m, we have

Pk∇µkfk =


∇xN gN · ∇xN−1fN−1 . . . · ∇xkfk∇µkfk

∇xN−1gN−1 · ∇xN−2fN−2 · . . . · ∇xkfk∇µkfk
...

∇xk+1
gk+1 · ∇xkfk∇µkfk

∇xkgk∇µkfk

 ∈ R(N−k+1)×m,

Finally, we obtain the a more rigorous representation of ∇µkJ (the counterpart is (3)):

∇µkJ = 1T (Pk+1∇µkfk) +∇µkgk,

where 1 ∈ RN−k+1 and ∇µkgk ∈ R1×m. Similarly, (4) in fact should be

Pk = Pk+1∇xkfk ⊕∇xkgk, k = 1, 2, · · · , N − 1.

In a nutshell, with a little abuse of notation, our proof and deductions are still valid.

References

[1] D. P. Bertsekas and J. N. Tsitsiklis, “Neuro-dynamic programming,” in Optimization and neural
computation series, 1996.

[2] W. E, “A Proposal on Machine Learning via Dynamical Systems,” Communications in Mathe-
matics and Statistics, vol. 5, no. 1, pp. 1–11, 2017.

9



[3] Q. Li, L. Chen, C. Tai, and E. Weinan, “Maximum principle based algorithms for deep learning,”
The Journal of Machine Learning Research, vol. 18, no. 1, pp. 5998–6026, 2017.

[4] V. Boltyanskiy, R. V. Gamkrelidze, and L. Pontryagin, “Theory of optimal processes,” tech.
rep., JOINT PUBLICATIONS RESEARCH SERVICE ARLINGTON VA, 1961.

[5] L. S. Pontryagin, Mathematical theory of optimal processes. Routledge, 2018.

10


