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1 Overview

In the last lecture we completed our discussion on the use of Neural Networks for function ap-
proximation. We saw how we could learn the different parameters for the neural network using
gradient descent and how some of the hyper-parameters involved were chosen. Then, we reviewed
a deterministic iterative gradient descent based numerical optimization method and looked at its
convergence properties. Subsequently, while looking at how these gradient based iterative optimiza-
tion methods could be applied to fixed point equations, we segued into introducing the stochastic
approximation method. We ended by introducing the Martingale Convergence Theorem, the Cron-
wall inequalities and a theorem showing the convergence of the Robins Monro scheme of Stochastic
Approximation.

In this lecture we start by looking at how we can use iterative methods to solve a fixed point
equation. We illustrate the use of these methods using the example of fictitious play. We then go
back to studying the Robin’s Monro Stochastic approximation method and proving the theorem of
convergence for the same.

2 Iterative Methods for Fixed Point Equations

Consider the fixed point equation that we have been looking at through the course:

E[g(r, v)] = V

where V is a random Variable and g is a function that depends on the random variable, but is
unknown to us but its outputs can be observed. To solve the above fixed point equation, we can
use iterative methods as follows:

rt+1 = (1− γ)rt + γ E[g(r, v)] (1)

Not knowing g could make solving the above fixed point equation more involved. But fortunately,
we can take the aid of the Monte Carlo approximation of the function to obtain its expected value.

E[g(r, v)] ≈ 1

k

K∑
i=1

g(r, ṽi)

if we choose a single sample, as we saw in the previous lecture, then the above equation becomes
the Robins-Monro Stochastic Approximation method.

rt+1 = (1− γ)rt + γg(r, ṽ) (2)

g(r, ṽ) = E[g(r, v)] + g(r, ṽ)− E[g(r, v)] (3)
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Observation 1. Using the Monte Carlo approximation of g has advantages that are two fold:

1. The underlying probability distribution of the random variable V is not required to be known;
we should only be able to sample from it.

2. We do not need to know the the underlying function g. It can be treated as blackbox as we
only need to observe the output for certain samples.

The dynamical system can further be written as :

rt+1 = (1− γ)rt + γ(E[g(r, v)]) + wt (4)

where, wt is the noise represented by :

wt = g(r, ṽ)− E[g(r, v)]

The noise term wt has some nice properties that help our approximation:

1. Zero mean : E[wt|Ft] = 0

2. Bounded variance : E[w2
t |Ft] <∞

We can then find a solution to a stochastic difference equation that is given as follows:

xn+1 = xn + εn(h(xn) + µn) (5)

ẋ = h(x) (6)

Here, x ∈ Rd and h(.) : Rd −→ Rd and x0 is known to us. We showed in the previous class that
the above difference equation converges. We now look at the example of fictitious play to see how
stochastic sampling can be used in the context of matrix games.

2.1 Fictitious Play

Consider the scenario of fictitious play in a 2-person matrix game. The setting is sch that the
players do not know what the payoff matrix is. They try to approximate their expected payoffs
using the samples that they see. This is similar to the previous section where the function g was
unknown.

The problem can be set up as follows:

• At time t = k, player i = 1 or 2 chooses an action from the action space aik ∈ Ai = {1, . . . ni}.
They then receive a reward πi

a1k,a
2
k

that can be observed.

• Let pi(a, k) = 1
k

∑k
t=1 1[ait = a]

• At time k+ 1, aik+1 is chosen by assuming that player i′ choose an action ak with probability
pi(a, k)

maxpi∈P
∑
a1

∑
a2

πia1,a2p
i(a1)p

i′(a2)

Where the probability of the other player is modelled using the empirical frequency at step
k.
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To find the optimal solution, first consider:

• gi(., pi′) to be the probability distribution of player i

• Player i plays by sampling an action from the distribution gi(., pi
′
). Thus, aik+1 is sampled

from gi(., pi
′
)

aik+1 ∼ gi(., pi
′
)

We can update our previous equations to get recursive update for the policy distribution g, using
results obtained in the previous section.

(k + 1)pi(a, k + 1) = kpi(a, k) + 1(aik+1 = a) (7)

pi(a, k + 1) = pi(a, k) +
1

k + 1
(1(aik+1 = a)− pi(a, k)) (8)

Let εk = 1
k+1 and we know that

E[1(aik+1 = a)] = p(aik+1) = gi(., pi
′
)

then we get the ODE associated with the stochastic sample,

ṗi = g(pi, pi
′
)− pi (9)

thus, we have now found a recursive formulation for the policy in the form that was presented in
the previous section. We have already seen in the previous lecture how this form converges.

3 Stochastic Approximation (Robins Monro)

Consider the following assumptions,

Assumption 1. (Lipshcitz continuity of h) There exists L ≥ 0 s.t. ∀x, y ∈ Rd:

||h(x)− h(y)|| ≤ L||x− y||

Intuitively, this assumption says that h does not grow too quickly

Assumption 2. (Step Size) Consider the step size εn

lim
n−→∞

∑
n≥0

εn =∞

lim
n−→∞

∑
n≥0

ε2n <∞

Assumption 3. (Martingale Difference Noise) Consider the martingale difference noise Mn such
that:

• E[Mn|Fn] = 0

• E[||Mn||2|Fn] ≤ K||1 +Xn||

where, Fn = σ(X0,M0 . . . X1,M1)
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Assumption 4. (Bounded Iterates) supn≥0 ||Xn|| <∞ a.s.

Assumption 5. (Lyapunov Crierion) There exists a positive radially unbounded continuous dif-
ferentiable function V : Rd −→ R such that ∀x ∈ R,

〈∇V (x), h(x)〉 ≤ 0

with the strict inequality if V (x) 6= 0

Theorem 1. If the above assumptions hold, then V (xn)
n−→∞−−−−→ 0 a.s.

Corollary 1. As n −→ ∞, and the above aassumptions hold, Xn converges to the stationary point
of the ODE a.s.

Proof. We begin by describing the overview of the approach that the proof is going to take.

• First, we are going to show that the ODE trajectory, ẋ = h(x), is arbitrarily close to {Xn}
with suitable interpolation.

• Next, we show that there is a Lyapunov function that allows the above ODE to converge to
the stationary point.

Let the timeline be tn =
∑n−1

k=0 εk. One can notice immediately that the step size decreases over
time. We are interpolating using linear functions between any two points. Let X̄(tn) = Xn, then
X̄(t) is linearly interpolated at t 6= t0, t1, . . ..

Let Xn(t) be the actual solution to the ODE for t ≥ tn with the initial condition Xn(t = t0) = Xn

Figure 1: An illustration of the approximation
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Claim 1. For any T > 0, sup ||Xn(t)− X̄(t)|| = 0, ∀t ∈ [tn, tn+T ] as n −→∞

Proof. We want to show that when n is large, then our approximation is arbitrarily close to the
actual trajectory.

Let m = inf{k : tk > tn + T}, then we first want to show that

sup
n≤k≤m

||Xn(tk)−Xk||
n−→∞−−−−→ 0 (10)

We can write the difference as:

Xn(tk) = Xn +

∫ tk

tn

h(Xn(s))ds

= Xn +

k−1∑
l=n

∫ tl+1

tl

h(Xn(s))ds

= Xn +

k−1∑
l=n

[

∫ tl+1

tl

h(Xn(tl))ds+

∫ tl+1

tl

(h(Xn(s))− h(Xn(tl))ds]

= Xn +
k−1∑
l=n

h(Xn(tl))(tl+1 − tl) +
k−1∑
l=n

∫ tl+1

tl

(h(Xn(s))− h(Xn(tl))ds

We know that,
Xn+1 = Xn + εn(h(Xn) + µn)

and that Xk is generated by

Xk = Xn +

k−1∑
l=n

εlh(Xl) +

k−1∑
l=n

εlµl

where εl = (tl+1 − tl) We take the difference to get:

||Xn(tk)−Xk|| = ||
k−1∑
l=n

εl(h(Xn(tl))− h(Xl)) +
k−1∑
l=n

∫ tl+1

tl

(h(Xn(s))− h(Xn(tl)))ds−
k−1∑
l=n

εlµl||

(11)

≤
k−1∑
l=n

εl||(h(Xn(tl))− h(Xl))||+ ||
k−1∑
l=n

εlµl||+
k−1∑
l=n

∫ tl+1

tl

||h(Xn(s))− h(Xn(tl))||ds

(12)

Using Asumption 1, we know that h(.) is L-Lipshitz:

||Xn(tk)−Xk|| ≤
k−1∑
l=n

εlL||(Xn(tl)−Xl)||+ ||
k−1∑
l=n

εlµl||+
k−1∑
l=n

∫ tl+1

tl

L||Xn(s)−Xn(tl)||ds (13)

We now try and simplify the three terms in the above inequality one at a time. We first look at
the ||

∑k−1
l=n εlµl|| term in 13.
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Observation 2. Let Sn = ||
∑k−1

l=n εlµl||. Sn is a Martingale.

Proof.
E[Sn+1 − Sn|Fn] = E[εn+1µn+1|Fn] = 0

Using Assumption 3,
E[Sn+1|Fn] = Sn

Therefore, we can say that Sn is a Martingale

At this point, the reader is advised to take a small detour and revisit the Martingale Convergence
Theorem and Gronwall’s Inequalities from the previous lecture.

As Sn is a Martingale,∑
n≥0

E[||Sn+1 − Sn||2|Fn] =
∑
n≥0

E[||εn+1µn+1||2|Fn]

≤ K
∑
n≥0

ε2n+1(1 + ||Xn||) Using Assumption 3

≤ K(
∑
n≥0

ε2n+1)(1 + sup
n
||Xn||) Using Assumption 4

≤ ∞ Using Assumption 2

This tells us that
Sn −→ S∞

We can now simplify the term ||
∑k−1

l=n εlµl|| as follows:

||
k−1∑
l=n

εlµl|| = ||Sk−1 − Sn−1||

≤ sup ||Sk−1 − S∞||+ sup ||Sn−1 − S∞||
≤ supn′≥n||Sn′ − S∞|| −→ 0

Thus, for a sufficiently large n and for some δ1 > 0,

||
k−1∑
l=n

εlµl|| ≤ δ1 (14)

Let us now look at the final term in the inequality 13

k−1∑
l=n

∫ tl+1

tl

L||Xn(s)−Xn(tl)||ds
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Let us start by looking at the basic ODE,

˙X(t) = h(x)

||X(t)|| = ||X(0)||+
∫ t

0
h(X(s))ds

≤ ||X(0)||+
∫ t

0
||h(X(s))− h(0)||ds+ ||h(0)||t

≤ ||X(0)||+ ||h(X(0))||t+

∫ t

0
L||X(s)||ds Using Assumption 3

≤ ||X(0)||+ ||h(X(0))||T +

∫ t

0
L||X(s)||ds Let t ∈ [0, T ]

≤ B + +

∫ t

0
L||X(s)||ds

We can now use Gronwall’s inequality to get

||X(t)|| ≤ B exp(LT ) = KT ∀t ∈ [0, T ]

Xn(s) = Xn(tl) +

∫ s

tl

h(Xn(u))du s ∈ [tl, tl+1]

||Xn(s)−Xn(t)|| ≤
∫ s

tl

||h(Xn(u))− h(X(tl))||du+ ||h(X(tl))||εl

≤ L
∫ s

tl

||Xn(u)−X(tl)||du+ ||h(X(tl))||εl Using Assumption 3

≤ L
∫ s

tl

||Xn(u)−X(tl)||du+Bεl εl <∞ and B <∞

We can use Gronwall’s inequality again to bound the above expression.

||Xn(s)−Xn(t)|| ≤ Bεl expLtl+1 (15)

≤ εlCT (16)

Going back to the final term in inequality 13,∫ tl+1

tl

L||Xn(s)−Xn(tl)||ds ≤ Lε2lCT (17)

k−1∑
l=n

∫ tl+1

tl

L||Xn(s)−Xn(tl)||ds ≤
k−1∑
l=n

Lε2lCT (18)

= LCT

k−1∑
l=n

ε2l
n−→∞−−−−→ 0 (19)

Thus, we can write for a sufficiently large n and δ2 > 0,

k−1∑
l=n

∫ tl+1

tl

L||Xn(s)−Xn(tl)||ds < δ2 (20)
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We now return to finding bound for the first term in inequality 13,

k−1∑
l=n

Lεl||Xn(tl)−Xl||

We define ∆k = ||Xn(tk)−Xk||, then we can write the inequality 13 as,

∆k ≤
k−1∑
l=1

Lεl∆l + δ1 + δ2 Using equation 14 and 20 (21)

≤ (δ1 + δ2) exp(
k−1∑
l=1

Lεl) (22)

= δ exp(LT )
n−→∞−−−−→ 0 (23)

Now we go on to show that the error due to interpolation is small. We know that Xn(t) is a solution
to the ODE Ẋ = h(X). We can then write,

Xk(t) = Xk(tk) +

∫ t

tk

h(Xk(s))ds (24)

= Xk(tk+1)−
∫ tk+1

t
h(Xk(s))ds (25)

(26)

therefore,

||X̄(t)−Xk(t)|| = ||λXk + (1− λ)Xk+1 − λxk(t)− (1− λ)Xk(t)||
≤ λ||Xk −Xk(tk)||+ (1− λ)||Xk+1 −Xk(tk+1)||+

λ

∫ t

tl

||h(Xk(s))||ds+ (1− λ)

∫ tk+1

t
h(Xk(s))ds

= ||λXk + (1− λ)Xk+1 − λXk(tk)− λ
∫ tk+1

t
h(Xk(s))ds

− (1− λ)Xk(tk+1)− (1− λ)

∫ tk+1

t
h(Xk(s))ds||

Thus, we can finally write,

sup
t∈[tk,tm]

||X̄(t)−Xk(t)|| ≤ sup
k≤k′≤m

||Xk′ −Xk(tk′)||+ εnCT −→ 0 as n −→∞ (27)

We have proved that the arbitrary closeness of the linear approximation to the actual trajectory.
In the next class we complete the proof for the theorem and start our discussion on Q-learing.
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