
ECE-GY 9223 Reinforcement Learning Spring 2019

Lecture 5 — March 1st, 2019

Prof. Quanyan Zhu Scribe: Muhammad Affan Javed

1 Overview

In the last lecture we discussed Policy Iteration, introduced neural networks and applied Pontrya-
gin’s Maximum Principle to solve the optimal control problem derived from neural networks. In
this lecture, we expand our discussion of neural networks by investigating how Backpropagation
is used in neural networks to calculate the gradients at different layers. We also review Numerical
Algorithms, specifically Gradient Descent and its variations. Finally, we introduce Stochastic
Approximation.

2 Neural Networks: Backpropagation

We introduced neurons and multi-layer neural networks in the last lecture. Fig.1 shows a single
neuron, which is a building block for a neural network. Fig.2 shows a multilayer neural network
comprising of multiple layers, each with multiple neurons.

Figure 1: A Single Neuron

The output of a neuron at a given layer can be expressed in the following manner:

y1 = σ(w1x+ b1)

y2 = σ(w2y1 + b2)

...

yL = σ(wLyL−1+bL)

Moreover, we define:

zl = wlyl−1 + bl

1

Figure 2: A Multilayer Neural Network

Thus, we can re-write the output of each layer l as yl = σ(zl)

We apply gradient descent on the weights {wL, bL}:

wl(t+ 1) = wl(t)− εt∇wl
JL (1)

bl(t+ 1) = bl(t)− εt∇blJL (2)

Observation 1. Note here that (1) and (2) are not convex in general because σ is not convex.

To find out the gradient of one data point, we start at the last layer L and apply the chain rule:

∂JL
∂wL,ij

=
∂JL
∂yL,i

.
∂yL,i
∂wL,ij

=
∂JL
∂yL,i

.
∂yL,i
∂zL,i

.
∂zL,i
∂wL,ij

However,
∂zL,i

∂wL,ij
= yL−1,j and

∂yL,i

∂zL,i
= σ′(zL, i). So:

∂JL
∂wL,ij

=
∂JL
∂yL,i

.σ′(zL,i).yL−1,j

Similarly, for bL:

∂JL
∂bL, i

=
∂JL
∂yL,i

.
∂yL,i
∂zL,i

.
∂zL,i
∂bL,i

=
∂JL
∂yL,i

.σ′(zL,i)

Observation 2. The gradient at layer L depends on the layer L-1. Generally, the gradient at layer
l depends on the layer l − 1.

2

At layer l, 1 ≤ l < L

∂Jl
∂wl,ij

=
∂Jl
∂yl,i

.
∂yl,i
∂zl,i

.
∂zl,i
∂wl,ij

=
∂Jl
∂yl,i

.σ′(zl,i).yl−1,j

∂Jl
∂wl,ij

=
∂Jl
∂yl,i

.σ′(zl,i).yl−1,j (3)

The first term in (3) can be computed as:

∂Jl
∂yl,i

=
∑
k

∂Jl
∂zl+1,k

.
∂zl+1,k

∂yl,i

=
∑
k

∂Jl
∂yl+1,k

.
∂yl+1,k

∂zl+1,k
.
∂zl+1,k

∂yl,i

=
∑
k

∂Jl
∂yl+1,k

.σ′(zl+1, k).wl+1,ki

∂Jl
∂yl,i

=
∑
k

∂Jl
∂yl+1,k

.σ′(zl+1, k).wl+1,ki (4)

Similarly,

∂Jl
∂bl,i

=
∂Jl
∂yl,i

.
∂yl,i
∂zl,i

.
∂zl,i
∂bl,i

=
∂Jl
∂yl,i

.σ′(zl,i)

∂Jl
∂bl,i

=
∂Jl
∂yl,i

.σ′(zl,i) (5)

Now, we have all the tools we need to compute the gradients at all the layers. We can do this by
using the following steps:

Step 1: Compute ∂JL
∂yL,i

for the last layer L.

Step 2: Use (3),(4) and (5) to compute the gradients for layer L down to layer l = 1.

3 Numerical Algorithms

Consider a continuously differentiable function f : Rn → R. The unconstrained minimization of f
relies on an important idea called iterative gradient descent . Starting at some initial point r0

3

(an initial guess, which can be random), successive vectors are generated according to the following
update rule:

rt+1 = rt + γtst t = 0, 1, · · ·

where γt is the step size (usually positive) and st is the descent direction, i.e.,:

∇T f(rt)st < 0

assuming that ∇f(rt) 6= 0. The termination condition for the gradient descent algorithms is
∇f(rt) = 0, which implies that rt+1 = rt. There is a large number of ways in which the descent
direction, st, and step size, γt, can be chosen. The following sub-sections discuss some examples of
these.

3.1 Examples of Descent Directions st

1. Steepest Descent:

Here
st = −∇T f(rt)

Steepest descent is simple, but suffers from slow convergence.

2. Newton’s Method:

Here
st = −(∇2f(rt))

−1∇f(rt)

Newton’s method maximizes the following quadratic approximation of f around rt:

f̃t(r) = f(rt) +∇T f(rt)(r − rt) +
1

2
(r − rt)T∇2f(rt)(r − rt)

Newton’s method finds the global minimum of a positive definite quadratic function in a
single iteration (assuming γt = 1). More generally, Newton’s method typically converges very
fast asymptotically. However, on the other hand, it can be computationally expensive as it
requires computing the Hessian matrix and solving a linear system of equations in order to
find the Newtonian direction.

3. Quasi-Newton Method:

The Quasi-Newton Method attempts to significantly lower the computational cost of Newton’s
Method by replacing the inverse of the Hessian with another matrix, Dt, which is a positive
definite symmetric matrix. The step-size is given by:

st = −Dt∇f(rt)

Dt is an important design parameter and must be carefully chosen in order to achieve fast con-
vergence with low computational complexity. Usually, Dt is chosen to be an approximation of
the inverse Hessian (∇2f(rt))

−1. Generally, for non-quadratic functions, Quasi-Newton meth-
ods tend to achieve in part the fast convergence rate of Newton’s method without incurring
the extra overhead for calculating the Newtonian direction.

4

3.2 Examples of Step-Size Functions γt

1. Constant Step Size:
γt = γ t = 0, 1, 2, · · ·

The step size is the same constant at each time-step. It is immediately clear that choosing
the step size such is not good: if γ is too large, the algorithm will miss the optimal point; on
the other hand, if γ is too small the algorithm will converge very slowly.

In order to prove convergence, we first impose the following conditions:

c1 ‖∇f(rt)‖2 ≤ −∇T f(rt)st ∀t (6)

‖st‖ ≤ c2 ‖∇f(rt)‖ (7)

where c1, c2 are some positive scalars.

Theorem 1 (Convergence for Constant Step Size). Let rt be a sequence generated by a
gradient method: rt+1 = rt+γst, where st satisfies (6) and (7). Assume that for some L > 0,
we have:

‖∇f(r)−∇f(r̄‖ ≤ L ‖r − r̄‖ ∀r, r̄ ∈ Rn

and

0 < γ <
2c1
Lc22

Then, either f(rt)→ −∞, or f(rt) converges to a finite value:

lim
t→∞
∇f(rt) = 0

Furthermore, every limit point of rt is a stationay point of f .

2. Minimization Rule:

Another way of choosing the step size is to assign the step size a value such that f is minimized
along the direction st. This can be expressed formally as:

f(rt + γtst) = min
γ≥0

f(rt + γst)

Although choosing the step-size in such a manner leads to faster convergence, it can be quite
costly in terms of computation. This is because the algorithm needs to do a blind search for
finding the optimal value of γ at every step.

3. Diminishing Step Size:

A diminishing step-size is one which satisfies the following condition:

γt → 0

However, we impose another condition as well, i.e. the step size can not diminish too quickly.
This condition can be expressed formally as:

∞∑
t=0

γt =∞

This condition is imposed in order to deal with the convergence issue. If the step-size dimin-
ishes too quickly, the algorithm may stop at an in-optimal point.

5

3.3 Gradient Methods with Noise

We now extend our discussion of gradient methods in the presence of noise or errors. The noise,
denoted by wt, can be formally incorporated into the framework in the following manner:

rt+1 = rt + γt(st)

= rt − γt(∇f(rt) + wt)

The following subsections discuss various types of noise and the conclusions regarding convergence
and stability of the gradient descent algorithms that we can consequently draw from them.

3.3.1 Noise (wt) is small relative to the gradient

Mathematically, this condition can be written as:

‖wt‖ < ‖∇f(rt)‖ ∀t

Assuming ∇f(rt) 6= 0, st is still a direction of descent. This can be shown in the following manner:

∇T f(rt)st = ∇T f(rt)(−∇f(rt)− wt)
≤ −‖∇f(rt)‖2 + ‖∇f(rt)‖ ‖(‖wt)
< 0

3.3.2 Noise (wt) is bounded

This is a more general case where wt is bounded by some δ, and not necessarily the gradient. This
can be written as:

‖wt‖ < δ for some δ > 0

It can easily be shown that such a generic bound is problematic. Specifically, the algorithm does
not converge to the right point.

Let wt = w. Then, rt+1 = rt − γt(∇f(rt) + w) Consequently, we need the noise to be diminishing
in order for the algorithm to converge to the optimal point.

3.3.3 Noise (wt) is proportional to the step-size γt

Here,

‖wt‖ ≤ qγt, ∀t

where q is some scalar.

For convergence, it is sufficient to have for some positive scalars p and q,

‖wt‖ ≤ γt(q + p ‖∇f(rt)‖), ∀t

6

3.3.4 Noise (wt) is stochastic

An example of stochastic noise is when wt are independent zero mean random vectors with finite
variance. An important special case is when f is of the form:

f(r) = Ev(F (r, v))

where F : Rm+n 7→ R is a continuously differentiable function, v is a random vector in Rm, and
Ev[.] denotes the expected value with respect to v. Then:

∇f(r) = ∇Ev[F (r, v)]

= Ev[∇rF (r, v)]

The gradient descent equation can then be written as:

rt+1 = rt + γtst

= rt − γtEv[∇rF (r, v)] (8)

Observation 2. If we know the distribution of v, we can solve (8) in closed form.

However, generally we do not know the distribution of v. In such cases, an approximation is
computed by using a limited number of samples of ∇rF (rt, v). In the extreme case, we have only
one sample vt:

st = −∇rF (rt, vt)

Then, the error (or noise) is:

wt = ∇rF (rt, vt)−∇f(rt)

= ∇rF (rt, vt)− Ev[∇rF (rt, v)] (9)

The gradient descent equation then becomes:

rt+1 = rt − γt[Ev[∇rF (r, v)] + wt] (10)

where wt is the zero-mean noise given in (9).

Observation 3. It can be seen that (10) is a noisy version of (8), where the noise arises due to
the fact that a single sample vt is used in the approximation.

Moreover, the noise wt need not diminish with ‖∇f(rt)‖ but under appropriate conditions its effects
are ”averaged out”. What is happening here is that the descent condition ∇T f(rt)st < 0 holds on
the average on non-stationary points of f(rt). With a diminishing step-size, the occasional use of
a bad direction will not cause the algorithm to oscillate, given that on average the algorithm uses
good directions.

7

4 Stochastic Approximation

Now we expand the discussion of gradient methods with noise to a more general setting. Suppose
we are interested in solving for r an equation of the form:

Ev[g(r, v)]

where v is a random variable and g is a known function. One possibility is to use a determinsitic
algorithm:

rt+1 = (1− γ)rt + γEv[g(rt, v)] (11)

If it converges, it converges to a fixed point. This can be shown in the following manner. Conver-
gence implies rt+1 = rt. Then:

rt = (1− γ)rt + γEv[g(rt, v)]

γrt = γEv[g(rt, v)]

rt = Ev[g(rt, v)]

r = Ev[g(r, v)]

Instead of directly computing the expectation Ev[g(r, v)], which is a multi-dimensional integral and
hence computationally difficult to solve, we can estimate Ev[g(r, v)] by generating random samples
ṽ of v. For example, we can generate k samples and carry out an update using the sample mean:

1

k

k∑
i=1

g(r, ṽi)

As k becomes large, the sample mean converges to the true mean and we recover the deterministic
algorithm given in (11).

At the other extreme is what is known as the Robbins-Monro stochastic approximation
algorithm. Here, we let k = 1 and base an update on a single sample ṽ:

rt+1 = (1− γ)rt + γg(r, ṽ)

= (1− γ)rt + γ(E[g(rt, ṽ] + g(rt, ṽ − E[g(rt, ṽ]))

= (1− γ)rt + γ(E[g(rt, ṽ] + wt)

rt+1 = (1− γ)rt + γ(E[g(rt, ṽ] + wt) (12)

Observation 4. We can leverage the Robbins-Monro algorithm to compute the fixed point equation
without knowing the underlying distributions.

Observation 5. (12) looks similar to the Bellmann equation. Maybe we can use this for Dynamic
Programming equations.

8

In general:

xn+1 = xn + εn(h(xn) + µn) (13)

Here, x0 is given, xn ∈ Rd, h(.) : Rd 7→ Rd and µn is noise.

Now consider the following ODE:

ẋ = h(x) (14)

where x0 is given.

Theorem 6. If ODE admits a continuously differentiable Lyapanov function, then it implies the
convergence of the stochastic iteration.

The roadmap for proving this theorem can be encapsulated in the following ideas:

1. Show that the general trajectory for the ODE and the interpolated trajectory of {xn} remain
arbitrarily close.

2. Show that there is a Lyapanov function that allows the ODE to go to the stationary point.

Next, we define some preliminary mathematical theorems that will aid us in proving the main
Stochastic Approximation theorem.

Martingales: {Yn} is a Martingale if:

1. E(|Yn|) <∞ ∀n

2. E(Yn+1|Fn) = Yn for some Fn

Theorem 7. Martingale Convergence Theorem
Let Yn be a Martingale and

∑
n≥0 E(‖Yn+1 − Yn‖2 |Fn) <∞ almost surely.

Then, ∃Y∞ ∈ Rd, ‖Y∞‖ <∞ almost surely and Yn → Y∞ almost surely as n→∞

Theorem 8. Gronwall’s Inequality
Let x : [0, T] 7→ R be non-negative for which there exists a contour L such that

ẋ(t) ≤ Lx(t) ∀t ∈ [0, T]

Then:

x(t) ≤ eLtx(0) ∀t ∈ [0, T]

Extension: If L(t) is a non-negative, summable function, i.e.:

ẋ(t) ≤ L(t)x(t)

Then,

x(t) ≤ x(0) exp

(∫ t

0
L(τ)dτ

)

9

Extension: Let x : [0, T] 7→ R be a bounded, non-negative, measurable function. Let L : [0, T] 7→
R be a non-negative, measurable function, and let B ≥ 0 be some constant. Also,

x(t) ≤ B +

∫ t

0
L(τ)x(τ)dτ ∀t ∈ [0, T]

Then,

x(t) ≤ B exp

(∫ t

0
L(τ)dτ

)
Theorem 9. Discrete Time Gronwall’s Inequality
Let {xn} and {an} be non-negative sequences and k ≥ 0. Also,

xn+1 ≤ k +
n∑

m=0

amxm

Then,

xn ≤ k exp

(n∑
m=0

am

)

Now we move on to the main theorem for Stochastic Approximation. First, consider the following
assumptions:

Assumption 1. Lipschitz Continuity of h:

∃L ≥ 0 such that ∀x, y ∈ Rd : ‖h(x)− h(y)‖ ≤ L ‖x− y‖

Assumption 2. Diminishing Step-Size:∑
n≥0

εn =∞

and ∑
n≥0

ε2n <∞

Assumption 3. Martingale Difference Noise:

∃K ≥ 0 such that:

E(µn+1|Fn) = 0

E(‖µn+1‖2 |Fn) ≤ K(1 + ‖xn‖)

Assumption 4. Bounded Iterates:

sup
n

(‖xn‖) <∞ almost surely

Assumption 5. Lyapanov Condition: For the dynamical system ẋ = h(x), there exists a
positive, radially unbounded and continuously differentiable function V : Rd 7→ R such that for all
x ∈ Rd:

〈∇V (x), h(x)〉 ≤ 0

with strict inequality if V (x) 6= 0

10

Theorem 6. Stochastic Approximation
Assume Assumptions 1-5 hold. Then V (xn)→ 0 almost surely as n→∞, i.e. xn converges to the
stationary point of the ODE almost surely.

The detailed proof of this theorem will be discussed in subsequent lectures.

References

[1] Bertsekas, Dimitri P., and John N. Tsitsiklis. Neuro-dynamic programming. Vol. 5. Belmont,
MA: Athena Scientific, 1996.

[2] Borkar, Vivek S. Stochastic approximation: a dynamical systems viewpoint. Vol. 48. Springer,
2009

11

