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1 Overview

In the last lecture, we are introduced the background of reinforcement learning.

In this lecture, we learn the dynamic programming for the optimizing the infinite-horizon discounted
problem. We give the basic proof of the convergence of the algorithm.

2 Linear Vector Space

Cauchy Sequence Let X be a metric space, and let {xn} be a sequence of points in X. We say
that {xn} is a Cauchy sequence if for every ε > 0, there exists a N ∈ N so that ∀i, j > N ,
d(xi, xj) < ε.

Comlepeteness of Complete Space A normed linear space X is said to be complete if every
Cauchy sequence on X has a limit, and the limit is in X.

Banach Space Banach Space is a complete normed linear vector space.

3 Infinite-Horizon Discounted Problems

We assume the state is finite, i ∈ I = {1, 2, ..., n}. Let u ∈ U be the control and α ∈ [0, 1) be
the discounting factor (Note that when α = 1, the problem becomes the shortest path problem).
g (i, u, j) stands for the incurred cost under control u when the system transits from state i to j.
Introduce Pij(u) to be the probability of transition from state i to j under control u. Thus, the
cost function under policy µ and initial state i is given by

Jµ(i) = lim
N→∞

E

[
i∑

k=0

g (ik, uk, ik+1) |i0 = i

]
.

where the policy µ : I → U , i.e., uk = µ(ik). The optimal cost function is given by

J∗(i) = min
µ
Jµu(i).

In order to make the problem well defined, we need g(i, u, j) be a bounded function for all i, u and
j.
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Theorem 3.1 The optimal cost J∗ satisfies the equation

J∗(i) = min
u

E [g(i, u, j) + αJ∗(j)] = min
u

n∑
j=1

Pij(u) (g(i, u, j) + αJ∗(j)) , ∀i. (1)

Proof To give the equality in (1), we prove “≥” first and then “≤”.

“≥”: Let µ be an arbitrary policy. Under this policy, the system produces action u at t = 0.

Jµ(i) =
n∑
j=1

Pij(u)
(
g(i, u, j) + αJ̃(j)

)
,

J̃(i) ≥ J∗(i)

≥
n∑
j=1

Pij(u) (g(i, u, j) + αJ∗(j))

≥ min
u

n∑
j=1

Pij(u) (g(i, u, j) + αJ∗(j)) .

Pick µ = µ∗, , which is the optimal policy, then

Jµ∗(i) = J∗(i) ≥
n∑
j=1

min
u
Pij(u) (g(i, u, j) + αJ∗(j)) .

“≤”: Suppose µ0 is the optimal policy solve (1). Let µ0 produce u0 at time t = 0. If the
next state is j, use a new policy µj , satisfying,

Jµj (j) ≤ J∗(j) + ε.

Under the constructed policy,

Jµ(i) =

n∑
j=1

Pij(u0)
(
g(i, u0, j) + αJ̃µj (j)

)
≤

n∑
j=1

Pij(u0) (g(i, u0, j) + αJ∗(j) + αε) , ∀u0.

We then have

J∗(j) ≤ Jµ(j) ≤ min
u0

n∑
j=1

Pij(u0) (g(i, u0, j) + αJ∗(j) + αε)

Define ε′ > 0, satisfying
J∗(j) ≤ Jµ(j)− ε′.

Pick ε so that

J∗(j) ≤ Jµ(j)− ε′ ≤ J∗(i)− αε ≤ min
u0

n∑
j=1

Pij(u0) (g(i, u0, j) + αJ∗(j)) .

�
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Definition Let S be a subset of a normed space X and let T be a transformation mapping from
S to S. Then T is said to be a contraction mapping, if there exists an α ∈ (0, 1), such that

‖T (x1)− T (x2)‖ ≤ α‖x1 − x2‖, ∀x1, x2 ∈ S.

Before we give the most important theorem of this lecture, we introduce two operators T and Tµ
on the cost function vector J = [J(1), ..., J(n)]′.

(TJ)(i) = TJ(i) = min
u∈U

n∑
j=1

Pij(u) (g(i, u, j) + αJ(j)) .

• Take arbitrary J and T produces the optimal cost-to-go.

• T : B(I) → B(I), where B(I) is the space of all the bounded functions with domain of
non-negative integers.

TµJ(i) =

n∑
j=1

Pij(µ(i)) (g(i, µ(i), j) + αJ(j)) .

• Tµ produces cost-to-go under policy µ.

• T : B(I)→ B(I).

• TµJ = gµ + αPµJ .

Given a policy µ, evaluate the policy.

Jµ(i) = lim
N→∞

E

[ ∞∑
k=0

αkg(ik, µk, ik+1)|i0 = i

]
.

(1) R.h.s. is well defined for i = 1, ..., n.

(2)

Jµ(i) = lim
N→∞

E

[
g(i, µ(i), j) +

N∑
k=1

αkg(ik, µk, ik+1)|i1 = j

]

= gµ + α

N∑
j=1

Pij(µ(i))Jµ(j).

Then Jµ = TµJµ is to evaluate the performance of a policy µ.

Theorem 3.2 There exists a unique J̄µ which solves Tµ = TµJµ.

Proof
Jµ = gµ + αPµJµ, (I − αPµ)Jµ = gµ.

Since (I − αPµ) is non-singular, then Jµ = (I − αPµ)−1gµ.
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Theorem 3.3 (Contraction Mapping Theorem)

(1) If T is a contraction mapping on a closed subset of a Banach space, there is a unique
x0 ∈ S satistying x0 = T (x0).

(2) x0 can be obtained by the method of successive approximation xn+1 = T (xn).

Proof

“Existence” Select an arbitrary x1 ∈ S and generate a sequence {xn} by xn+1 = T (xn).
By contraction,

‖xn+1 − xn‖ = ‖T (xn+1)− T (xn)‖ ≤ α‖xn+1 − xn‖.

and
‖xn+p − xn‖ = ‖xn+p − xn+p−1 + xn+p−1 − ...+ xn+1 − xn‖

≤ ‖xn+p − xn+p−1‖+ ...+ ‖xn+1 − xn‖
≤
(
αn+p−2 + ...+ αn−1

)
‖x2 − x1‖

≤ αn−1

1− α
‖x2 − x1‖.

Since {xn} is Cauchy sequence and S is closed subset of a complete space, there exists
x0 ∈ S such that lim

n→∞
xn = x0.

Now we show that x0 = T (x0).

‖x0 − T (x0)‖ = ‖x0 − xn‖+ ‖xn − T (x0)‖
≤ ‖x0 − xn‖+ ‖xn − T (x0)‖
= ‖x0 − xn‖+ ‖T (xn−1)− T (x0)‖
≤ ‖x0 − xn‖+ α‖xn−1 − x0‖.

Let n go to infinity on both sides, we have x0 = T (x0).

“Uniqueness” Suppose the solution is not unique and x0, y0 are both fixed points.

‖x0 − y0‖ = ‖T (x0)− T (y0)‖ ≤ α‖x0 − y0‖.

Apperantly, α = 0 or 1. So, x0 = y0.
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