

Spring 2019

Lecture 1 — 8th, Feb, 2019

Prof. Quanyan Zhu Scribe: Guanze Peng

1 Overview

In the last lecture, we are introduced the background of reinforcement learning.

In this lecture, we learn the dynamic programming for the optimizing the infinite-horizon discounted problem. We give the basic proof of the convergence of the algorithm.

2 Linear Vector Space

- **Cauchy Sequence** Let X be a metric space, and let $\{x_n\}$ be a sequence of points in X. We say that $\{x_n\}$ is a Cauchy sequence if for every $\epsilon > 0$, there exists a $N \in \mathbb{N}$ so that $\forall i, j > N$, $d(x_i, x_j) < \epsilon.$
- Comlepeteness of Complete Space A normed linear space X is said to be complete if every Cauchy sequence on X has a limit, and the limit is in X .

Banach Space Banach Space is a complete normed linear vector space.

3 Infinite-Horizon Discounted Problems

We assume the state is finite, $i \in I = \{1, 2, ..., n\}$. Let $u \in U$ be the control and $\alpha \in [0, 1)$ be the discounting factor (Note that when $\alpha = 1$, the problem becomes the shortest path problem). $g(i, u, j)$ stands for the incurred cost under control u when the system transits from state i to j. Introduce $P_{ij}(u)$ to be the probability of transition from state i to j under control u. Thus, the cost function under policy μ and initial state i is given by

$$
J_{\mu}(i) = \lim_{N \to \infty} \mathbb{E} \left[\sum_{k=0}^{i} g(i_k, u_k, i_{k+1}) | i_0 = i \right].
$$

where the policy $\mu: I \to U$, i.e., $u_k = \mu(i_k)$. The optimal cost function is given by

$$
J^*(i) = \min_{\mu} J_{\mu} u(i).
$$

In order to make the problem well defined, we need $g(i, u, j)$ be a bounded function for all i, u and j .

Theorem 3.1 The optimal cost J^* satisfies the equation

$$
J^*(i) = \min_{u} \mathbb{E}\left[g(i, u, j) + \alpha J^*(j)\right] = \min_{u} \sum_{j=1}^n P_{ij}(u) \left(g(i, u, j) + \alpha J^*(j)\right), \quad \forall i. \tag{1}
$$

Proof To give the equality in (1), we prove "≥" first and then " \leq ".

" \geq ": Let μ be an arbitrary policy. Under this policy, the system produces action u at $t = 0$.

$$
J_{\mu}(i) = \sum_{j=1}^{n} P_{ij}(u) \left(g(i, u, j) + \alpha \tilde{J}(j) \right),
$$

$$
\tilde{J}(i) \geq J^*(i)
$$

$$
\geq \sum_{j=1}^{n} P_{ij}(u) \left(g(i, u, j) + \alpha J^*(j) \right)
$$

$$
\geq \min_{u} \sum_{j=1}^{n} P_{ij}(u) \left(g(i, u, j) + \alpha J^*(j) \right).
$$

Pick $\mu = \mu^*$, which is the optimal policy, then

$$
J_{\mu^*}(i) = J^*(i) \ge \sum_{j=1}^n \min_u P_{ij}(u) (g(i, u, j) + \alpha J^*(j)).
$$

" \leq ": Suppose μ_0 is the optimal policy solve (1). Let μ_0 produce u_0 at time $t = 0$. If the next state is j, use a new policy μ_j , satisfying,

$$
J_{\mu_j}(j) \leq J^*(j) + \varepsilon.
$$

Under the constructed policy,

$$
J_{\mu}(i) = \sum_{j=1}^{n} P_{ij}(u_0) \left(g(i, u_0, j) + \alpha \tilde{J}_{\mu_j}(j) \right)
$$

$$
\leq \sum_{j=1}^{n} P_{ij}(u_0) \left(g(i, u_0, j) + \alpha J^*(j) + \alpha \epsilon \right), \quad \forall u_0.
$$

We then have

$$
J^*(j) \le J_{\mu}(j) \le \min_{u_0} \sum_{j=1}^n P_{ij}(u_0) (g(i, u_0, j) + \alpha J^*(j) + \alpha \epsilon)
$$

Define $\epsilon' > 0$, satisfying

$$
J^*(j) \le J_\mu(j) - \epsilon'.
$$

Pick ϵ so that

$$
J^*(j) \leq J_{\mu}(j) - \epsilon' \leq J^*(i) - \alpha \epsilon \leq \min_{u_0} \sum_{j=1}^n P_{ij}(u_0) (g(i, u_0, j) + \alpha J^*(j)).
$$

 \Box

Definition Let S be a subset of a normed space X and let T be a transformation mapping from S to S. Then T is said to be a contraction mapping, if there exists an $\alpha \in (0,1)$, such that

$$
||T(x_1) - T(x_2)|| \le \alpha ||x_1 - x_2||, \quad \forall x_1, x_2 \in S.
$$

Before we give the most important theorem of this lecture, we introduce two operators T and T_{μ} on the cost function vector $J = [J(1),..., J(n)]'$.

$$
(TJ)(i) = TJ(i) = \min_{u \in U} \sum_{j=1}^{n} P_{ij}(u) (g(i, u, j) + \alpha J(j)).
$$

- Take arbitrary J and T produces the optimal cost-to-go.
- $T : B(I) \rightarrow B(I)$, where $B(I)$ is the space of all the bounded functions with domain of non-negative integers.

$$
T_{\mu}J(i) = \sum_{j=1}^{n} P_{ij}(\mu(i)) (g(i, \mu(i), j) + \alpha J(j)).
$$

- T_{μ} produces cost-to-go under policy μ .
- $T: B(I) \rightarrow B(I)$.
- $T_{\mu}J = g_{\mu} + \alpha P_{\mu}J.$

Given a policy μ , evaluate the policy.

$$
J_{\mu}(i) = \lim_{N \to \infty} \mathbb{E} \left[\sum_{k=0}^{\infty} \alpha^{k} g(i_{k}, \mu_{k}, i_{k+1}) | i_{0} = i \right].
$$

- (1) R.h.s. is well defined for $i = 1, ..., n$.
- (2)

$$
J_{\mu}(i) = \lim_{N \to \infty} \mathbb{E} \left[g(i, \mu(i), j) + \sum_{k=1}^{N} \alpha^{k} g(i_{k}, \mu_{k}, i_{k+1}) | i_{1} = j \right]
$$

= $g_{\mu} + \alpha \sum_{j=1}^{N} P_{ij}(\mu(i)) J_{\mu}(j).$

Then $J_{\mu} = T_{\mu} J_{\mu}$ is to evaluate the performance of a policy μ .

Theorem 3.2 There exists a unique \bar{J}_{μ} which solves $T_{\mu} = T_{\mu} J_{\mu}$. Proof

$$
J_{\mu} = g_{\mu} + \alpha P_{\mu} J_{\mu}, \quad (I - \alpha P_{\mu}) J_{\mu} = g_{\mu}.
$$

Since $(I - \alpha P_\mu)$ is non-singular, then $J_\mu = (I - \alpha P_\mu)^{-1} g_\mu$.

Theorem 3.3 (Contraction Mapping Theorem)

- (1) If T is a contraction mapping on a closed subset of a Banach space, there is a unique $x_0 \in S$ satistying $x_0 = T(x_0)$.
- (2) x_0 can be obtained by the method of successive approximation $x_{n+1} = T(x_n)$.

Proof

"Existence" Select an arbitrary $x_1 \in S$ and generate a sequence $\{x_n\}$ by $x_{n+1} = T(x_n)$. By contraction,

$$
||x_{n+1} - x_n|| = ||T(x_{n+1}) - T(x_n)|| \le \alpha ||x_{n+1} - x_n||.
$$

and

$$
||x_{n+p} - x_n|| = ||x_{n+p} - x_{n+p-1} + x_{n+p-1} - \dots + x_{n+1} - x_n||
$$

\n
$$
\le ||x_{n+p} - x_{n+p-1}|| + \dots + ||x_{n+1} - x_n||
$$

\n
$$
\le (\alpha^{n+p-2} + \dots + \alpha^{n-1}) ||x_2 - x_1||
$$

\n
$$
\le \frac{\alpha^{n-1}}{1-\alpha} ||x_2 - x_1||.
$$

Since $\{x_n\}$ is Cauchy sequence and S is closed subset of a complete space, there exists $x_0 \in S$ such that $\lim_{n \to \infty} x_n = x_0$. Now we show that $x_0 = T(x_0)$.

$$
||x_0 - T(x_0)|| = ||x_0 - x_n|| + ||x_n - T(x_0)||
$$

\n
$$
\le ||x_0 - x_n|| + ||x_n - T(x_0)||
$$

\n
$$
= ||x_0 - x_n|| + ||T(x_{n-1}) - T(x_0)||
$$

\n
$$
\le ||x_0 - x_n|| + \alpha ||x_{n-1} - x_0||.
$$

Let *n* go to infinity on both sides, we have $x_0 = T(x_0)$.

"Uniqueness" Suppose the solution is not unique and x_0, y_0 are both fixed points.

$$
||x_0 - y_0|| = ||T(x_0) - T(y_0)|| \le \alpha ||x_0 - y_0||.
$$

Apperantly, $\alpha = 0$ or 1. So, $x_0 = y_0$.

 \Box