ECE-GY	9223	Reinforcement	Learning
--------	------	---------------	----------

Spring 2019

Lecture 1 - 8th, Feb, 2019

Prof. Quanyan Zhu

Scribe: Guanze Peng

1 Overview

In the last lecture, we are introduced the background of reinforcement learning.

In this lecture, we learn the dynamic programming for the optimizing the infinite-horizon discounted problem. We give the basic proof of the convergence of the algorithm.

2 Linear Vector Space

- **Cauchy Sequence** Let X be a metric space, and let $\{x_n\}$ be a sequence of points in X. We say that $\{x_n\}$ is a Cauchy sequence if for every $\epsilon > 0$, there exists a $N \in \mathbb{N}$ so that $\forall i, j > N$, $d(x_i, x_j) < \epsilon$.
- Comlepeteness of Complete Space A normed linear space X is said to be complete if every Cauchy sequence on X has a limit, and the limit is in X.

Banach Space Banach Space is a complete normed linear vector space.

3 Infinite-Horizon Discounted Problems

We assume the state is finite, $i \in I = \{1, 2, ..., n\}$. Let $u \in U$ be the control and $\alpha \in [0, 1)$ be the discounting factor (Note that when $\alpha = 1$, the problem becomes the shortest path problem). g(i, u, j) stands for the incurred cost under control u when the system transits from state i to j. Introduce $P_{ij}(u)$ to be the probability of transition from state i to j under control u. Thus, the cost function under policy μ and initial state i is given by

$$J_{\mu}(i) = \lim_{N \to \infty} \mathbb{E}\left[\sum_{k=0}^{i} g\left(i_{k}, u_{k}, i_{k+1}\right) | i_{0} = i\right].$$

where the policy $\mu: I \to U$, i.e., $u_k = \mu(i_k)$. The optimal cost function is given by

$$J^*(i) = \min_{\mu} J_{\mu} u(i).$$

In order to make the problem well defined, we need g(i, u, j) be a bounded function for all i, u and j.

Theorem 3.1 The optimal cost J^* satisfies the equation

$$J^{*}(i) = \min_{u} \mathbb{E}\left[g(i, u, j) + \alpha J^{*}(j)\right] = \min_{u} \sum_{j=1}^{n} P_{ij}(u) \left(g(i, u, j) + \alpha J^{*}(j)\right), \quad \forall i.$$
(1)

Proof To give the equality in (1), we prove " \geq " first and then " \leq ".

" \geq ": Let μ be an arbitrary policy. Under this policy, the system produces action u at t = 0.

$$J_{\mu}(i) = \sum_{j=1}^{n} P_{ij}(u) \left(g(i, u, j) + \alpha \tilde{J}(j) \right),$$

$$\tilde{J}(i) \ge J^{*}(i)$$

$$\ge \sum_{j=1}^{n} P_{ij}(u) \left(g(i, u, j) + \alpha J^{*}(j) \right)$$

$$\ge \min_{u} \sum_{j=1}^{n} P_{ij}(u) \left(g(i, u, j) + \alpha J^{*}(j) \right).$$

Pick $\mu=\mu^*,$, which is the optimal policy, then

$$J_{\mu^*}(i) = J^*(i) \ge \sum_{j=1}^n \min_u P_{ij}(u) \left(g(i, u, j) + \alpha J^*(j) \right).$$

" \leq ": Suppose μ_0 is the optimal policy solve (1). Let μ_0 produce u_0 at time t = 0. If the next state is j, use a new policy μ_j , satisfying,

$$J_{\mu_j}(j) \le J^*(j) + \varepsilon.$$

Under the constructed policy,

$$J_{\mu}(i) = \sum_{j=1}^{n} P_{ij}(u_0) \left(g(i, u_0, j) + \alpha \tilde{J}_{\mu_j}(j) \right)$$

$$\leq \sum_{j=1}^{n} P_{ij}(u_0) \left(g(i, u_0, j) + \alpha J^*(j) + \alpha \epsilon \right), \quad \forall u_0.$$

We then have

$$J^*(j) \le J_{\mu}(j) \le \min_{u_0} \sum_{j=1}^n P_{ij}(u_0) \left(g(i, u_0, j) + \alpha J^*(j) + \alpha \epsilon \right)$$

Define $\epsilon' > 0$, satisfying

$$J^*(j) \le J_{\mu}(j) - \epsilon'.$$

Pick ϵ so that

$$J^{*}(j) \leq J_{\mu}(j) - \epsilon' \leq J^{*}(i) - \alpha \epsilon \leq \min_{u_{0}} \sum_{j=1}^{n} P_{ij}(u_{0}) \left(g(i, u_{0}, j) + \alpha J^{*}(j) \right).$$

Definition Let S be a subset of a normed space X and let T be a transformation mapping from S to S. Then T is said to be a contraction mapping, if there exists an $\alpha \in (0, 1)$, such that

$$||T(x_1) - T(x_2)|| \le \alpha ||x_1 - x_2||, \quad \forall x_1, x_2 \in S.$$

Before we give the most important theorem of this lecture, we introduce two operators T and T_{μ} on the cost function vector J = [J(1), ..., J(n)]'.

$$(TJ)(i) = TJ(i) = \min_{u \in U} \sum_{j=1}^{n} P_{ij}(u) \left(g(i, u, j) + \alpha J(j)\right).$$

- Take arbitrary J and T produces the optimal cost-to-go.
- $T: B(I) \to B(I)$, where B(I) is the space of all the bounded functions with domain of non-negative integers.

$$T_{\mu}J(i) = \sum_{j=1}^{n} P_{ij}(\mu(i)) \left(g(i, \mu(i), j) + \alpha J(j) \right).$$

- T_{μ} produces cost-to-go under policy μ .
- $T: B(I) \to B(I)$.
- $T_{\mu}J = g_{\mu} + \alpha P_{\mu}J.$

Given a policy μ , evaluate the policy.

$$J_{\mu}(i) = \lim_{N \to \infty} \mathbb{E}\left[\sum_{k=0}^{\infty} \alpha^k g(i_k, \mu_k, i_{k+1}) | i_0 = i\right].$$

- (1) R.h.s. is well defined for i = 1, ..., n.
- (2)

$$J_{\mu}(i) = \lim_{N \to \infty} \mathbb{E} \left[g(i, \mu(i), j) + \sum_{k=1}^{N} \alpha^{k} g(i_{k}, \mu_{k}, i_{k+1}) | i_{1} = j \right]$$

= $g_{\mu} + \alpha \sum_{j=1}^{N} P_{ij}(\mu(i)) J_{\mu}(j).$

Then $J_{\mu} = T_{\mu}J_{\mu}$ is to evaluate the performance of a policy μ .

Theorem 3.2 There exists a unique \bar{J}_{μ} which solves $T_{\mu} = T_{\mu}J_{\mu}$. **Proof**

$$J_{\mu} = g_{\mu} + \alpha P_{\mu} J_{\mu}, \quad (I - \alpha P_{\mu}) J_{\mu} = g_{\mu}.$$

Since $(I - \alpha P_{\mu})$ is non-singular, then $J_{\mu} = (I - \alpha P_{\mu})^{-1} g_{\mu}$.

Theorem 3.3 (Contraction Mapping Theorem)

- (1) If T is a contraction mapping on a closed subset of a Banach space, there is a unique $x_0 \in S$ satisfying $x_0 = T(x_0)$.
- (2) x_0 can be obtained by the method of successive approximation $x_{n+1} = T(x_n)$.

Proof

"Existence" Select an arbitrary $x_1 \in S$ and generate a sequence $\{x_n\}$ by $x_{n+1} = T(x_n)$. By contraction,

$$||x_{n+1} - x_n|| = ||T(x_{n+1}) - T(x_n)|| \le \alpha ||x_{n+1} - x_n||.$$

and

$$\begin{aligned} \|x_{n+p} - x_n\| &= \|x_{n+p} - x_{n+p-1} + x_{n+p-1} - \dots + x_{n+1} - x_n\| \\ &\leq \|x_{n+p} - x_{n+p-1}\| + \dots + \|x_{n+1} - x_n\| \\ &\leq \left(\alpha^{n+p-2} + \dots + \alpha^{n-1}\right) \|x_2 - x_1\| \\ &\leq \frac{\alpha^{n-1}}{1 - \alpha} \|x_2 - x_1\|. \end{aligned}$$

Since $\{x_n\}$ is Cauchy sequence and S is closed subset of a complete space, there exists $x_0 \in S$ such that $\lim_{n \to \infty} x_n = x_0$. Now we show that $x_0 = T(x_0)$.

$$\begin{aligned} |x_0 - T(x_0)|| &= ||x_0 - x_n|| + ||x_n - T(x_0)|| \\ &\leq ||x_0 - x_n|| + ||x_n - T(x_0)|| \\ &= ||x_0 - x_n|| + ||T(x_{n-1}) - T(x_0)|| \\ &\leq ||x_0 - x_n|| + \alpha ||x_{n-1} - x_0||. \end{aligned}$$

Let n go to infinity on both sides, we have $x_0 = T(x_0)$.

"Uniqueness" Suppose the solution is not unique and x_0, y_0 are both fixed points.

$$||x_0 - y_0|| = ||T(x_0) - T(y_0)|| \le \alpha ||x_0 - y_0||.$$

Appearatly, $\alpha = 0$ or 1. So, $x_0 = y_0$.