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1 Overview

In the last lecture, we are introduced the background of reinforcement learning.

In this lecture, we learn the dynamic programming for the optimizing the infinite-horizon discounted
problem. We give the basic proof of the convergence of the algorithm.

2 Linear Vector Space

Cauchy Sequence Let X be a metric space, and let {x,} be a sequence of points in X. We say
that {x,} is a Cauchy sequence if for every € > 0, there exists a N € N so that Vi,j > N,
d(mi, .Tj) < €.

Comlepeteness of Complete Space A normed linear space X is said to be complete if every
Cauchy sequence on X has a limit, and the limit is in X.

Banach Space Banach Space is a complete normed linear vector space.

3 Infinite-Horizon Discounted Problems

We assume the state is finite, i € I = {1,2,...,n}. Let u € U be the control and a € [0,1) be
the discounting factor (Note that when « = 1, the problem becomes the shortest path problem).
g (i,u,7) stands for the incurred cost under control w when the system transits from state i to j.
Introduce P;j(u) to be the probability of transition from state i to j under control u. Thus, the
cost function under policy i and initial state i is given by

i
Ju(i) = N B Zg(%uk’ikﬂ) lio =i
k=0

where the policy p: I — U, i.e., up = u(ix). The optimal cost function is given by
J*(i) = HLin Juu(t).

In order to make the problem well defined, we need ¢(i, u, j) be a bounded function for all 7, u and
j.



Theorem 3.1 The optimal cost J* satisfies the equation
J*(i) = muinIE lg(i,u,7) + aJ*(j)] = mulnz Pij(u) (9(%,u, j) + aJ*(j)), Vi. (1)
j=1

Proof To give the equality in (1), we prove “>” first and then “<”.

“>”: Let pu be an arbitrary policy. Under this policy, the system produces action u at t = 0.

7u00) = 32 Pyt (a6 .9) + 0T (7).

> min Y Pyj(u) (9(i,u, j) + aJ*(j)) -
j=1
Pick p = p*, , which is the optimal policy, then
e (@) = J*(0) = Y min Py(u) (903, u, §) + aJ* (7)) -
j=1

“<”: Suppose pg is the optimal policy solve (1). Let pg produce ug at time ¢t = 0. If the
next state is j, use a new policy u;, satisfying,

Juy(§) S TG +e.

Under the constructed policy,

M=

Jui) = 3 Pyi(uo) (910G, w0,9) + 0T, (7))
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We then have

J() < Ju(G) < min Y Pyj(uo) (9(i, o, 5) + 0" () + ae)
j=1

Define € > 0, satisfying
J(G) < Ju(G) — €.
Pick € so that

TG) < Ju() =€ < J*(0) — ae <min Y Pyi(uo) (90, uo, 5) + 0" (5)
j=1



Definition Let S be a subset of a normed space X and let T" be a transformation mapping from
S to S. Then T is said to be a contraction mapping, if there exists an « € (0, 1), such that

[T (1) = T(22)l| < allzr — @, Vai,22 € 5.

Before we give the most important theorem of this lecture, we introduce two operators T' and T},
on the cost function vector J = [J(1), ..., J(n)]".

(TJ)(0) =TT (i) = min } _ Pyj(u) (9(i,u. j) + aJ (5)
j=1

Take arbitrary J and T produces the optimal cost-to-go.

T : B(I) — B(I), where B(I) is the space of all the bounded functions with domain of
non-negative integers.

e T}, produces cost-to-go under policy .
e T':B(I)— B(I).

Given a policy p, evaluate the policy.

[o.¢]
Ju(i) = ]\}gnooE [Z o g(ik, i, i) io = Z] .
k=0

(1) R.h.s. is well defined for i =1, ..., n.
(2)

N
Ju(i) = Jim E [g(z',u@),j) + D aFglin, s i) lin = j]
k=1

N
=gpt o Z Pij(p(4)) ()
j=1

Then J,, = T),J, is to evaluate the performance of a policy p.

Theorem 3.2 There exists a unique ju which solves T,, = T},J,,.

Proof
Jy=g,+aP,J,, (I—aP,)J, =g,

Since (I — aP,) is non-singular, then J, = (I — aP,) " 1g,.



Theorem 3.3 (Contraction Mapping Theorem)

(1) If T is a contraction mapping on a closed subset of a Banach space, there is a unique
xo € S satistying o = T'(xg).

(2) zo can be obtained by the method of successive approximation x,11 = T'(zy).

Proof

“Existence” Select an arbitrary z; € S and generate a sequence {z,} by zp41 = T(xp).
By contraction,

lzna1 — 2|l = 1T (2ny1) — T(@n)| < allznir — za-

and
||$n+p - l‘nH = ||5L'n+p — Tngp—1 T Tpgp—1 — o + Tny1 — l‘nH
< Mzntp = Toap-all + o + [|Tny1 — 4|
< (@2 o) |z — 2|

an—l

< g — 2]

l—«

Since {x,} is Cauchy sequence and S is closed subset of a complete space, there exists
xo € S such that lim x, = xo.
n—oo

Now we show that z¢ = T'(x¢).

[0 = T(xo)ll = llzo — znll + lzn — T(z0)]|
< lzo = znll + [Jan = T(zo)|
= llzo = @nll + 1T (2n-1) = T'(20)]|

< llzo = 2all + aflzn-1 — ol|-

Let n go to infinity on both sides, we have zoy = T'(xg).

“Uniqueness” Suppose the solution is not unique and zq, yg are both fixed points.

lzo = yoll = [IT(z0) = T(yo)ll < exllzo = ol-

Apperantly, a = 0 or 1. So, zg = yo.



