
ECE-GY 9223 Reinforcement Learning Spring 2019

Lecture 8 — April 26, 2019
Prof. Quanyan Zhu Scribe: Yunian Pan

1 Overview

In the last lecture we talked about approximate Q-Learning in policy policy iteration and give
some proof about feasiblility of the algorithm and some basic concept about Temporal Difference.

In this lecture we continued TD learning, then we talked about Average cost problems and
the resulting ACOE, in the end we had a beginning of discussion over two types of Bandit
Problems—stochastic bandit and adversarial bandit and ended up with the introduction of
a few machineries.

2 TD learning

We begin by recalling the stochastic Bellman equation:

Jµ(ik) = E(g(ik, ik−1) + αJµ(ik+1)) (1)

where α ∈ (0, 1) or α = 1, this is again a Robbins Monro problem, r = E(g(r, v))�for which, from
a Robbin’s Monro’s perspective we can do:

J+(ik) = J(ik) + γ (g(ik, ik−1) + αJµ(ik+1)− J(ik))︸ ︷︷ ︸
TD

where the expectation of TD term under condition ik should be 0. We further analyze refSB’s
generalization:

Jµ(ik) = E(g(ik, ik+1) + αg(ik+1, ik+2) + α2Jµ(ik+2))

= E(
l∑

m=0

αmg(ik+m, ik+m+1) + αl+1Jµ(ik+l+1))

For simplicity we get rid of α and consdier the total cost case:

Jµ(ik)E(
l∑

m=0

g(ik+m, ik+m+1)︸ ︷︷ ︸
roll−out term

+Jµ(ik+l+1)) (2)

The trick here is that we can multiply 2 (1− λ)λl and sum over l, and then interchange the order
of summation such that we can make use of the identity

∑∞
l=m λl = λm

1−λ , , thus:

1



=⇒ = E[(1− λ)
∞∑

m=0

∞∑
l=m

λlg(ik+m, ik+m+1) +
m∑
l=0

λl(1− λ)KJµ(ik+l+1)]

= E[
∞∑

m=0

g(ik+m, ik+m+1)

∞∑
l=m

(1− λ)λl +

m∑
l=0

(λl − λl+1)KJµ(ik+l+1)]

= E[
∞∑

m=0

(g(ik+m, ik+m+1)λ
m + λmJµ(ik+m+1))−

m∑
l=0

λl+1KJµ(ik+l+1)]

= E[
∞∑

m=0

λm(g(ik+m, ik+m+1) + Jµ(ik+m+1))−
m∑

l′=1

λl′KJµ(ik+l′)]

= E[
∞∑

m=0

λm(g(ik+m, ik+m+1) + Jµ(ik+m+1 − Jµ(ik+m)))︸ ︷︷ ︸
dk+m TD

+Jµ(ik)

= E[
∞∑

m=0

λmdk+m]︸ ︷︷ ︸
should be equal to 1

+Jµ(ik)

= Jµ(ik)

where we define TD error term dm = g(im, im+1)+ Jµ(im+1)− Jµ(im), resulting TD(λ) algorithm,
i.e. we do:

J+(ik) = J(ik) + γ

∞∑
m=0

λmdk+m or if consider discounted case

J+(ik) = J(ik) + γ
∞∑

m=0

(αλ)mdk+m

Fact.
For TD(λ) algorithm:
if λ = 1, we are doing value iteration;
if λ = 0, we are doing policy improvement.

3 Average cost problem

Suppose we are interested in the average cost, i.e.

J̄(i) = lim
N→∞

1

N
E[

N−1∑
k=0

g(ik, µ(k), ik+1)|i0 = i] (3)

which can be very dangerous since

• the limit may not exist

2



• the stationary policy may not be globally optimal

• For example

Jµ = lim
n→∞

1

N
E[

Kij(µ)−1∑
k=1

g(ik, µ(k), ik+1)]︸ ︷︷ ︸
(1)

+
1

N
E[

N−1∑
k=Kij(µ)

g(ik, µ(k), ik+1)|i0 = i]

︸ ︷︷ ︸
(2)

E(Kij(µ)) < ∞ =⇒ (1) → 0, then Jµ should be indep. of the initial state, this is true
if under a given policy µ, there is a state that can be reached from all other states with
probability 1.

remark 1. The (DP) equation:

J(i) = min
∑
j

Pij(µ)(g(i, µ, j) + αJ(j))

might not be correct

remark 2. When we are only interested in average cost, i.e. 1
N

∑N−1
k=0 g(ik, µ(k), ik+1)

What’s under this curve doesn’t really matter, it goes to 0 multiplying 1
N .

Proposition 3. If there exists some bounded function h defined on nonnegative integers and a
consitant λ s.t.

λ+ h(i) = min[
∑
j

Pij(u)(g(i, u, j) + h(j))] ACOE(⋆) (4)

Then there exists a stationary policy µA such that

λ = inf
µ

Jµ(i) ∀i ≥ 0 (5)

µA is the policy for each i, selects an action that minimizes the RHS of ACOE

3



3.1 Example

1 A crowdsourcing worker is presented with job i w.p. pi.

2 A job of type i can be completed in a time slot w.p. qi.

3 A reward ri is received for completing a job of type i.

4 When taking job, one cannot take another job.

Q: Find the optimal policy/strategy to accept jobs to maximize the average expected reward.

First we have to do some modeling of the problem:

where

ui =

{
1 if job of type i is accepted
0 otherwise

(ACOE) here

• i = 0, idling ⋆ h(0) + λ = 0 +
∑

i=1 pimax{
accepted︷︸︸︷
h(i) , h(0)︸︷︷︸

reject

}

• i = 1, 2, . . ., accept job i, ⋆ ⋆ h(i) + λ = qi(ri + h(0))︸ ︷︷ ︸
task completed

+ (1− qi)h(i)︸ ︷︷ ︸
task not completed

For ⋆ is we add a constant c to h(i) for every i, it will not change anything, therefore we set
h(0) = 0.

⋆ λ =
∑
i

pimax(0, h(i))

⋆ ⋆ h(i) + λ = qiri + (1− qi)h(i)

λ = qi(ri − h(i))

⋆ ⋆ ⋆ λ =
∑
i

pi(max(0, ri −
λ

qi
))

we have:

4



1 λ is solution to a fixed point equation. (λ∗)

2 the policy: {
accept ri ≥ λ∗

qi

reject otherwise
(6)

The vertical axis represents
∑

i piui and the horizontal axis represents λ, the solution exists for
h(i) = ri − λ⋆

qi
.

There is a proof in [1] Approximate Dynamic Programming V ol I

4 Bandit Problems

1 stochastic problem

2 adversarial problem

Problem statements: K-arm. A carsino situation.

Consider k arms, each has an unknown distribution {νk}k=1,2,... with values bounded in [0, 1], at
each t, an agent pulls an arm It ∈ {1, . . . ,K} and observes a reward Xt ∼ νIt (i.i.d samples from
νIt)

Objective: Maximize the expected sum of reward E(
∑n

t=1Xt), the policy should be σ : historical information →
some action.

Here is the challenges: we don’t know:

• νk

• mean of each arm: µk = EX∼νk [X]

• mean of the best arm: µ∗ = maxk µk

5



Dynamic programming can hopefully solve this problem, at the very beginning we have to determine
the states, we define a knowledge state: Sn and consider a thought experiment:

thought experiment 4. There’s only one arm, decide to continue or not to continue.

thus our Bellman equation is:

V (Sn) = max(V (Sn)︸ ︷︷ ︸
quit

,E[wn+1 + V (Sn)|Sn]︸ ︷︷ ︸
continue

) (7)

All of these make the problem extremely ”hard” to solve, yet there are some genius people who
demonstrated in a markovian framework that the optimal solution of the general case is an index
policy whose ”dynamic allocation index” is computable in principle for every state of each project
as a function of the single project’s dynamics called Gittins Index approach.[2]

Here’s one question: Pick a strategy, can we evaluate it? Can we also compare with some nominated
νk?

Define the regret:

Rn = nµ∗ −
n∑

t=1

Xt (8)

The expectation of regret is taken w.r.t ,the sequence of the arms or, the randomness of arm and
reward.

E[Rn] = nµ∗ − E[
n∑

t=1

Xt] (9)

Let’s be smarter in a way that instead of suming over the sequence Xt, we provide a measure
couting from 1 to n.

Tk(n) =
n∑

t=1

1(It = k) (10)

which is a total number of times that It pulled up to time t.
∑K

k=1 Tk(n) = n. Thus in the regret
9,

RHS = nµ∗ − E[
K∑
k=1

Tk(n)]

= E[
K∑
k=1

Tk(n)(µ
∗ − µk)]

= E[
K∑
k=1

∆µ︸︷︷︸
gap

]

and we have

• policy i: µ̂k,s =
1
s

∑s
i=1 xk,i up to time s, compute the empirical mean reward of arm k. and

we choose It = argmaxµ µ̂k,s, (Can we do better suppose the samples are huge and good?
Yes.)

6



• policy ii: It = argmaxµ µ̂k,s + prediction/correction, when

1 s is large;

2 s is large w.r.t n

i.e.

Bt,s(k) = µ̂k,s +

√
α log t

s
(11)

It = argmax
µ

Bt,Tk(t−1)(k) (12)

= argmax
µ

1

Tk(t− 1)

Tk(t−1)∑
i=1

Xµ,i +

√
α log t

Tk(t− 1)
(13)

4.1 Some machineries

To get the things above we have to first introduce some apparatus.

• Markov Inequality

• Chernoff bound

• Hoeffding bound

• Chernoff bound

4.1.1 Markov Inequality

Theorem 5. For a non-negative random variable X, the following Inequality holds for any ϵ > 0.

P (X ≥ ϵ) ≤ E(X)

ϵ
(14)

Proof. Define indicator function Y = ϵ1(X ≤ ϵ), E(Y ) = ϵP (X ≥ ϵ) ≤ E(X), we are done.

4.1.2 Chernoff bound

Theorem 6. Consider a sequence of i.i.d R.V.s Xi, µ = E(Xi), for any constance x,

P (
n∑

i=1

Xi ≥ nx) ≤ exp(−n sup
θ≥0

(θx− logM(θ))) (15)

where M(θ) is the M.G.F of X ′
is

7



Proof. According to 14

P (
n∑

i=1

Xi ≥ nx) ≤ P (eθ
∑n

i=1 Xi ≥ eθnx) ≤ E(eθ
∑n

i=1 Xi)

eθnx

≤ inf
θ≥0

e−θnx E(eθ
∑n

i=1 Xi)

= inf
θ≥0

e−n(θx−log µ(θ))

= e−n infθ≥0(θx−logµ(θ))

example. {Xi} are Bernoulli R.V’s

M(θ) = E(eθx) = peθ + qe0 = peθ + 1− p

sup
θ
(θx− logM(θ)) = sup

θ
(θx− log(q + peθ)) = D(x∥P )

= x log
x

p
+ (1− x) log

1− x

1− p

θ∗ = log
n(1− p)

(1− x)p

thus resulting the kL divergence.

4.1.3 Hoeffding bound

Theorem 7. Consider a sequence of i.i.d R.V.s Xi, µ = E(Xi), Xi takes values between [ai, bi],
then

P(|
∑

iXi − E(
∑

iXi)

n
| ≥ x) ≤ 2 exp(

−2n2x2∑n
i=1(bi − ai)2

)

⋆ This will give us some predictions

(16)

e.g. P(| 1n
∑

iXi − µ| ≥ ϵ) ≤ 2 exp(−2nϵ2)

|min
f

1

n

n∑
i=1

g(f(xi), yi)−min
f

E(g(f(x), y))| ≤ ϵ

References

[1] Bertsekas, Dimitri P. ” Approximate dynamic programming.” (2008).

[2] https://en.wikipedia.org/wiki/Gittins_index

8


