ECE-GY 9223 Reinforcement Learning Spring 2019 Spring 2019

Lecture 8 — April 26, 2019

Prof. Quanyan Zhu Scribe: Yunian Pan

1 Overview

In the last lecture we talked about **approximate Q-Learning** in policy policy iteration and give some proof about feasiblility of the algorithm and some basic concept about **Temporal Difference**.

In this lecture we continued **TD learning**, then we talked about **Average cost problems** and the resulting **ACOE**, in the end we had a beginning of discussion over two types of **Bandit Problems**—**stochastic bandit** and **adversarial bandit** and ended up with the introduction of a few machineries.

2 TD learning

We begin by recalling the stochastic Bellman equation:

$$
J^{\mu}(i_k) = \mathbb{E}(g(i_k, i_{k-1}) + \alpha J^{\mu}(i_{k+1}))
$$
\n(1)

where $\alpha \in (0,1)$ or $\alpha = 1$, this is again a Robbins Monro problem, $r = E(g(r, v))$ for which, from a Robbin's Monro's perspective we can do:

$$
J^+(i_k) = J(i_k) + \gamma \underbrace{(g(i_k, i_{k-1}) + \alpha J^{\mu}(i_{k+1}) - J(i_k))}_{TD}
$$

where the expectation of TD term under condition i_k should be 0. We further analyze $refSB$'s generalization:

$$
J^{\mu}(i_k) = \mathbb{E}(g(i_k, i_{k+1}) + \alpha g(i_{k+1}, i_{k+2}) + \alpha^2 J^{\mu}(i_{k+2}))
$$

=
$$
\mathbb{E}(\sum_{m=0}^{l} \alpha^m g(i_{k+m}, i_{k+m+1}) + \alpha^{l+1} J^{\mu}(i_{k+l+1}))
$$

For simplicity we get rid of α and consdier the total cost case:

$$
J^{\mu}(i_k) \mathbb{E}(\underbrace{\sum_{m=0}^{l} g(i_{k+m}, i_{k+m+1})}_{roll-out \ term} + J^{\mu}(i_{k+l+1}))
$$
\n
$$
(2)
$$

The trick here is that we can multiply $2(1 - \lambda)\lambda^l$ and sum over *l*, and then interchange the order of summation such that we can make use of the identity $\sum_{l=m}^{\infty} \lambda^l = \frac{\lambda^m}{1-\lambda^m}$ $\frac{\lambda^m}{1-\lambda}$, thus:

$$
\Rightarrow \equiv \mathbb{E}[(1-\lambda)\sum_{m=0}^{\infty}\sum_{l=m}^{\infty}\lambda^{l}g(i_{k+m},i_{k+m+1}) + \sum_{l=0}^{m}\lambda^{l}(1-\lambda)KJ^{\mu}(i_{k+l+1})]
$$
\n
$$
= \mathbb{E}[\sum_{m=0}^{\infty}g(i_{k+m},i_{k+m+1})\sum_{l=m}^{\infty}(1-\lambda)\lambda^{l} + \sum_{l=0}^{m}(\lambda^{l}-\lambda^{l+1})KJ^{\mu}(i_{k+l+1})]
$$
\n
$$
= \mathbb{E}[\sum_{m=0}^{\infty}(g(i_{k+m},i_{k+m+1})\lambda^{m} + \lambda^{m}J^{\mu}(i_{k+m+1})) - \sum_{l=0}^{m}\lambda^{l+1}KJ^{\mu}(i_{k+l+1})]
$$
\n
$$
= \mathbb{E}[\sum_{m=0}^{\infty}\lambda^{m}(g(i_{k+m},i_{k+m+1}) + J^{\mu}(i_{k+m+1})) - \sum_{l'=1}^{m}\lambda^{l'}KJ^{\mu}(i_{k+l'})]
$$
\n
$$
= \mathbb{E}[\sum_{m=0}^{\infty}\lambda^{m}(g(i_{k+m},i_{k+m+1}) + J^{\mu}(i_{k+m+1} - J^{\mu}(i_{k+m}))) + J^{\mu}(i_{k})
$$
\n
$$
i_{k+m}TD
$$
\n
$$
= \mathbb{E}[\sum_{m=0}^{\infty}\lambda^{m}d_{k+m}] + J^{\mu}(i_{k})
$$
\n
$$
= J^{\mu}(i_{k})
$$

where we define TD error term $d_m = g(i_m, i_{m+1}) + J^{\mu}(i_{m+1}) - J^{\mu}(i_m)$, resulting $TD(\lambda)$ algorithm, i.e. we do:

$$
J^+(i_k) = J(i_k) + \gamma \sum_{m=0}^{\infty} \lambda^m d_{k+m}
$$
 or if consider discounted case

$$
J^+(i_k) = J(i_k) + \gamma \sum_{m=0}^{\infty} (\alpha \lambda)^m d_{k+m}
$$

Fact.

For TD(λ) algorithm: if $\lambda = 1$ *, we are doing value iteration; if* $\lambda = 0$ *, we are doing policy improvement.*

3 Average cost problem

Suppose we are interested in the average cost, i.e.

$$
\bar{J}(i) = \lim_{N \to \infty} \frac{1}{N} \mathbb{E}[\sum_{k=0}^{N-1} g(i_k, \mu(k), i_{k+1}) | i_0 = i]
$$
 (3)

which can be very dangerous since

• the limit may not exist

- the stationary policy may not be globally optimal
- For example

$$
J^{\mu} = \lim_{n \to \infty} \frac{1}{N} \mathbb{E}[\sum_{k=1}^{K_{ij}(\mu)-1} g(i_k, \mu(k), i_{k+1})] + \frac{1}{N} \mathbb{E}[\sum_{k=K_{ij}(\mu)}^{N-1} g(i_k, \mu(k), i_{k+1}) | i_0 = i]
$$
\n(1)

 $\mathbb{E}(K_{ij}(\mu)) < \infty \implies (1) \to 0$, then J^{μ} should be indep. of the initial state, this is true if under a given policy μ , there is a state that can be reached from all other states with probability 1.

remark 1. *The (DP) equation:*

$$
J(i) = \min \sum_{j} P_{ij}(\mu)(g(i, \mu, j) + \alpha J(j))
$$

might not be correct

remark 2. When we are only interested in average cost, i.e. $\frac{1}{N} \sum_{k=0}^{N-1} g(i_k, \mu(k), i_{k+1})$

What's under this curve doesn't really matter, it goes to 0 multiplying $\frac{1}{N}$.

Proposition 3. *If there exists some bounded function h defined on nonnegative integers and a consitant λ s.t.*

$$
\lambda + h(i) = \min[\sum_{j} P_{ij}(u)(g(i, u, j) + h(j))]
$$
 $ACOE(\star)$ (4)

Then there exists a stationary policy µ^A such that

$$
\lambda = \inf_{\mu} J_{\mu}(i) \quad \forall i \ge 0 \tag{5}
$$

µ^A is the policy for each i, selects an action that minimizes the RHS of ACOE

3.1 Example

- 1) A crowdsourcing worker is presented with job i w.p. p_i .
- 2) A job of type *i* can be completed in a time slot w.p. q_i .
- 3) A reward r_i is received for completing a job of type i .
- (4) When taking job, one cannot take another job.
- Q: Find the optimal policy/strategy to accept jobs to maximize the average expected reward.

First we have to do some modeling of the problem:

where

$$
u_i = \begin{cases} 1 & \text{if job of type i is accepted} \\ 0 & \text{otherwise} \end{cases}
$$

(ACOE) here

\n- \n
$$
i = 0, \text{ idling } \star h(0) + \lambda = 0 + \sum_{i=1}^{\text{accepted}} p_i \max\left\{\n \begin{array}{l}\n h(i) \\
 h(i)\n \end{array},\n \begin{array}{l}\n h(0)\n \end{array}\n \right\}
$$
\n
\n- \n
$$
i = 1, 2, \ldots, \text{ accept job } i, \star \star h(i) + \lambda = \underbrace{q_i(r_i + h(0))}_{\text{task completed}} + \underbrace{(1 - q_i)h(i)}_{\text{task not completed}}.
$$
\n
\n

For \star is we add a constant *c* to *h*(*i*) for every *i*, it will not change anything, therefore we set $h(0) = 0.$

$$
\star \quad \lambda = \sum_{i} p_{i} \max(0, h(i))
$$

$$
\star \star \quad h(i) + \lambda = q_{i} r_{i} + (1 - q_{i}) h(i)
$$

$$
\lambda = q_{i} (r_{i} - h(i))
$$

$$
\star \star \star \quad \lambda = \sum_{i} p_{i} (\max(0, r_{i} - \frac{\lambda}{q_{i}}))
$$

we have:

1) λ is solution to a fixed point equation. (λ^*)

 (2) the policy:

$$
\begin{cases}\n\text{accept} & r_i \ge \frac{\lambda^*}{q_i} \\
\text{reject} & \text{otherwise}\n\end{cases} (6)
$$

The vertical axis represents $\sum_i p_i u_i$ and the horizontal axis represents λ , the solution exists for $h(i) = r_i - \frac{\lambda^*}{a_i}$ $\frac{\lambda^{\star}}{q_i}$.

There is a proof in [1] *Approximate Dynamic Programming Vol I*

4 Bandit Problems

stochastic problem

 (2) adversarial problem

Problem statements: K-arm. A carsino situation.

Consider k arms, each has an unknown distribution $\{\nu_k\}_{k=1,2,...}$ with values bounded in [0, 1], at each *t*, an agent pulls an arm $I_t \in \{1, ..., K\}$ and observes a reward $X_t \sim \nu_{I_t}$ (i.i.d samples from $\nu_{I_t})$

Objective: Maximize the expected sum of reward $\mathbb{E}(\sum_{t=1}^{n} X_t)$, the policy should be σ : *historical information* \rightarrow *some action*.

Here is the challenges: we don't know:

- \bullet *ν*^{*k*}
- mean of each arm: $\mu_k = \mathbb{E}_{X \sim \nu_k}[X]$
- mean of the best arm: $\mu^* = \max_k \mu_k$

Dynamic programming can hopefully solve this problem, at the very beginning we have to determine the states, we define a knowledge state: $Sⁿ$ and consider a thought experiment:

thought experiment 4. *There's only one arm, decide to continue or not to continue.*

thus our Bellman equation is:

$$
V(S^n) = \max(\underbrace{V(S^n)}_{quit}, \underbrace{\mathbb{E}[w^{n+1} + V(S^n)|S^n]}_{continue})
$$
\n(7)

All of these make the problem extremely "hard" to solve, yet there are some genius people who demonstrated in a markovian framework that the optimal solution of the general case is an index policy whose "dynamic allocation index" is computable in principle for every state of each project as a function of the single project's dynamics called Gittins Index approach.[2]

Here's one question: Pick a strategy, can we evaluate it? Can we also compare with some nominated *νk*?

Define the regret:

$$
R_n = n\mu^* - \sum_{t=1}^n X_t
$$
\n(8)

The expectation of regret is taken w.r.t., the sequence of the arms or, the randomness of arm and reward.

$$
\mathbb{E}[R_n] = n\mu^* - \mathbb{E}[\sum_{t=1}^n X_t]
$$
\n(9)

Let's be smarter in a way that instead of suming over the sequence X_t , we provide a measure couting from 1 to *n*.

$$
T_k(n) = \sum_{t=1}^{n} \mathbb{1}(I_t = k)
$$
\n(10)

which is a total number of times that I_t pulled up to time t . $\sum_{k=1}^{K} T_k(n) = n$. Thus in the regret 9,

$$
RHS = n\mu^* - \mathbb{E}[\sum_{k=1}^K T_k(n)]
$$

$$
= \mathbb{E}[\sum_{k=1}^K T_k(n)(\mu^* - \mu_k)]
$$

$$
= \mathbb{E}[\sum_{k=1}^K \underline{\Delta}_{\mu}]
$$

and we have

• policy i: $\hat{\mu}_{k,s} = \frac{1}{s}$ $\frac{1}{s}\sum_{i=1}^{s}x_{k,i}$ up to time s, compute the empirical mean reward of arm k. and we choose $I_t = \arg \max_{\mu} \hat{\mu}_{k,s}$, (Can we do better suppose the samples are huge and good? Yes.)

• policy ii: $I_t = \arg \max_{\mu} \hat{\mu}_{k,s} + prediction/correction$, when

 (1) *s* is large; $\textcircled{2}\,$ s is large w.r.t n i.e.

$$
B_{t,s}(k) = \hat{\mu}_{k,s} + \sqrt{\frac{\alpha \log t}{s}} \tag{11}
$$

$$
I_t = \arg\max_{\mu} B_{t,T_k(t-1)}(k) \tag{12}
$$

$$
= \arg \max_{\mu} \frac{1}{T_k(t-1)} \sum_{i=1}^{T_k(t-1)} X_{\mu,i} + \sqrt{\frac{\alpha \log t}{T_k(t-1)}} \tag{13}
$$

4.1 Some machineries

To get the things above we have to first introduce some apparatus.

- Markov Inequality
- Chernoff bound
- Hoeffding bound
- Chernoff bound

4.1.1 Markov Inequality

Theorem 5. For a non-negative random variable X, the following Inequality holds for any $\epsilon > 0$.

$$
P(X \ge \epsilon) \le \frac{\mathbb{E}(X)}{\epsilon} \tag{14}
$$

Proof. Define indicator function $Y = \epsilon \mathbb{1}(X \leq \epsilon)$, $\mathbb{E}(Y) = \epsilon P(X \geq \epsilon) \leq \mathbb{E}(X)$, we are done. \Box

4.1.2 Chernoff bound

Theorem 6. *Consider a sequence of i.i.d R.V.s* X_i *,* $\mu = \mathbb{E}(X_i)$ *, for any constance x,*

$$
P(\sum_{i=1}^{n} X_i \ge nx) \le \exp(-n \sup_{\theta \ge 0} (\theta x - \log M(\theta))) \tag{15}
$$

where $M(\theta)$ *is the M.G.F of* X_i ^{*s*}

Proof. According to 14

$$
P(\sum_{i=1}^{n} X_i \ge nx) \le P(e^{\theta \sum_{i=1}^{n} X_i} \ge e^{\theta nx}) \le \frac{\mathbb{E}(e^{\theta \sum_{i=1}^{n} X_i})}{e^{\theta nx}}
$$

$$
\le \inf_{\theta \ge 0} e^{-\theta nx} \mathbb{E}(e^{\theta \sum_{i=1}^{n} X_i})
$$

$$
= \inf_{\theta \ge 0} e^{-n(\theta x - \log \mu(\theta))}
$$

$$
= e^{-n \inf_{\theta \ge 0} (\theta x - \log \mu(\theta))}
$$

example. *{Xi} are Bernoulli R.V's*

$$
M(\theta) = E(e^{\theta x}) = pe^{\theta} + qe^0 = pe^{\theta} + 1 - p
$$

$$
\sup_{\theta} (\theta x - \log M(\theta)) = \sup_{\theta} (\theta x - \log(q + pe^{\theta})) = D(x||P)
$$

$$
= x \log \frac{x}{p} + (1 - x) \log \frac{1 - x}{1 - p}
$$

$$
\theta^* = \log \frac{n(1 - p)}{(1 - x)p}
$$

thus resulting the kL divergence.

4.1.3 Hoeffding bound

Theorem 7. Consider a sequence of i.i.d R.V.s X_i , $\mu = \mathbb{E}(X_i)$, X_i takes values between $[a_i, b_i]$, *then*

$$
\mathbb{P}\left(|\frac{\sum_{i} X_{i} - \mathbb{E}(\sum_{i} X_{i})}{n}| \geq x\right) \leq \sum_{\substack{i=1 \text{ \textit{with } j \text{ \textit{will give us some predictions}}}} \frac{-2n^{2}x^{2}}{2\exp\left(\frac{-2n^{2}x^{2}}{\sum_{i=1}^{n}(b_{i} - a_{i})^{2}}\right)}
$$
\n
$$
\downarrow \text{ This will give us some predictions}
$$
\n
$$
(16)
$$

 $e.g. \mathbb{P}(\left|\frac{1}{n}\right)$ $\frac{1}{n}\sum_i X_i - \mu \geq \epsilon$) $\leq 2 \exp(-2n\epsilon^2)$

$$
|\min_{f} \frac{1}{n} \sum_{i=1}^{n} g(f(x_i), y_i) - \min_{f} \mathbb{E}(g(f(x), y))| \le \epsilon
$$

References

- [1] Bertsekas, Dimitri P. *" Approximate dynamic programming." (2008).*
- [2] https://en.wikipedia.org/wiki/Gittins_index