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1 Overview

In the last lecture we discussed TD learning, average cost problems, resulting ACOE and the shifted
our attention stochastic and adversarial bandit problems.

In this chapter in order to continue our discussion on these bandit problems we stat by studying
Hoe�ding bound and and Hoe�ding lemma. Both these tools will be useful to do regret analysis on
these bandits. This shall be he order of our discussion:

• Hoe�ding Bounds

• Hoe�ding Lemma

• Regret analysis for stochastic bandits

• Regret analysis for adversarial bandits

2 Hoe�ding Bound

Theorem 1. Given a sequence of independdant random variables {Xi}, where Xi takes values
between [ai, bi]

P

(∣∣∣∣∑iXi − E(
∑

iXi)

n

∣∣∣∣ ≥ x) ≤ 2 exp

(
− 2n2x2∑

i(bi − ai)2

)
Proof. For iid bernauli random variable
let Xi be iid Bernoulli random variables with parameter p

Pr

(
1

n

n∑
i=1

Xi ≥ p+ x

)
≤ enθ(p+x) E(eθ

∑
i=1 nXi)

= E(θXi)
ne−nθ(p+x)

= (eθ + (1− p))ne−nθ(p+x)

= en log(peθ+1−p)e−nθ(p+x) (1)

f(θ) = log(peθ + 1− p) ≡ f(0) + f ′(0)θ +
1

2
f ′′(u)θ2 for u ∈ [0, θ]
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f(0) = 0

f ′(0) =
peθ

peθ + 1− p

∣∣∣∣
θ=0

= p

f ′′(θ) =
(peθ + 1− p)peθ − (peθ)2

(peθ + 1− p)2
=

(
peθ

peθ + 1− p

)(
1− p

petheta + 1− p

)
≤ 1

4

⇒ f(θ) ≤ pθ +
1

8
θ2 (2)

Using equation 1 and 2

en log(peθ+1−p)e−nθ(p+x) ≤ e−n(p+x)θen(pθ+ θ2

8
)

= e−nxθ+
1
8
nθ2 (3)

≤ e2nx2 (4)

Pr

(
1

n

n∑
i=1

Xi ≤ p− x
)
≤ e−2nx2

To go from equation 3 to 4 we use calculate the inf −nxθ+ 1
8nθ

2 for θ > 0; which occurs at θ = 4x,
which can proved trivially.

2.1 Accuracy vs Con�dence

We will use the bound we just proved to look at this question. �How many samples do we need to
get su�ciently close to the mean ?�
Let 0 ≤ Zi ≤ 1 be iid distributed random variables. Then from our theorem it follows that:

Pr

(∣∣∣∣∣ 1n
n∑
i=1

Zi − E(Zi)

∣∣∣∣∣ > ε

)
≤ 2 exp(−2nε2)

ε can be thought of as accuracy and 2 exp(−2nε2) as con�dence
Accuracy means how far we can allow the sample mean to be from the true mean, con�dence means
with what probability can we allow this to happen

Lemma 2. Hoe�ding Lemma, suppose we choose

n ≥ 1

2ε2
log

2

δ

then with probability at least 1 − δ, the di�erence between the empirical mean 1
n

∑n
i=1 Zi and the

true mean E(Zi) is at most ε.

Proof. Suppose

n ≥ 1

2ε2
log 2δ

2



Then, by Hoe�ding's inequality,

Pr

(∣∣∣∣∣ 1n
n∑
i=1

−E(Zi)

∣∣∣∣∣ > ε

)
≤ 2 exp(−2nε2)

≤ 2 exp(−2
1

2ε2
log(

2

δ
)ε2)

= 2 exp

(
− log

2

δ

)
= δ

Note that, accuracy is expensive, while con�dence is cheap. SUppose we �nd n for some ε,δ, and
then we decide that we want 10 times more con�dence. We can calculate that for δ′ = δ

10 , we will
need

n′ =
1

2

(
1

ε

)2

log
2 · 10

δ
= n+

1

2

(
1

ε

)2

log(10) = n+ C(ε) (5)

samples to achieve this. We can just add a constant number C(ε)of extra samples. If we would like
100 times more con�dence, we can just add 2C(ε) extra samples. Or we can just say n ∝ log 2

δ or
δ ∝ 2

exp(n) .
On the other hand, accuracy is quite expensive. Suppose that we decide we want 10 times more
accuracy. We can calculate that for ε′ = ε

10 , we will need 100n samples. An increase of a factor of
100! Or we can just say ε ∝ 1√

n
.

Lemma 3. Hoe�ding Lemma: let X be any real valued random variable with E(X) = 0. a ≤ X ≤ b
almost surely. Then for all λ ∈ R.

E(eλX ≤ exp

(
λ2(b− a)2

8

)
)

3 Regret analysis for stochastic multi arm bandit

For a stochastic multi arm bandit with K ≥ 2 arms, the agent chooses an arm It at each time step
t = 1, 2, 3, ... from the set of arms {1, 2, ...,K} and obtains reward drawn from VIt independently
from the past outcome. In the last lecture we de�ned regret as

Rn = nµ? −
n∑
t=1

Xt

E(Rn) = nµ? − E[
n∑
t=1

µIt ]

(6)
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Here µk =
∫
XdVk(X) is the mean reward of arm k, and µ? = maxk∈1,2,...,K µk

Now we de�ne Tk(n) =
∑n

t=1 1{It = k} i.e. total number of times arm k was pulled from round

one to round n and
∑K

k=1 Tk(n) = n; which gives us

E(Rn) = E[
K∑
k=1

Tk(n)(µ? − µk)]

(µ? − µk) is ∆k (gap) which measures the sub optimality of an arm

It = arg max
k

1

Tk(t− 1)

Tk(t−1)∑
i=1

Xk,i +

√
2 log t

Tk(t− 1)

Analysis

P

(
1

s

s∑
i=1

Xi − µ ≥ ε
)
≤ exp(−2sε2)

P

(
1

s

s∑
i=1

Xi − µ ≤ −ε
)
≤ exp(−2sε2)

we pick ε =
√

2 log t
s and setting 1

s

∑s
i=1Xi to µ̂k,s, µ̂k,s is the average reward we get from pulling

arm k in s rounds; the corresponding equations become after rearranging

P

(
µ̂k,s −

√
2 log t

s
≥ µk

)
≤ t−4

P

(
µ̂k,s +

√
2 log t

s
≤ µk

)
≤ t−4

Proposition 4. Each sub-optimal arm k is pulled on average at most

E(Tk(n)) ≤ 8 log n

∆2
k

+
π2

3

times. As a result

E(Rn) =
∑
k

∆k E(Tµ(n))

≤ 8
∑

k,∆k≥0

log n

∆µ
+
kπ2

3

which gives us; ∀s, t, k

µk −
√

2 log t

s
≤ µ̂k,s w.p 1− t−4

µk +

√
2 log t

s
≥ µ̂k,s w.p 1− t−4
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If a sub-optimal arm is pulled at time t

µ̂k,Tk(t−1) +

√
2 log t

Tµ(t− 1)
≥ µ̂k?,Tk? (t−1) +

√
2 log t

Tµ?(t− 1)

we have

µk + 2

√
2 log t

Tµ(t− 1)
≥ µ̂k,Tk(t−1) +

√
2 log t

Tµ(t− 1)
≥ µ̂k?,Tk? (t−1) +

√
2 log t

Tµ?(t− 1)
≥ µk?

and

Tµ(t− 1) ≥ 8 log t

(µ? − µk)2
=

8 log t

∆2
k

4 Regret Analysis for Adversarial Bandit problem

The characteristic of an adversarial bandit is that the rewards are chosen by arbitrarily by an ad-
versary at t = 1, 2, 3, ..., n; the adversary selects Xt(1), ..., Xt(k) ∈ [0,1] and the player selects an
arm It (according to some strategy adapted to the information)
We can imagine two scenarios:

• Full information: The player observes the rewards for all the arm Xt(k) for k ∈ 1, 2, 3, ...,K

• Bandit Information: The player observes the reward of the selected arm

We de�ne the regret as

Rn(k) =
n∑
t=1

Xt(k)−
n∑
t=1

Xt(It)

Goal : �nd an algorithm that generates low regret for all reward sequences

4.1 Exponentially Weighted Forecaster

We will consider the case where we have full information, which gives us Exponentially Weighted
Forecaster
For this case we have

• w1(k) = 1 for all arms
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• t = 1, .. the player selects an armIt ∼ Pt

Pt(k) =
wt(k)∑k
i=1wt(i)

where wt(k) = eη
∑t−1
s=1Xs(k) for η > 0

Proposition 5. Let η ≤ 1. Then the regret of EWF is bounded as

Rn ≤
log k

η
+
ηn

8

Rn ≤
√
n log k

2
if η =

√
8 log k

n

Proof. Let Wt =
∑K

k=1wt(k) sum over all arms

Wt+1

Wt
=

∑K
k=1wt+1(k)

Wt
=
eη

∑t
s=1Xs(k)

Wt

=
K∑
k=1

Wt(k)eηXt(k)

Wt

=
∑

k = 1KPt(k)eηXtk

= E
I∼Pt

[eηXt(I)]

= E
I∼Pt

[eη(Xt(I)−EJ∼Pt (Xt(j)))]eη E(Xt(J))

≤ e
η2

8 eη E(Xt(I)) by Hoe�ding bound

where EJ∼Pt [Xt(J)] is the mean of Xt(J). Hence

log
Wt+1

Wt
≤ η E(Xt(J)) +

η2

8

log
Wn+1

W1
≤ η E[

n∑
t=1

Xt(J)] +
nη2

8

and

log
Wt+1

Wt
= log

∑K
k=1 e

η
∑n
t=1Xt(k)∑

k=1KW1(k)

= log
K∑
k=1

eη
∑n
t=1Xt(k) − logK

≥ η
n∑
t=1

Xt(k)− log k ∀k = 1, 2, ..,K
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using the above 2 results we get

∀k E[Rn(k)] =

n∑
t=1

Xt(h)− E[

n∑
t=1

Xt(It)] ≤
logK

η
+
nη

8

4.2 Exploration Exploitation using Exponential Weights (EXP3)

For the case where we just have bandit information we come up with EXP3. This case is charac-
terized by

• W1(h) = 1 for all k = 1, 2, ...,K

• pick It ∼ Pt

where

Pt(h) = (1− β)
Wt(k)∑k
i=1Wt(i)

+
β

K

hereWt(k) = eη
∑t−1
s=1 X̂s(k), X̂s(k) = Xs(k)

Ps(k) 1{Is = k} and η > 0, β > 0 are the parameters of the algorithms

Proposition 6. Let η ≤ 1 and β = ηK. Then the regret of EXP3 is bounded as

Rn ≤
logK

η
+ (e− 1)ηnK

If we select η =
√

logK
(e−1)nK , the regret of EXP3 is bounded as

Rn ≤ 2.63
√
nK logK

Proof. LetWt =
∑K

k=1. Note that EIs∼ps [X̂s(k)] =
∑K

i=1 ps(i)
Xs(k)
ps(k) 1{i = k} = Xs(k) and EX̂s(Is) =∑K

i=1 ps(i)
Xs(i)
ps(i)

≤ K. Therefore, we have

Wt+1

Wt
=

K∑
k=1

wt(k)eµX̂i(k)

Wt
=

K∑
k=1

pt(k)− β/K
1− β

eµX̂(k)

≤
K∑
k=1

pt(k)− β/K
1− β

(1 + ηX̂t(k) + (e− 2)η2X̂t(k)2)

≤ 1 +
1

1− β

K∑
k=1

pt(k)(ηX̂t(k) + (e− 2)η2X̂t(k)2)

This is because ηX̂t(k) ≤ ηK/β and ex ≤ 1 + x+ (e− 2)x2 for x ≤ 1

log
Wt+1

Wt
≤ 1

1− β

K∑
k=1

pt(k)(e− 2)η2X̂t(k)2
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so, we have

log
Wn+1

W1
≤ 1

1− β

n∑
t=1

K∑
k=1

pt(k)(ηX̂t(k) + (e− 2)η2X̂t(k)2)

For any k = 1, ...,K, we also have

log
Wn+1

W1
= log

K∑
k=1

eη
∑n
t=1 X̂t(k) − logK ≥ η

n∑
t=1

X̂t(k)− logK

By taking the expectations, for any k = 1, ...,K, we may write

E
[
(1− β)

n∑
t=1

X̂t(k)−
n∑
t=1

K∑
i=1

pt(i)X̂t(i)
]
≤ (1− β)

logK

η
+ (e− 2)η E

[ n∑
t=1

K∑
k=1

pt(k)X̂t(k)2
]

n∑
t=1

Xt(k)− E[

n∑
t=1

Xt(It)] ≤ βn+
logK

η
+ (e− 2)ηnK

E[Rn(k)] ≤ logK

η
+ (e− 1)ηnK
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