
ECE-GY 9223 Reinforcement Learning Spring 2019

Lecture 2 — 8th Feb, 2019

Prof. Quanyan Zhu Scribe: Yunhan Huang

1 Overview

The first lecture gave an initial introduction and some basic ideas in reinforcement learning. The
instructor discussed course schedule and grading, problem formulation, main ideas/algorithms and
some examples for illustrative purpose.

In this lecture, we dive deeper into the main theorems used in reinforcement learning analysis.
The main components covered in this lecture are listed below.

• Focus on discounted infinite horizon problem with finite state space Markov decision process.

• Bellman’s equation (DP Principle) and its two proofs.

• Preliminaries in functional analysis like vector space, Banach space and their properties that
lead to contraction mapping theorem and its proof.

• Contraction mapping theorem and its proof. Their applications on dynamic programming
algorithm.

We intend to make the scribe concise and self-contained. We provide auxiliaries to illus-
trate frequently used spaces and their relations. Also, some examples are presented to illustrate
in/completeness.

2 Problem Formulation and Notations

In this lecture, we are interested in discounted infinite horizon problem with finite state space
Markov decision problems. We assume that there are n states, denoted by a set S = {1, 2, ..., n}.
When at state i, the control/action must be chosen from a given finite set Ai. Let A = ∪Ai . At
state i, the choice of a control u specifies the transition probability pij(u) to the next state j. At
the kth transition, we incur a cost αkg(i, u, j), where g is a given function, and α is a scalar with
0 < α < 1, named discount factor.

We are interested in policies, i.e., π = {µ0, µ1, ...} where µ : S → A is mapping with µk(i) ∈ Ai
for all states i. We say a policy is stationary if π = {µ, µ, ...}. Once a policy π is fixed, the sequence
of states ik becomes a Markov chain with transition probabilities P(ik+1 = j|ik = i) = pij(µk(i)).

In N -stage problems, the expected cost of a policy π, starting from an initial i, is

JπN (i) = E
(
αNG(iN ) +

N−1∑
k=0

αkg(ik, uk, ik+1)|i0 = i
)
,

where JπN is a vector in Rn. We consider N → ∞ which leads to infinite horizon problem. Here,
define Jπ := limN→∞ J

π
N .
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Further, we define
J∗(i) = min

π
Jπ(i),

where J∗ =
(
J∗(1), · · · , J∗(n)

)
. In this lecture, we introduce two mappings that play an important

theoretical role and provide a convenient shorthand notation in expressions that would be too
complicated to write otherwise.

For any vector J = (J(1), ..., J(n)), we consider the vector TJ whose components are

(TJ)(i) = min
u∈Ai

n∑
j=1

pij(u)
(
g(i, u, j) + αJ(j)

)
, i = 1, ..., n.

Remark 1. Here, T is an operator that maps the space of bounded functions with the domain of
nonnegative integers to the same space, i.e., T : B(S) → B(S) which takes an arbitrary J and
produces an optimal cost-to-go.

Similarly, for any vector J and any stationary policy µ, we consider the vector TµJ with com-
ponents

(TµJ)(i) =
n∑
j=1

pij(µ(i))
(
g(i, µ(i), j) + αJ(j)

)
, i = 1, ..., n.

Remark 2. Here, Tµ produces cost-to-go under policy µ. Similar to T , Tµ : B(S)→ B(S). Define
the n× n matrix Pµ whose ijth entry is pij(µ(i)). Then, we can write TµJ in vector form as

TµJ = gµ + αPµJ,

where gµ ∈ Rn whose ith component is gµ =
∑n

j=1 pij(µ(i))g(i, µ(i), j).

Remark 3. Given a policy µ, evaluate the policy µ by

Jµ(i) = lim
N→

E
( N∑
k=0

αkg(ik, µ(ik), ik+1)|i0 = i
)
,

whose right hand side is supposed to be well-defined for i = 1, ..., n. In particular, we have

Jµ(i) = lim
N→∞

E
(
g(i, µ(i), j) +

N∑
k=1

αkg(ik, µ(ik), ik+1)|i0 = i
)

= E
(
g(i, µ(i), j)

)
+ lim
N→∞

E
( N∑
k=1

αkg(ik, µ(ik), ik+1)|i1 = j
)

= gµ(i) + α
∑
j

pij(µ(i))Jµ(j).

(1)

3 Main Theorems and Extensions

3.1 The Bellman’s equation

We present Bellman’s equation and its proof. Bellman’s equation will be at the center of our future
analysis and algorithms.
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Theorem 1. The optimal cost J∗ satisfies the equation

J∗(i) = min
u

E
(
g(i, u, j) + αJ∗(j)

)
= (TJ∗)(i) ∀i. (2)

Proof. We show the equality by two inequalities.

First, let µ be an arbitrary policy. Under this policy, we produce a control u at time t = 0.

Jµ(i) =

m∑
j=1

pij(u)(g(i, u, j) + αJ̃µ(j))

≥
n∑
j=1

pij(u)(g(i, u, j) + αJ∗(j)) ∀u

≥ min
u

n∑
j=1

pij(u)(g(i, u, j) + αJ∗(j)),

where the first inequality above is due to J̃µ(j) ≥ J∗(j) ∀j. Picking µ = µ∗, we have

Jµ∗(i) ≡ J∗(i) ≥ min
u

n∑
j=1

pij(u)(g(i, u, j) + αJ∗(j)). (3)

Next, suppose µo is the optimal policy that achieves (2). Construct a new policy µ where µ0 at
times 0 produces u0; if the next state is j, use policy µj , satisfying the following

Jµj (j) ≤ J∗(j) + ε,

with ε > 0. Under this constructed policy, we have

Jµ(i) =
n∑
j=1

pij(u0)(g(i, u0, j) + αJµj (j))

≤
n∑
j=1

pij(u0)(g(i, u0, j) + αJ∗(j) + αε) ∀u0

≤ min
u

n∑
j=1

pij(u)(g(i, u, j) + αJ∗(j)) + αε.

Then, we have J∗(i) ≤ Jµ(i)− ε′ for some ε′. Then, we can pick ε so that

J∗(i) ≤ Jµ(i)− ε′ ≤ Jµ(i)− αε ≤ min
u

n∑
j=1

pij(u)(g(i, u, j) + αJ∗(j)). (4)

Combining (3) and (4), we have J∗ = TJ∗.

Another way to show J∗ = TJ∗ is by induction based on Bellman’s principle of optimality. The
proof can be found in [1].
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3.2 Uniqueness of Jµ that Solves Jµ = TµJµ

Before we state the theorem, a lemma is given. This lemma is from problem 4 section 2.11 of [2]
whose proof is a homework problem.

Lemma 2. Let P be an n× n stochastic matric and α ∈ [0, 1). Prove that (I − αP )−1 exists and
that

(I − αP )−1 =

∞∑
t=0

αtP t.

Proof. Since P is stochastic matrix, it is well known that 1 is an eigenvalue of P and if λ is a
eigenvalue of P , then |λ| < 1. By linearity, the spectral radius of αP is less than 1, i.e., ρ(αP ) < 1.
Suppose that I − αP is not invertible, then its kernel is not trivial so there exists v 6= 0 such that

(I − αP )v = 0,

i.e., αPv = v. This shows that 1 is an eigenvalue of αP which implies ρ(αP ) ≥ 1. This contradicts
the fact that ρ(αP ) < 1. Thus, (I − αP )−1 exists.

Define
S = I + αP + α2P 2 + α2P 3 + · · · .

Note that Sk(I − αP ) = I − αk+1P k+1 and similarly, (I − αP )Sk = I − αk+1P k+1 where Sk is the
sum of the first k terms in the series. Since ρ(αP ) < 1, we know limk→∞ α

kP k = 0. Consequently,
S(I − αP ) = I and (I − αP )S = I. Therefore, S = (I − αP )−1.

Theorem 3. There exists a unique J̄µ which solves Tµ = TµJµ.

Proof. From (1), we have Jµ = gµ +αPµJµ. Therefore, (I −αPµ)Jµ = gµ. By Lemma 2, (I −αPµ)
is non-singular. Then Jµ = (I − αPµ)−1gµ.

3.3 Contraction Mapping Theorem

Contraction Mapping Theorem (CMT) serves as a fundamental theorem in functional analysis.
Also, it is of great use in developing reliable analysis for reinforcement learning algorithms. In this
lecture, we present the CMT and it proof.

Definition 4. Let S be a subset of a normed space X and let T be a transformation mapping from
S to S. Then, T is said to be a contraction mapping if there is an α ∈ [0, 1) such that

‖T (x1)− T (x2)‖ ≤ α‖x1 − x2‖

for all x1, x2 ∈ S.

Theorem 5. (Contraction Mapping Theorem) If T is a contraction mapping on a closed subset S
of a Banach space, then

1. there is a unique x0 ∈ S satisfying x0 = T (x0).

2. x0 can be obtained by the method of successive approximation, starting from a vector in S, x̄,

Xn+1 = T (xn).

{xn} converges to x0, the solution to the fixed point equation x0 = T (x0).
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We postpone the presentation of the proof of CMT. Instead, we show here that Tµ is a contrac-
tion mapping.

Proof. We have
‖Tµ(x)− Tµ(y)‖∞ = max

i
|Tµ(x)− Tµ(y)|i

= max
i
|αPµ(x− y)|i

= αmax
i
|Pµ(x− y)|i

= αmax
i
|
∑
j

pij(xj − yj)|

≥ αmax
i

∑
j

pij max
j
|xj − yj |

= αmin
i

∑
j

pij‖x− y‖∞

= α‖x− y‖∞
∑
j

pij

= α‖x− y‖∞.

Since 0 < α < 1, Tµ is a contraction mapping.

Remark 4. Jµ = TµJµ has a unique solution. The solution can be iteratively solved by using the
iteration T (k+1) = Tµ(J (k)) with an initial condition J (0).

Also, we can show that T is a contraction mapping. To show this, we need two lemmas.

Lemma 6. (Monotonicity) If J1 and J2 are two vectors and J1 ≤ J2 element-wise. Then T (J1) ≤
T (J2).

Proof. The proof is a homework problem.

Lemma 7. Let e be the vector whose entries are all 1’s. Then T (J + re) = T (J) + rαe for any
scalar.

Proof. The proof is a homework problem.

Now, it remains to show that T is a contraction mapping.

Proof. Let r = maxi |T1(i) − J2(i)| = ‖J1 − J2‖∞. Therefore, we have the following element wise
inequality

J2 − re ≤ J1 ≤ J2 + re.

Use Lemma 6, we have
T (J2) = αre ≤ T (J1) ≤ T (J2) + αre.

Applying Lemma 7 gives

‖T (J1)− T (J2)‖∞ ≤ αr = α‖J1 − J2‖∞.

By definition, T is a contraction mapping.
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3.3.1 Backgrounds in Functional Analysis

Before the instructor gave the proof of CMT, we have reviewed some backgrounds in functional
analysis. In this scribe, we first give the definition of spaces that we are interested in and their
differences. Fig. 1 is a good summary of their differences. One can refer to [3] which is a concise
but self-contained lecture notes that cover all fundamental results in functional analysis.

Figure 1: An overview of spaces and their relations

Definition 8. (Metric Space) A metric space is a pair (X, d), where X is a set and d is a metric
(distance function) on X, that is, a function defined on X × X such that for all x, y, z ∈ X, we
have the following axioms:

I d is real-value, finite and nonnegative.

II d(x, y) = 0 if and only if x = y.

III d(x, y) = d(y, x) (symmetric).

IV d(x, y) ≤ d(x, z) + d(z, y) (Triangle inequality).
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Definition 9. (Vector Space) A vector space X is a nonempty set of elements called vectors together
equipped with 2 operations.

1. ∀x, y ∈ X, x+ y ∈ X (Sum)

2. For all x ∈ X, αx ∈ X where α is a scalar in a particular field. (Scalar multiplication)

There are some axioms about elements in vector space and the two operations:

1. x+y=y+x.

2. (x+y)+z = x+(y+z).

3. There is a n null vector θ ∈ X such that x+ θ = x for all x.

4. α(x+ y) = αx+ αy.

5. (α+ β)x = αx+ βx.

6. (αβ)x = α(βx).

7. 0 · x = θ, 1 · x = x.

Definition 10. A normed space is a vector space with a metric defined by a norm.

Basically, a norm on a vector space X is a real-valued function on X whose value at an x ∈ X
is denoted by ‖x‖ and which has the properties

a ‖x‖ ≥ 0.

b ‖x‖ = 0 if and only if x = 0.

c ‖αx‖ = |α|‖x‖.

d ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

A norm on X defines a metric d on X which is given by

d(x, y) = ‖x− y‖ (5)

and is called the metric induced by the norm. The normed space just defined is denoted by (X, ‖·‖)
or simply by X.

It is not difficult to conclude from the axioms of norm (a-d) that (5) does define a metric. Hence
normed spaces and Banach spaces are metric spaces. It is worth to point out a metric d induced
by a norm on a normed space X satisfies translation invariance, i.e, d(x + a, y + a) = d(x, y) and
d(αx, αy) = |α|d(x, y). Why we have to define a norm on a vector space is mainly because there is
a zero vector in vector space as a reference.

One might ask: can every metric on a vector space be obtained from a norm? The answer is
no.
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Example: (Sequence space s) This space consist of the set of all sequences (bounded or
unbounded) sequences of complex numbers and the metric d defined by

d(x, y) =
∞∑
j=1

1

2j
|ξj − ηj |

1 + |ξj − ηj |

where x = (ξj) and y = (ηj). One can verify this metric satisfies the axioms (I-IV). But this metric
cannot be obtained from a norm.

Definition 11. (Banach Space) A Banach space is a complete normed space (complete in the mtric
define by the norm).

We have given the definition of a normed space. It remains to present the definition of complete.

Definition 12. (Cauchy Sequence) A sequence (xn) in a metric space X = (X, d) is said to be
Cauchy if for every ε > 0 there is an N = N(ε) such that

d(xm, xn) < ε, for every m,n > N.

Definition 13. (Completeness) A space X is said to be complete if every Cauchy sequence in X
converges (that is, has a limit which is an element of X).

Example: (Complete and Incomplete Space)

1. Euclidean space Rn and unitary space Cn are complete.

2. (Sequence space l∞) The space of all bounded sequences of complex numbers equipped
with metric d(x, y) = supj |ξj − ηj | is complete.

3. (Space Q) This is the set of all rational numbers with the usual metric given by d(x, y) =
|x− y|. This space is not complete.

4. (Continuous functions C[a,b]) Let X be the set of all continuous real-value functions on
J = [0, 1], and let d(x, y) =

∫ 1
0 |x(t) − y(t)|dt. This metric space (X, d) is not complete.

However, if we define another metric

d̃ = sup
t∈J
|x(t)− yt|.

The metric space (X, d̃) is complete. The norm induced by d̃ is

‖x‖ = max
t∈J
|x(t)|.

Since (X, ‖ · ‖) is a vector space equipped with a norm and its complete, we say (X, ‖ · ‖) here
is a Banach space.

5. (Polynomials) Let X be the set of all polynomials considered as functions of t on some finite
closed interval J = [a, b] and define metric d on X by d(x, y) = maxt∈J |x(t) − y(t)|. This
metric space (X, d) is not complete. In fact, an example of a Cauchy sequence without limit
in X is given by any sequence of polynomials which converges uniformly on J to a continuous
function, not a polynomial.

With all the definitions, one may know that Banach space ⊂ Normed space ⊂Metric space
and Banach space ⊂ Normed space ⊂ Vector space. Some spaces presented in Fig. 1 like
Pre-Hilbert space, Hilbert space will be discussed in next lecture.
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3.3.2 Proof of CMT

Now, it remains to give a proof of CMT.

Theorem 5 (Contraction Mapping Theorem) If T is a contraction mapping on a closed subset S
of a Banach space, then

1. there is a unique x0 ∈ S satisfying x0 = T (x0).

2. x0 can be obtained by the method of successive approximation, starting from a vector in S,
x̄,

Xn+1 = T (xn).

{xn} converges to x0, the solution to the fixed point equation x0 = T (x0).

Proof. Select an arbitrary element x1 ∈ S. Generate a sequence {xn} by xn+1 = T (xn). Since T is
a contraction mapping, we have

‖xn+1 − xn‖ = ‖T (xn)− T (xn−1)‖ ≤ α‖xn − xn−1‖ ≤ ‖xn−1 − xn−2‖.

Therefore, we have

‖xp+n − xn‖ = ‖xn+p − xn+p−1 + xn+p−1 − xn+p−2 + · · ·+ xn+1 − xn‖
≤ ‖xn+p − xn+p−1‖+ ‖xn+p−1 − xn+p−2‖+ · · · · · · ‖xn+1 − xn‖
≤ (αn+p−2 + αn+p−3 + · · ·+ αn−1)‖x2 − x1‖

≤ (αn−1
∞∑
k=1

)‖x2 − x1‖

=
αn−1

1− α
‖x2 − x1‖

which shows that {xn} is Cauchy. Since S is a closed subset of a complete space; there exists an
element x0 ∈ S such that {xn} → x0.

Next, we have to show x0 = T (x0). Note that

‖x0 − T (x0)‖ = ‖x0 − xn + xn − T (x0)‖
≤ ‖x0 − xn‖+ ‖xn − T (x0)‖
= ‖x0 − xn‖+ ‖T (xn−1)− T (x0)‖
≤ ‖x0 − xn‖+ α‖xn−1 − x0‖.

Since we have shown that xn → x0, we can conclude ‖x0 − T (x0)‖ = 0, i.e., x0 = T (x0).

Now, it remains to show the uniqueness. Suppose x0 and y0 both satisfy the fixed point equation,
i.e, x0 = T (x0) and y0 = T (y0). We have

‖x0 − y0‖ = ‖T (x0)− T (y0)‖ ≤ α‖x0 − y0‖,

which implies ‖x0 − y0‖ = 0. By axioms of norm, ‖x0 − y0‖ = 0⇐⇒ x0 = y0.
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