
ECE-GY 9223 Reinforcement Learning Spring 2019

Lecture 3 — Feb. 15, 2019
Prof. Quanyan Zhu Scribe: Tongyu Zong

1 Overview
In the last lecture we talked about the fixed-point problem of J∗, contraction mapping theorem as well as
some concepts including linear vector space, norm, Cauchy sequence, complete space and Banach space.

In this lecture we continued to focus on classical projection theorem. At the beginning, we introduced some
definitions including pre-Hilbert space and Hilbert space. Then, we introduced in detail what projection
theorem means. We gave some examples to illustrate the application of projection theorem as well as its
extensions. Furthermore, we discussed about one of the methods for computations for MDPs: Value Iteration.
Next lecture will focus on Policy Iteration.

2 Classical Projection Theorem
2.1 Hilbert Space

• Pre-Hilbert Space:

A pre-Hilbert space is a linear vector space X together with an inner product defined on X x X
corresponding to each pair of vectors x, y ∈ X. The inner product (x|y) of x and y is a scalar,
satisfying

(x|y) = (y|x)

(x+ y|z) = (x|z) + (y|z)

(λx|y) = λ (x|y)

(x|x) ≥ 0 and (x|x) = 0 iff x = 0

Also, ‖x‖ =
√

(x|x) is a norm.

• Hilbert Space:

A complete pre-Hilbert space is called Hilbert Space.

µi (xi, x−i)

• Remark 1: In a pre- Hilbert Space, x, y ∈ X.

Def. x and y are orthogonal if (x|y) = 0, denoted as x⊥y.

If x⊥y, ‖x+ y‖2 = ‖x‖2 + ‖y‖2.
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2.2 The Classical Projection Theorem
Let H be a Hilbert Space and M is a closed subspace of H.

a) Corresponding to any vector x ∈ H, there is a unique vector m0 ∈M such that ‖x−m0‖ ≤ ‖x−m‖
for all m ∈M .

b) A necessary and sufficient condition that m0 ∈M be the unique minimizing vector is that (x−m0)⊥M .

The first conclusion needs that the space should be Hilbert and the second one only needs that
the space should be pre-Hilbert.

Furthermore, the graphic illustration to this theorem is as below:

• Proof

Let’s first prove b):

Necessity:

Let’s show that if m0 is a minimizing vector then x−m0 is orthogonal to M.

Suppose this is not true. Then there exists m ∈ M which is not orthogonal to x − m0 i.e.
(x−m0|m) = δ 6= 0. Without loss of generality, assume ‖m‖2 = 1.

Define m1 = m0 + δm. Then because m0 ∈M and δm ∈M , we have m1 ∈M .

∴ ‖x−m1‖2 = ‖x−m0 − δm‖2

= ‖x−m0‖2 + δ2 ‖m‖2 − (x−m0|δm)− (δm|x−m0)

= ‖x−m0‖2 + δ2 − δ2 − δ2 = ‖x−m0‖2 − |δ|2 < ‖x−m0‖2

=⇒ m1 ∈M is strictly better than m0.

∴ m0 is not a minimizing vector, which violates the assumption.

Therefore, there cannot exist a m ∈M that is not orthogonal to x−m0.

Sufficiency: If (x−m0)⊥M then m0 is a unique minimizing vector.

From the Pythagorean Theorem, ‖x−m‖2 = ‖x−m0 +m0 −m‖2 = ‖x−m0‖2 + ‖m0 −m‖2,
where m 6= m0. Therefore, ‖x−m‖2

> ‖x−m0‖2 for m 6= m0 =⇒ m0 is a unique minimizer.

Let’s first prove a):

We require Hilbert space’s completeness.
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If x ∈M then m0 = x.

If not, let δ = ‖x−m‖. We want to produce a m0 ∈M with ‖x−m0‖ = δ.

Let {mi} be a sequence of vectors in M such that ‖x−m0‖ → δ, which means that m → m0.
Now let’s prove {mi} is Cauchy.

Based on the equation 2 ‖a‖2 + 2 ‖b‖2 = ‖a+ b‖2 + ‖a− b‖2, just let a = mj − x and b = x−mi.
Then we have

2 ‖mj − x ‖2 + 2 ‖x−mi‖2 = ‖mj −mi‖2 + ‖mj +mi − 2x‖2

= ‖mj −mi‖2 + 4 ‖x− 0.5 (mj +mi)‖2

Due to the fact that mi,mj ∈ M , we can conclude 0.5 (mi +mj) ∈ M . Just let
‖x− 0.5 (mj +mi)‖ ≥ δ, then we have

‖mj −mi‖ ≤ 2 ‖mj − x ‖2 + 2 ‖x−mi‖2 − 4δ2

Because ‖x−mi‖ → δ and ‖x−mi‖ → δ as i, j →∞, we can conclude

‖mj −mi‖2 → 0 as i, j →∞

So {mi} is a Cauchy sequence.

Due to the fact that M is a closed subspace of a complete space, we have m0 ∈M . By continuity,
we can conclude ‖x−m0‖ = δ.

Example1: Approximation

Suppose y1, y2, . . . , yn are elements of a Hilbert Space H which generate a closed finite-dimension subspace
M. Given x ∈ H, find x̂ ∈M (x̂ =

∑
i αiyi) that minimizes ‖x− x̂‖.

For this problem, we can use projection theorem: x̂ is the orthogonal projection of x on M:

(x− x̂|yi) = 0 for i = 1, 2, . . . , n.

Therefore,

(y1|y1)α1 + (y2|y1)α1 + . . .+ (yn|y1)αn = (x|y1)

(y1|y2)α1 + (y2|y2)α1 + . . .+ (yn|y2)αn = (x|y2)

. . . . . .

(y1|yn)α1 + (y2|yn)α1 + . . .+ (yn|yn)αn = (x|yn)

In this way we turn this problem into matrix eqution:

Gα = b

in which the symmetric matrix G is called GRAM matrix of y1, y2, . . . , yn. To guarantee the non-singularity
of G, y1, y2, . . . , yn should be linearly independent.

• Theorem:

3



Let y1, y2, . . . , yn be linearly independent, then let δ be the minimal distance from a vector x to subspace M
generated by {yi}. Then we have:

δ = min

∥∥∥∥∥x−∑
i

αiyi

∥∥∥∥∥ = min ‖x− x̂‖

δ2 = g (y1, y2, . . . , yn, x)
g (y1, y2, . . . , yn)

in which g is the determination of the GRAM matrix.

Example2: Hilbert space of random variable:

Let L2 (Ω,F ;C [0, 1]) be space of all parameterized random variables, where F is σ-algebra and C [0, 1]
consists of all continuous functions in [0, 1]. Then X (t;ω) is a random process, for which t ∈ [0, 1] and ω ∈ Ω.
For every fixed time t, X (t; •) is a second-order random variable defined on (Ω,F ,R ) and X (• ;ω) is a
continuous function in C [0, 1].

Now define inner product:

(X,Z) = E
[∫ 1

0
X (t;ω)Z (t;ω)w (t)dt

]
in which w (t) > 0 and w (t) ∈ C [0, 1], which is a weighted factor.

Determine a stochastic process X̂ (t;ω) ∈ L2 (Ω,F ;C [0, 1]), minimizing the norm
∥∥∥X − X̂∥∥∥ and satisfying

E
[∫ 1

0 X̂ (t;ω)Ki (t) yi (ω)dt
]

= Ci, i = 1, 2, K1,K1 ∈ C [0, 1] and C1, C1 are constants. In this case, we can

know that X̂ should be related with K and Y. And we can use projection theorem to find the random process
in a Hilbert space.

Extension of classical projection theorem:

Let x be a vector in Hilbert space H and K be a closed convex subset of H. Then,

a) There’s a unique vector k0 ∈ K such that ‖x− k0‖ ≤ ‖x− k‖ for all k ∈ K.

b) The necessary and sufficient condition that k0 ∈ K be the minimizing vector is (x− k0|k − k0) ≤ 0 for
all k ∈ K.

Example3: Least-square estimation:

Suppose y is an m x 1 vector and W is an m x n matrix with linearly independent columns. Then, there is a
unique minimizer β∗ which minimizes:

min ‖y −Wβ‖

This problem is similar to Example 1. Let W = (w1,w2, . . . ,wn). Then ŷ = Wβ =
∑
i βiwi. Using

projection theorem, the solution β∗ should satisfy the orthogonality:

(y − ŷ|wi) = 0 for i = 1, 2, . . . , n.

We can obtain

WTWβ∗ = WT y

Finally,
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β∗ =
(
WTW

)−1
WT y

• Extension:

Let y1, y2 be given vectors, X1, X2 be given matrices, and X1
TX1 be positive definite.

Problem 1: ϕ1 = argmin ‖y1 −X1r‖2

Problem 2: ϕ2 = argmin‖y1 −X1r‖2 + ‖y2 −X2r‖2

Let’s begin:

Problem 1:let f (r) = ‖y1 −X1r‖2 = y1
T y1 − rTX1

T y1 − y1
TX1r + rTX1

TX1r.
∂f
∂r = −2X1

T y1 + 2X1
TX1r = 0, (FOC)

r∗ = ϕ1 =
(
X1

TX1
)−1

X1
T y1

Let ϕ0 be any given initial condition, then we rewrite ϕ1 as below to construct a recursion:

ϕ1 = ϕ0 +
(
X1

TX1
)−1

X1
T (y1 −X1 ϕ0)

Then we can prove that ϕ2 can also be written in this form using ϕ1, X2, y2.

Problem 2: The second problem is also a convex problem, we can get the result by first-order
condition as well:

ϕ2 =
(
X1

TX1 +X2
TX2

)−1 (
X1

T y1 +X2
T y2
)

=
(
X1

TX1 +X2
TX2

)−1 (
X1

TX1ϕ1 +X2
TX2ϕ1 −X2

TX2ϕ1 +X2
T y2
)

=
(
X1

TX1 +X2
TX2

)−1 ((
X1

TX1 +X2
TX2

)
ϕ1 +X2

T (y2 −X2ϕ1)
)

= ϕ1 +
(
X1

TX1 +X2
TX2

)−1
X2

T (y2 −X2ϕ1)

Therefore, ϕ2 can also be written in the same form as ϕ1. In this way, we construct a recursion
process for the problems.

Example4: Kalman Filtering: Assume that X1
TX1 is positive definite.

ϕi = argmin

i∑
j=1

λi−j ‖yj −Xjr‖2
, i = 1, 2, . . . ,m

ϕi = ϕi−1 +Hi
−1Xi

T (yi −Xiϕi−1)

Hi = λHi−1 +Xi
TXi, i = 1, 2, . . . ,m

H0 = 0

Extended Kalman Filtering: generalize‖yj −Xjr‖2 as some ‖gj (r)‖2.
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3 Computations for MDPs (Discounted Infinite-Horizon Problem)
3.1 Value Iteration (VI)
T is a contraction mapping, we can use iteration methods:

Ĵk+1 = T
(
Ĵk

)
with a Ĵ0

By contraction mapping theorem,

Ĵk → J∗, asymptotically

1. VI convergence can be slow.

2. When it iterates for k steps, we need to evaluate how close the solution is.

Measure
∥∥∥Ĵk − J∗∥∥∥

∞
:

∥∥∥Ĵk − J∗∥∥∥
∞

=
∥∥∥T (Ĵk−1

)
− T (J∗)

∥∥∥
∞
≤ α

∥∥∥Ĵk−1 − J∗
∥∥∥
∞
≤ αk

∥∥∥Ĵ0 − J∗
∥∥∥
∞

However, we don’t know J∗, but we know:

∥∥∥Ĵk+1 − Ĵk
∥∥∥
∞
≤ α

∥∥∥Ĵk − Ĵk−1

∥∥∥
∞
≤ αk

∥∥∥Ĵ1 − Ĵ0

∥∥∥
∞

Therefore,

∥∥∥Ĵk − J∗∥∥∥
∞
≤
∥∥∥Ĵk − Ĵk+1

∥∥∥
∞

+
∥∥∥Ĵk+1 − Ĵk+2

∥∥∥
∞

+ . . .+
∥∥∥Ĵk+l−1 − Ĵk+l

∥∥∥
∞

+
∥∥∥Ĵk+l − J∗

∥∥∥
∞

≤ αk
∥∥∥Ĵ1 − Ĵ0

∥∥∥
∞

+ αk+1
∥∥∥Ĵ1 − Ĵ0

∥∥∥
∞

+ . . .+ αk+l−1
∥∥∥Ĵ1 − Ĵ0

∥∥∥
∞

+
∥∥∥Ĵk+l − J∗

∥∥∥
∞

≤ αk

1− α

∥∥∥Ĵ1 − Ĵ0

∥∥∥
∞

+
∥∥∥Ĵk+l − J∗

∥∥∥
∞

Let l→∞, then Ĵk+l → J∗. Therefore,

∥∥∥Ĵk − J∗∥∥∥
∞
≤ αk

1− α

∥∥∥Ĵ1 − Ĵ0

∥∥∥
∞

3. How about the policy µk?

µk (i) is a solution to

(
T Ĵk

)
(i) = min

∑
j

Pij (u)
(
g (i, u, j) + αĴk (j)

)
We also know that

(
TµĴk

)
(i) =

∑
j

Pij (µ (i))
(
g (i, µ (i) , j) + αĴk (j)

)
So if µ = µk, then
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(
Tµk

Ĵk

)
(i) =

∑
j

Pij (µk (i))
(
g (i, µk (i) , j) + αĴk (j)

)
=
(
T Ĵk

)
(i) = Ĵk+l (i)

for any i.

Let’s consider how to evaluate µk:

We know that Jµk
is the solution of the fixed-point problem x = T (x), i.e.

Jµk
= Tµk

Jµk

Now evaluate Jµk
by ‖Jµk

− J∗‖∞:

‖Jµk
− J∗‖∞ ≤

∥∥∥Jµk
− Ĵk

∥∥∥
∞

+
∥∥∥Ĵk − J∗∥∥∥

∞

Let A =
∥∥∥Jµk

− Ĵk
∥∥∥
∞

and B =
∥∥∥Ĵk − J∗∥∥∥

∞
.

Part A:

∥∥∥Jµk
− Ĵk

∥∥∥
∞

=
∥∥∥Jµk

− Tµk

(
Ĵk

)
+ Tµk

(
Ĵk

)
− Ĵ

k

∥∥∥
∞

≤
∥∥∥Tµk

(Jµk
)− Tµk

(
Ĵk

)∥∥∥
∞

+
∥∥∥Tµk

(
Ĵk

)
− Ĵ

k

∥∥∥
∞
≤ α

∥∥∥Jµk
− Ĵk

∥∥∥
∞

+
∥∥∥Tµk

(
Ĵk

)
− Ĵ

k

∥∥∥
∞

Therefore,

∥∥∥Jµk
− Ĵk

∥∥∥
∞
≤ 1

1− α

∥∥∥Tµk

(
Ĵk

)
− Ĵ

k

∥∥∥
∞

= 1
1− α

∥∥∥T (Ĵk)− Ĵ
k

∥∥∥
∞

Part B:

∥∥∥Ĵk − J∗∥∥∥
∞
≤
∥∥∥Ĵk − T (Ĵk)∥∥∥

∞
+
∥∥∥T (Ĵk)− J∗∥∥∥

∞

≤
∥∥∥Ĵk − T (Ĵk)∥∥∥

∞
+
∥∥∥T (Ĵk)− T (J∗)

∥∥∥
∞

≤
∥∥∥Ĵk − T (Ĵk)∥∥∥

∞
+ α

∥∥∥Ĵk − J∗∥∥∥
∞

Therefore,

∥∥∥Ĵk − J∗∥∥∥
∞
≤ 1

1− α

∥∥∥T (Ĵk)− Ĵ
k

∥∥∥
∞

According to Part A and Part B, we can obtain:

‖Jµk
− J∗‖∞ ≤

2
1− α

∥∥∥T (Ĵk)− Ĵ
k

∥∥∥
∞

= 2
1− α

∥∥∥Ĵk+1 − Ĵk
∥∥∥
∞
≤ 2αk

1− α

∥∥∥Ĵ1 − Ĵ0

∥∥∥
∞

Using this inequation, we can obtain the “distance” between Jµk
and J∗ as the evaluation of the policy µk.

7



References
[1] D G. Luenberger, “Optimization by vector space methods”, John Wiley & Sons, pp. 46-102, 1997.

[2] D P. Bertsekas, J N. Tsitsiklis, “Neuro-dynamic programming”, Belmont, MA: Athena Scientific, pp.
11-28, 1996.

8


	1 Overview
	2 Classical Projection Theorem
	2.1 Hilbert Space
	2.2 The Classical Projection Theorem

	3 Computations for MDPs (Discounted Infinite-Horizon Problem)
	3.1 Value Iteration (VI)

	References

