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1 Overview

In the last lecture we first talked about the Lyapunov criteria for dynamic systems which
included two important theories: first is Lyapunov global asymptotic stability theorem and
the second is Lasalle’s theorem. Then we talked about Q-learning and Q-learning with value
iteration and simulation. Finally, we talked about approximate Q-learning in value iteration.

In this lecture we are continue talking about approximate Q-learning in policy iteration and
give some proof about feasible of the algorithm. In the end, we talked about some basic concept
about Temporal Difference.

2 Approximate Q-learning

2.1 Recall Q-learning

According to the previous lectures, regarding a Markov decision process, we define a value function
as following:

= min, pr g(i,u, j) + aJ(j)]

Define an operator to describe this operation of value function:

TJ)(i) = ; ) +ad(j
( it Zpg 9(i,u, §) + aJ(5)]

We get the Q-function here as:
w) =Y pij(w)lg(i,u, ) + ad (5)]
j=1

Where J(j) = min,cp(j) Q(j,u). To solve this Q-learning problem, we are commonly use two
methods: first is value iteration and the other is policy iteration. Here, we talked about the value
iteration first.



2.1.1 Value Iteration

For the bellman equation, we use the value iteration and we can get:

Q" (iw) = (1= NQ* (@ u) + A piy(w)(9(iyw,d) + min Q(j,v))]
Jj=1

~ (1—X)Q"(i,u) + Mg(i,u,j) + min Q"(j,v))
veU(j)

Where j is the state after sampling. So for the approximate Q-learning in value iteration. We are
evaluate with the approximate Q-function Q(i,u,r) and we look for r and update 7.

2.1.2 Policy Iteration

The main idea of policy iteration is evaluate the policy through the Q function and update the
policy by choosing the policy which get the minimum Q value, which is :

FEwvaluate the policy Mk through QF
k+1 (Z)

Update the policy p : € argmin Q¥ (i, u)
u

Iterate the instructions until finding the optimal policy p*

2.2 Approximate Q-learning in policy iteration

As in value iteration, we approximate a Q-function as following:

K
Q(Zv u, T) = Z d)k‘(z? U)T’k
k=1
=¢'r=r"¢

Where K is the number of basis functions.

We are going to find the Q which best approximate the Q-function. So we can define a function
which describe the difference between the approximate Q-function and the real Q-function and find
the minimum of that function:

min 5 3 w(i,0) 6766 w) - QG w)?
(i,u)

w(i,u) are weights. It can also be written as vector form:
N 2
min 276~ QI 1)
s
For a Markov decision process

(THQ) (i, u) = E(g(i, u, j) + aQ(j,v))



Jj is the next state and v is the action generated by u(j)
We have:

Qr+1=T"(Qr) (2)

Using rf¢ to approximate each )i. Define a function to describe the difference of the real Q-
function to the approximate Q-function:

1 1
c(r; Q1) = §||TT¢ — QI3 ore1 = arg min §||TT¢ — Q%4
To find the minimum difference, we need to calculate:

ATC(T; Qk+1) =0

The total gradient is
Z U}(Z, u)(rT¢(i7 u) - Qk+1 (/Lv U))(;S(’L, U) =0
(4,u)

> w(i,u) (¢ (i, w) = Elg(in, i, 5) + aQu(f, v)])¢(i, u) = 0
(4,u)

> wli;u) ("¢ (i,u) — Elg(in, s §) + arf o (j, o)) (i, u) =
(i,u)

So, we can get the rgiq

That = 1 — e, (T D (i, ) — E(g(in, ur, ) + orf (4, v)) ¢ ik, ur)) (3)

With Robins-Monro algorithm

Phat = T — €i(rf @ (in, ) — glin, . 3) — oy $(3,9)) (i, ug) (4)

j is the sampled by the Robins-Monro algorithm and @ is generated by the policy, & = u(j) and

(i, uk) — g(i, uk, j) — ar%qﬁ(},f}) is so called Temporal Difference. Consider a projection
operatorP(z), equation 1 can be written as

1A
min §HQ - ZH%Q

Where
Q=10"¢
Qi1 = P(Tu(Qr)) = (P-T)Qx

7 is the weights w(i, u)

Claim: P -T), is a contraction with respect to HQ — 2||x,2 We separate into two step to prove the
claim, first is to prove that the projection P is nonexpansive, which means HP(Ql) — P(QAQ)HW’Q <
1Q1 — QQ“ﬂ72, and the second is prove that 7}, is contraction. Proof P is nonexpansive:

From the optimality condition for convex optimization problem,

< P(Q1) — Q1,Q1 — P(Q1) >x>0 VQ € R and Q;

Then we have

~ ~ A~ A~

< P(Q1) — Q1,P(Q2) — P(Q1) >»>0 (5)



P(Q2) — Q2,P(Q1) — P(Q2) >»>0 (6)

Add equation 5 and 6

< P(Q1) — Q1+ Q2 — P(Q2),P(Q2) — P(Q1) >»>0

< P(Q1 = P(Q2), P(Q2) — P(Q1) >x + < Q2 — Q1, P(Q2) — P(Q1) >=

- HP(QAl - P(QQ)H%,Z—F < QQ - leP(QQ) - P(Ql) >n
According to Cauchy-Schwarz inequality

< Q2= Q1, P(Q2) — P(Q1) >pi> |[P(Q1 — P(Qo)I3

We can get

1Q2 — Q1llx2l P(Q2) — P(G1) Q1, P(Q2) — P(Qy) >

Done.

Proof T}, is contraction
1T(Q1) - Tu(@2) |25 = IIQZPw (Q1(4,v) — Q2(4,v)) I3 (7)

= HaP (01— 02)117 (8)

Where u is generated by u = u(i), v is generated by v = u(j), P is transition matrix.
According to Jensen’s inequality, which is for convex function f(x), we have E(f(z)) > f(E(z)), so
equation 8 can be written as

IT0(Q1) - Tu(@2)I2 2 =a > m(Y" Py(Quy — Q2,))’
i J
<a Z i Z Pij(Q1j — Q2,)*
i J
—a ) (Q1;—Qa;)* Y miPi
j 7

=a[|Q1 = Q:ll7

T), is contraction
So that P - T is a contraction mapping.
Now go back to approximate Q-learning algorithm. From equation 4, make some simplicity

P(i, uk) = ik, p(ix))

ODE Approach

i =—f(r)
f(r) =E(x"o(i) - g(z‘ j) - arT¢<j>>¢><'> 9)
= Zﬂﬁb(l) ZPm(g )+ arT¢(4))) (10)



Where

ro(1)
~T,
r’p(1)
= T, (®r)(i)
So that
flr) = chzS(i)(rch(Z) — Tu(®r)(4))
Where
o1(1)  ¢2(1) én(1) o7 (1)
T
o | ¢ :(2)
a(ls) &8 . enlsh) ], LoT0SD
Where s = | S| is the number of states. Define:
S (Ur
Br — ) (:2)1'
T (IShr |,
m
D = diag(m) = "

s
So that the Equation 10 can be written as

f(r) = o' Ddr — T DT (dr)

Let f*(r)=0
T Dor — ®TDT(Pr) =0

Which is
r* = (T D®) 1T DT (dr*)
=P -T(Pr")
We can get the same conclusion with

1
min — ||dr — xH?r 9
r 2 )

1
= min 5(@1‘ —2)TD(®r — )
T
First Order Condition = r =(®7 D®)1®T Dz

5



r* is unique due to Contraction Mapping Theorem

r=—f(r)
=—f(r)+ f(r")
= —o"Ddr + o7 DT(®r) + &7 DOr* — & DT (dr*)
= —0TDd(r — r*) + T D(T(®r) — T(Pr*))

To proof the convergence, using Lyapunov method. First construct a Lyapunov function as follow:

1 * *
Vzi(r—r)T(r—r)

Take the derivative of the Lyapunov function
V=—r-r)T0"Do(r —r*)+ (r — r*)®T D(T(®r) — T(Or*))
< o — )22 + |0 — 1) |lx 2| T(Pr) — T(Sr")|r2
< —(1-a)[@(r - )|

V <0and V =0 if and only if r = r* so that it will converge to r*.

There are following three remarks:
Remark 1:
Q-value here is so called Actor-Critique We choose policy from

w(i) = argmin Qg (i, u) < Actor
u

Remark 2:
From equation 4, Temporal Difference is defined as follow:

i1 = T — €k (rE ik, ur) — g(in, u, §) — ari ¢(5,0)) d(ik, ug)

Define

Sk = 1L @i, ur) — glig, ug, j) — arf ¢(j, )

So equation 4 can be written as:

Tht1 = Tk — €50k (g, Uk)

Where ¢, is Temporal Difference Remark 3:
Extension to TD(A)

2= MNo(irt)
t=0

3 Temporal Difference

Consider a Bellman equation
Jt=1,J"



Using Monte Carlo sampling

JH = g(io,i1) + ag(iy,io) + a’g(ia, i3) + ...

Which
TS
i)~ e D eliom)
So that
Im+1(1) = T (@) + ym(c(i,m) — I (i) m=1,2,... (16)
Where v, = % From equation 16 we can get
Imt1(in) = T (i) + Y (1) (9 (ks ies1) + g (inr, inr2) + 0 gling2, ikss) + - — Jm(i))

After Filtering
= Jm (i) + (9K, irt1) + @i (ie1) — I (i) + g1, irr2) + & Tn (i + 2)
— admin) 40

Like g(ig,ik+1) + @Jm(ikt1) — Jm(7) is so called Temporal Difference
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