
ECE-GY 9223 Reinforcement Learning Spring 2019

Lecture 7 — April 12, 2019

Prof. Quanyan Zhu Scribe: Zijie Xia

1 Overview

In the last lecture we first talked about the Lyapunov criteria for dynamic systems which
included two important theories: first is Lyapunov global asymptotic stability theorem and
the second is Lasalle’s theorem. Then we talked about Q-learning and Q-learning with value
iteration and simulation. Finally, we talked about approximate Q-learning in value iteration.

In this lecture we are continue talking about approximate Q-learning in policy iteration and
give some proof about feasible of the algorithm. In the end, we talked about some basic concept
about Temporal Difference.

2 Approximate Q-learning

2.1 Recall Q-learning

According to the previous lectures, regarding a Markov decision process, we define a value function
as following:

J(i) = min
u∈U(i)

n∑
j=1

pij(u)[g(i, u, j) + αJ(j)]

Define an operator to describe this operation of value function:

(TJ)(i) := min
u∈U(i)

n∑
j=1

pij(u)[g(i, u, j) + αJ(j)]

We get the Q-function here as:

Q(i, u) =
n∑
j=1

pij(u)[g(i, u, j) + αJ(j)]

Where J(j) = minu∈U(j)Q(j, u). To solve this Q-learning problem, we are commonly use two
methods: first is value iteration and the other is policy iteration. Here, we talked about the value
iteration first.

1

2.1.1 Value Iteration

For the bellman equation, we use the value iteration and we can get:

Qk+1(i, u) = (1− λ)Qk(i, u) + λ[
n∑
j=1

pij(u)(g(i, u, j) + min
v∈U(j)

Qk(j, v))]

≈ (1− λ)Qk(i, u) + λ(g(i, u, j̄) + min
v∈U(j̄)

Qk(j̄, v))

Where j̄ is the state after sampling. So for the approximate Q-learning in value iteration. We are
evaluate with the approximate Q-function Q̃(i, u, r) and we look for r and update r.

2.1.2 Policy Iteration

The main idea of policy iteration is evaluate the policy through the Q function and update the
policy by choosing the policy which get the minimum Q value, which is :

Evaluate the policy µk through Qk

Update the policy µ : µk+1(i) ∈ argmin
u
Qk(i, u)

Iterate the instructions until finding the optimal policy µ∗

2.2 Approximate Q-learning in policy iteration

As in value iteration, we approximate a Q-function as following:

Q̃(i, u, r) =
K∑
k=1

φk(i, u)rk

= φT r = rTφ

Where K is the number of basis functions.
We are going to find the Q̃ which best approximate the Q-function. So we can define a function
which describe the difference between the approximate Q-function and the real Q-function and find
the minimum of that function:

min
r

1

2

∑
(i,u)

w(i, u)(rTφ(i, u)−Q(i, u))2

w(i, u) are weights. It can also be written as vector form:

min
r

1

2
‖rTφ−Q‖2w,2 (1)

For a Markov decision process

(TµQ)(i, u) = E(g(i, u, j) + αQ(j, v))

2

j is the next state and v is the action generated by µ(j)
We have:

Qk+1 = Tµ(Qk) (2)

Using rTk φ to approximate each Qk. Define a function to describe the difference of the real Q-
function to the approximate Q-function:

c(r;Qk+1) =
1

2
‖rTφ−Q‖2w,2rk+1 = argmin

r

1

2
‖rTφ−Q‖2w,2

To find the minimum difference, we need to calculate:

∆rc(r;Qk+1) = 0

The total gradient is ∑
(i,u)

w(i, u)(rTφ(i, u)−Qk+1(i, u))φ(i, u) = 0

∑
(i,u)

w(i, u)(rTφ(i, u)− E[g(ik, µk, j) + αQk(j, v)])φ(i, u) = 0

∑
(i,u)

w(i, u)(rTφ(i, u)− E[g(ik, µk, j) + αrTk φ(j, v)])φ(i, u) = 0

So, we can get the rk+1

rk+1 = rk − εk(rTk φ(ik, uk)− E(g(ik, uk, j) + αrTk φ(j, v))φ(ik, uk)) (3)

With Robins-Monro algorithm

rk+1 = rk − εk(rTk φ(ik, uk)− g(ik, uk, j̃)− αrTk φ(j̃, ṽ))φ(ik, uk) (4)

j̃ is the sampled by the Robins-Monro algorithm and ṽ is generated by the policy, ṽ = µ(j̃) and
rTk φ(ik, uk) − g(ik, uk, j̃) − αrTk φ(j̃, ṽ) is so called Temporal Difference. Consider a projection
operatorP (z), equation 1 can be written as

min
1

2
‖Q̂− z‖2π,2

Where
Q̂ = θTφ

Q̂k+1 = P (Tµ(Q̂k)) = (P · T)Q̂k

π is the weights w(i, u)
Claim: P · Tµ is a contraction with respect to ‖Q̂ − z‖π,2 We separate into two step to prove the
claim, first is to prove that the projection P is nonexpansive, which means ‖P (Q̂1)− P (Q̂2)‖π,2 ≤
‖Q̂1 − Q̂2‖π,2, and the second is prove that Tµ is contraction. Proof P is nonexpansive:
From the optimality condition for convex optimization problem,

< P (Q̂1)− Q̂1, Q1 − P (Q̂1) >π≥ 0 ∀Q1 ∈ R and Q̂1

Then we have
< P (Q̂1)− Q̂1, P (Q̂2)− P (Q̂1) >π≥ 0 (5)

3

< P (Q̂2)− Q̂2, P (Q̂1)− P (Q̂2) >π≥ 0 (6)

Add equation 5 and 6

< P (Q̂1)− Q̂1 + Q̂2 − P (Q̂2), P (Q̂2)− P (Q̂1) >π≥ 0

< P (Q̂1 − P (Q̂2), P (Q̂2)− P (Q̂1) >π + < Q̂2 − Q̂1, P (Q̂2)− P (Q̂1) >π

− ‖P (Q̂1 − P (Q̂2)‖2π,2+ < Q̂2 − Q̂1, P (Q̂2)− P (Q̂1) >π

According to Cauchy-Schwarz inequality

< Q̂2 − Q̂1, P (Q̂2)− P (Q̂1) >pi≥ ‖P (Q̂1 − P (Q̂2)‖2π,2

We can get

‖Q̂2 − Q̂1‖π,2‖P (Q̂2)− P (Q̂1)‖π,2 ≥ < Q̂2 − Q̂1, P (Q̂2)− P (Q̂1) >π

Done.

Proof Tµ is contraction

‖Tµ(Q1) · Tµ(Q2)‖2π,2 = ‖α
∑
j

Pij(u)(Q1(j, v)−Q2(j, v))‖2π,2 (7)

= ‖αP (θ1 − θ2)‖2π,2 (8)

Where u is generated by u = µ(i), v is generated by v = µ(j), P is transition matrix.
According to Jensen’s inequality, which is for convex function f(x), we have E(f(x)) ≥ f(E(x)), so
equation 8 can be written as

‖Tµ(Q1) · Tµ(Q2)‖2π,2 =α
∑
i

πi(
∑
j

Pij(Q1,j −Q2,j))
2

≤α
∑
i

πi
∑
j

Pij(Q1,j −Q2,j)
2

=α
∑
j

(Q1,j −Q2,j)
2
∑
i

πiPi,j

=α‖Q1 −Q2‖2π,2

Tµ is contraction
So that P · T is a contraction mapping.
Now go back to approximate Q-learning algorithm. From equation 4, make some simplicity

φ(ik, uk) = φ(ik, µ(ik))

= φ(ik)

g(ik, uk, j̃) = g(ik, j̃)

ODE Approach
ṙ = −f(r)

f(r) = E(rTφ(i)− g(i, j)− αrTφ(j))φ(i) (9)

=
∑
i

πiφ(i)(rTφ(i)−
∑
j

Pij(g(i, j) + αrTφ(j))) (10)

4

Where ∑
j

Pij(g(i, j) + αrTφ(j)) = Tµ(rTφ(j))

= Tµ


rTφ(1)
·
·
·

rTφ(1)


= Tµ(Φr)(i)

So that

f(r) =
∑
i

πiφ(i)(rTφ(i)− Tµ(Φr)(i)) (11)

Where

Φ =


φ1(1) φ2(1) . . . φn(1)
·
·
·

φ1(|S|) φ2(|S|) . . . φn(|S|)


s×n

=


φT (1)
φT (2)

...
φT (|S|)

 (12)

Where s = |S| is the number of states. Define:

Φr =


φT (1)r
φT (2)r

...
φT (|S|)r


s×1

(13)

D = diag(π) =


π1

π2

. . .

π|S|

 (14)

So that the Equation 10 can be written as

f(r) = ΦTDΦr− ΦTDT (Φr) (15)

Let f∗(r) = 0
ΦTDΦr− ΦTDT (Φr) = 0

Which is

r∗ = (ΦTDΦ)−1ΦTDT (Φr∗)

= P · T (Φr∗)

We can get the same conclusion with

min
r

1

2
‖Φr− x‖2π,2

= min
r

1

2
(Φr− x)TD(Φr− x)

First Order Condition⇒ r =(ΦTDΦ)−1ΦTDx

5

r∗ is unique due to Contraction Mapping Theorem

ṙ = −f(r)

= −f(r) + f(r∗)

= −ΦTDΦr + ΦTDT (Φr) + ΦTDΦr∗ − ΦTDT (Φr∗)

= −ΦTDΦ(r− r∗) + ΦTD(T (Φr)− T (Φr∗))

To proof the convergence, using Lyapunov method. First construct a Lyapunov function as follow:

V =
1

2
(r− r∗)T (r− r∗)

Take the derivative of the Lyapunov function

V̇ = −(r− r∗)TΦTDΦ(r− r∗) + (r− r∗)ΦTD(T (Φr)− T (Φr∗))

≤ −‖Φ(r− r∗)‖2π,2 + ‖Φ(r− r∗)‖π,2‖T (Φr)− T (Φr∗)‖π,2
≤ −(1− α)‖Φ(r− r∗)‖2

V̇ ≤ 0 and V̇ = 0 if and only if r = r∗ so that it will converge to r∗.

There are following three remarks:
Remark 1:
Q-value here is so called Actor-Critique We choose policy from

µ(i) = argmin
u
Qk(i, u)← Actor

Remark 2:
From equation 4, Temporal Difference is defined as follow:

rk+1 = rk − εk(rTk φ(ik, uk)− g(ik, uk, j̃)− αrTk φ(j̃, ṽ))φ(ik, uk)

Define
δk := rTk φ(ik, uk)− g(ik, uk, j̃)− αrTk φ(j̃, ṽ)

So equation 4 can be written as:

rk+1 = rk − εkδkφ(ik, uk)

Where δk is Temporal Difference Remark 3:
Extension to TD(λ)

zk =
n∑
t=0

λkφ(ik, t)

3 Temporal Difference

Consider a Bellman equation
Jµ = TµJ

µ

6

Using Monte Carlo sampling

Jµ = g(i0, i1) + αg(i1, i2) + α2g(i2, i3) + . . .

Which

Jµ(i0) ≈ 1

K

K∑
m=1

c(i,m)

So that
Jm+1(i) = Jm(i) + γm(c(i,m)− Jm(i)) m = 1, 2, . . . (16)

Where γm = 1
m From equation 16 we can get

Jm+1(ik) = Jm(ik) + γm(ik)(g(ik, ik+1) + αg(ik+1, ik+2) + α2g(ik+2, ik+3) + · · · − Jm(i))

After F iltering

= Jm(ik) + γ(g(ik, ik+1) + αJm(ik+1)− Jm(i) + αg(ik+1, ik+2) + α2Jm(ik + 2)

− αJm(ik+1) + . . .)

Like g(ik, ik+1) + αJm(ik+1)− Jm(i) is so called Temporal Difference

References

[1] Borkar, Vivek S. Stochastic approximation: a dynamical systems viewpoint. Vol. 48. Springer,
2009.

7

