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Introduction

• Cyber defense needs to be proactive and adaptive to changing 
environment.

• There is need for scientific and engineering foundations for 
online learning for adaptive proactive defense.
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• Moving target defense: Baseline learning algorithms

• Proactive defense against APT: learning of dynamic games 

with incomplete information

• Attacker engagement problem: reinforcement learning

• Security of reinforcement learning: deceptive RL



https://arxiv.org/abs/1808.08066



https://arxiv.org/abs/1903.01442
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Abstraction

• The system has three vulnerabilities: v1,1 , v1,2 , v1,3 at stage 1.
• The system is configured to c1,1, which exhibits vulnerabilities v1,1 , v1,2.
• The attack surface of the configuration is the set of vulnerabilities {v1,1 , v1,2}.
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Abstraction

• The system has three vulnerabilities: v1,1 , v1,2 , v1,3 at stage 1.
• The system is configured to c1,2, which exhibits vulnerabilities v1,2 , v1,3.
• The attack surface of the configuration is the set of vulnerabilities {v1,2 , v1,3}.
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Complete Information Game-Theoretic Model

• f and g are mixed strategies. Mixed strategies are randomizing strategies.  
• Nash equilibrium to the zero-sum game exists, and yields the worst-case  

defense strategy.
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Not Sufficient Yet!

• f and g are mixed strategies. Mixed strategies are randomizing strategies.  
• Nash equilibrium to the zero-sum game exists, and yields the worst-case  

defense strategy.
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• μt
S and μt

A are learning rates.
• Averaging over observed payoffs.

Observed payoff of a chosen action

Estimated average payoff of a chosen action

Risk Learning

r̂Sl,t

rl,t



Relative entropy: Distance 
between two distributions

Average risk to be minimized

Cost on changing the strategy (usability)

r̂Sl,tfl,t+1

Update Moving 
Target Defense



Relative entropy: Distance 
between two distributions

Average risk to be minimized

Cost on changing the strategy (usability)

• High risk à low probability
• High ε à Costly to change à fl,h,t

(Lower rationality)
• Low ε à Less costly to change  

(High Rationality)



Risk LearningShift Attack 
Surface

r̂Sl,t

System

rl,t

fl,t+1

Update Moving 
Target Defense

A Feedback System Model



Mathematical Analysis of the Feedback System

• Use stochastic approximation to show the convergence to an ordinary 
differential equation (ODE).

• Use ODE to show the convergence of the coupled dynamics to the equilibrium
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Game-Theoretic Model Revisited

• f and g are mixed strategies. Mixed strategies are randomizing strategies.  
• Nash equilibrium to the zero-sum game exists, and yields the worst-case  

defense strategy.



Boltzmann Learning

Soft-max function



Replicator Dynamics



Boltzmann Learning vs. Replicator Dynamics

Robust yet inefficient Fragile yet efficient



Heterogeneous and Hybrid Learning

• Heterogeneous learning: Different players adopt 
different learning schemes.

• Hybrid learning: Players adopt different learning
schemes at different times.

Q. Zhu, H. Tembine and T. Basar, “Hybrid learning in stochastic games and its application in 
network security,” In F. L. Lewis and D. Liu (Eds.), Reinforcement Learning and Approximate 
Dynamic Programming for Feedback Control, IEEE Press Computational Intelligence Series, 2012. 



Mixed Strategies
Boltzmann Learning

Average Payoffs
Boltzmann Learning



Mixed Strategies
Boltzmann with Replicator

Average Payoffs
Boltzmann with Replicator



Proactive Defense Against Advanced Persistent Threat

• Targeted attack: reconnaissance

• Persistent: firm and patient

• Advanced: technically and strategically

• Stealthy

• Deceptive

Cyber DeceptionAPT features



Multi-Stage Game Framework

Proactive defense:  active response prior to the attack

Cross-layer Defense Online learning 

Observable 
History



Multi-Stage Co-Learning



Sense: Observe 
Behaviors

Act: 
Optimize 
Strategy

Multi-Stage 
System

Estimate:

Update Beliefs



Attacker Engagement in Honeypot



• Use a honeynet to emulate a production system.
• Interact with rather than directly eject attackers.
• Quickly attract attackers to target honeypots and engage them for a 

desired time.
• Grant attackers proper degree of freedom to avoid the escape risk and the 

identification risk.



Abstraction: Semi-Markov Decision Process
Clients

Server
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Red: eject the attacker

Blue: pure recording of attacker’s activity

Purple: low-interaction with the attacker

Green: high-interaction with the attacker

• State at time t : 𝑠" ∈ 𝑆

• Defender’s action at state s: 𝑎 ∈ 𝐴 𝑠

• Transition probability: 𝑝 𝑠"() 𝑠", 𝑎

• Sojourn time distribution 𝑞(𝑡|𝑠", 𝑠"(), 𝑎)



Attacker’s Footprint

• Treat transition kernel and sojourn distribution as threat intelligence.
• Characterize the escape risk and the identification risk.



Semi-Markov Decision Process and Learning
• 𝑇1 is the time of the 𝑘"3 transition, which is a random 

variable.

• Defender receives a reward 𝑟 at time τ, 𝑇1 ≤ 𝜏 ≤ 𝑇1() if 
the next state is s’ and the duration time at current s, a is 
𝑇1() − 𝑇1. 



Q-Learning for SMDP 
• Defender’s stationary policy:π: 𝑆 → 𝐴 𝑠

• DP representation

𝑣 𝑠 = max
A
B
CD

𝑝(𝑠D|𝑠, 𝑎)(𝑟E 𝑠, 𝑎, 𝑠D + G𝑞 𝑠, 𝑎, 𝑠D 𝑣(𝑠′))

• Q-Learning: sampled state �̅� and the duration time 𝜏

𝑄1() 𝑠, 𝑎 = (1 − 𝛼1)𝑄1 𝑠, 𝑎 + 𝛼1(𝑟)(𝑠, 𝑎, �̅�) +
)MNOPQ RS C,A, ̅C

E
+

𝑒MEU max
AD

𝑄1 �̅�, 𝑎′ )



Sense: Sample
�̅� and 𝜏

Act: 
Choose 

optimal action 

Multi-Stage 
System

Estimate:

Update Q(s, a)



Red: eject the attacker

Blue: pure recording of attacker’s activity

Purple: low-interaction with the attacker

Green: high-interaction with the attacker
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L. Huang and Q. Zhu, “Strategic Learning for Active, Adaptive, and Autonomous Cyber 
Defense, "Adaptive Autonomous Secure Cyber Systems, Jajodia, S., Cybenko, G., 
Subrahmanian, V.S., Swarup, V., Wang, C., Wellman, M. (Eds.), 2020.



Security Metrics to Evaluate 
Engagement

L. Huang, Q. Zhu, “Adaptive Honeypot Engagement through Reinforcement Learning of Semi-Markov 
Decision Processes," Conference on Decision and Game Theory for Security (GameSec), Oct. 30 - Nov. 1, 
2019, Stockholm, Sweden.



RL in Adversarial Environment

Y. Huang, Q. Zhu, “Deceptive Reinforcement Learning Under Adversarial Manipulations on Cost 
Signals," Conference on Decision and Game Theory for Security (GameSec), Oct. 30 - Nov. 1, 
2019, Stockholm, Sweden.



• Drones with RL 
techniques can be 
indirectly trained and 
weaponized by terrorists.

• Self-driving car can be 
misled to collisions by 
receiving false feedback.



RL with Manipulated Cost Signals









Conclusion: Feedbacks and learning are 
fundamental for adaptive defense.

• Moving target defense: Baseline learning algorithms
• Proactive defense against APT: learning of dynamic games with 

incomplete information
• Attacker engagement problem: reinforcement learning
• Security of reinforcement learning: deceptive RL
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