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Introduction

* Cyber defense needs to be proactive and adaptive to changing
environment.

* There 1s need for scientific and engineering foundations for
online learning for adaptive proactive defense.

* Moving target defense: Baseline learning algorithms

* Proactive defense against APT: learning of dynamic games

with incomplete information
* Attacker engagement problem: reinforcement learning

* Security of reinforcement learning: deceptive RL
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Abstraction

* The system has three vulnerabilities: v, |, v;, , v| 5 at stage 1.
* The system is configured to ¢, ;, which exhibits vulnerabilities v, ; , vy ».

* The attack surface of the configuration is the set of vulnerabilities {v,;, v ,}.
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* The system has three vulnerabilities: v, |, v;, , v| 5 at stage 1.
* The system is configured to ¢, ,, which exhibits vulnerabilities v , , vy 3.

* The attack surface of the configuration is the set of vulnerabilities {v,, , v 3}.



Complete Information Game-Theoretic Model
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* fand g are mixed strategies. Mixed strategies are randomizing strategies.
* Nash equilibrium to the zero-sum game exists, and yields the worst-case
defense strategy.



Not Sufficient Yet!
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* fand g are mixed strategies. Mixed strategies are randomizing strategies.
* Nash equilibrium to the zero-sum game exists, and yields the worst-case
defense strategy.



A Feedback System Model
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Observed payoff of a chosen action

Risk Learning

Iy, Estimated average payoff of a chosen action

\ 4
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Prev1(cnn) = Pri(enn) + 1y Lic, ,=c ny (Ti,e — Fre(cin)),

Py (ann) = Ple(ann) + 88 Lay y=a; 3 (T1e — Pl (arp))-

e u;° and uA are learning rates.

* Averaging over observed payoffs.
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between two distributions

Cost on changing the strategy (usability)
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A Feedback System Model
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Mathematical Analysis of the Feedback System

Prevr(cnn) = Fy(an) + p L, ,=c o3 (Tt — Fre(ein))

7 t(;z,h,)
S S fl,h,t "Lt
fl’h9t+l — (1 T Al,t)fl,h,t + Al,t m; _rl,t(cl h’)
Z fl’h/ste ezs’t

e Use stochastic approximation to show the convergence to an ordinary
differential equation (ODE).

* Use ODE to show the convergence of the coupled dynamics to the equilibrium



Game-Theoretic Model Revisited
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* fand g are mixed strategies. Mixed strategies are randomizing strategies.
* Nash equilibrium to the zero-sum game exists, and yields the worst-case
defense strategy.
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Boltzmann Learning vs. Replicator Dynamics

Robust yet inefficient Fragile yet efficient



Heterogeneous and Hybrid Learning

* Heterogeneous learning: Different players adopt
different learning schemes.

* Hybrid learning: Players adopt different learning
schemes at different times.

Q. Zhu, H. Tembine and T. Basar, “Hybrid learning in stochastic games and its application in
network security,” In F. L. Lewis and D. Liu (Eds.), Reinforcement Learning and Approximate
Dynamic Programming for Feedback Control, IEEE Press Computational Intelligence Series, 2012.



Average Payoffs
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Average Payoffs

8 T T T T T
P1 Avg. Payoff of Choosing a;: 4i(a1)
6er | —-= P1 Avg. Payoff of Choosing as: ts(as) |7
P2 Avg. Payoff of Choosing a;: ta(aq)
B r\ ————— P2 Avg. Payoff of Choosing as: ta(asz) i
— 2 —/ - - - T
3
®
o
or i
b 1
‘ \
| [
-4 1
\ / 12
.
-6 1 1 1 1 1
0 50 100 150 200 250 1
Time
08f
2
L] L] B 06
Mixed Strategies g0
L] [ ] E
Boltzmann with Replicator
04
02

Average Payoffs
Boltzmann with Replicator

Mixed Strategies

T

e e A 0.

T T T T

Prob. of P1 Choosing a: f(aq)

----- Prob. of P2 Choosing a1: g(ai) |-

N

300



Proactive Defense Against Advanced Persistent Threat

Insider threats
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APT features
* Targeted attack: reconnaissance
e Persistent: firm and patient

* Advanced: technically and strategically
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Multi-Stage Game Framework

Proactive defense: active response prior to the attack
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Multi-Stage Co-Learning
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Attacker Engagement in Honeypot

Internet / Cloud Internet / Cloud
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Internet / Cloud Internet / Cloud
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Use a honeynet to emulate a production system.
Interact with rather than directly eject attackers.

Quickly attract attackers to target honeypots and engage them for a
desired time.

Grant attackers proper degree of freedom to avoid the escape risk and the
identification risk.



Abstraction: Semi-Markov Decision Process

Clients
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Attacker’s Footprint
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* Treat transition kernel and sojourn distribution as threat intelligence.
 Characterize the escape risk and the identification risk.



Semi-Markov Decision Process and Learning

e T¥isthe time of the k" transition, which is a random
variable.
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Q-Learning for SMDP

* Defender’s stationary policy:m: S = A(s)

* DP representation
v(s) = maxz p(s'|s,a)(rY(s,a,s") + G(s,a,s")v(s"))
a
S/

 Q-Learning: sampled state S and the duration time 7

e Yy (s,a,s)

0k*1(s,a) = (1 — a®¥)Q* (s, a) + a*(r, (s, a,3) + (1- :

e Y"max Q*(5,a"))
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Clients
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L. Huang and Q. Zhu, “Strategic Learning for Active, Adaptive, and Autonomous Cyber
Defense, "Adaptive Autonomous Secure Cyber Systems, Jajodia, S., Cybenko, G.,
Subrahmanian, V.S., Swarup, V., Wang, C., Wellman, M. (Eds.), 2020.



Security Metrics to Evaluate
Engagement
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L. Huang, Q. Zhu, “Adaptive Honeypot Engagement through Reinforcement Learning of Semi-Markov
Decision Processes," Conference on Decision and Game Theory for Security (GameSec), Oct. 30 - Nowv. 1,

2019, Stockholm, Sweden.



RL in Adversarial Environment

: . l Environment

i State,

Y. Huang, Q. Zhu, “Deceptive Reinforcement Learning Under Adversarial Manipulations on Cost
Signals," Conference on Decision and Game Theory for Security (GameSec), Oct. 30 - Nov. 1,
2019, Stockholm, Sweden.



 Drones with RL
techniques can be
indirectly trained and
weaponized by terrorists.

e Self-driving car can be
misled to collisions by
receiving false feedback.




RL with Manipulated Cost Signals

Consider a Markov Decision Process

(MDP) with manipulated cost
signals, denoted by

(5,A,¢,E,P,B).
e State space § .= {1,2,---,S}.

e Action space A = {a;,---,aa}.

e Cost function c: S x A — R.
e Manipulated cost ¢C.

e Transition probability kernel P

e Discounted factor
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e The agent aims for the optimal policy w : S — A minimizing

2i.Z) = E[Z 5e(@(1), Z(1))|(0) = ],

where ®(7) is the state at time T, Z(7) is the action chosen at time T by
Z(1) = w(d(7)).

e To find the optimal policy w*, the agent implements Q-learning
algorithm, i.e., for i = ®(t),a = Z(t),

Qt-i-l(ia a) — Qt(ia a)+5(t) X [;B mbin Qt(wt-i-l(iv a)a b)—l—C(i, a) o Qt(iv a)]a

where W, .4(i, a) is a realized S-valued random variable with law p(i, -, a).



e Under proper conditions [V.Borkar; SIAM JCO; 2000], Q@ — Q* a.s.,
as t — oo. And Q* satisfies

Q*(i.a) = c(i,a)+8)_ plij.a)min Q*(j.b), i€S.a€ A (1)
J

e We use Q* = F(Q*) to capture relation (1), where
F:R>*A 5 R3*A,

e The agent can find an optimal policy w* by

w*(i) = argmin Q*(i,a),i € S.
acA



The Q-learning algorithm with manipulated cost signals:

Qt-l-l(ia a) — Qt(i) a) + S(t) X [IB mbin Qt(wH-l(i) a)) b) + Gt — Qt(ia a)] :

Question: How should the attacker manipulates cost signals?

Theorem (Manipulation Rule)

Let Q* € RS*A be the Q-values learned under the falsified cost

¢ c R°*A. Then Q* € V,+ if and only if the falsified cost signals &
designed by the adversary satisfy the following conditions

&(iya) > (1i — BPw) " (I — BPut) " éut. (2)
foralli € S, ac A\{w'(i)}.




Conclusion: Feedbacks and learning are
fundamental for adaptive defense.

Multi-Stage
w

Act:
Optimize
Strategy

Sense: Observe
Behaviors

Estimate:

Update Beliefs

Moving target defense: Baseline learning algorithms

Proactive defense against APT: learning of dynamic games with
incomplete information

Attacker engagement problem: reinforcement learning

Security of reinforcement learning: deceptive RL
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