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Lecture 4 — September 27, 2019

Prof. Quanyan Zhu Scribe: Yunfei Ge

1 Overview

In the last lecture, we introduced nonzero-sum finite games, proved the existence of mixed strategy
Nash equilibrium, and presented computational methods (best response, fictitious play) for finding
it. We also introduced some interpretations of Nash Equilibrium as follows.

Interpretation of Nash Equilibrium

• Repeated learning process – (e.g. Fictitious Play)

• Recommendation

• Rationality – (e.g. Prisoner’s Lemma)

• . . .

In this lecture, we will talk about Braess’s paradox[1], correlated equilibrium[2] and its learning
method (No-regret learning[3]), and finally the form of extensive games.

2 Braess’s Paradox ([BO] Chap. 4.7)

In this section, we present a nonzero-sum game for which the Nash equilibrium solution leads to
a surprising phenomenon, called the ”Braess paradox”. This equilibrium is also called Wardrop
Equilibrium in traffic networks.

Figure 1: The routes of the Baess’s paradox

1



2.1 Initial Network

Consider a network of one-way roads as given in Fig 1.(a). Travelers on this network all want to go
from B to E. There are two possible routes {BCE,BDE}. The time needed to get through each
segment depends on the unit of travelers i.

Suppose there are 6 units of traffic in this network, x1 of them choose route BCE and x2 of them
choose route BDE. At the equilibrium, no traveler has the intention to leave their routes, which
lead to the total time for both routes being equal.

{
10x1 + 50 + x1 = 50 + x2 + 10x2 (tBCE = tBDE)

x1 + x2 = 6 (total traffic)

=⇒ Equilibrium: x1 = x2 = 3

Total traveling time: T = (10× 3 + 50 + 3) + (50 + 3 + 10× 3) = 166

Remark: Equilibrium between links

Consider the following case of two links from A to B. The cost on the upper route is always equal
to 1, while the cost on the lower route is proportional to the unit of travelers i ∈ [0, 1] on the link.
In the beginning, if there are 10% of people choosing the upper route, they notice that the time
cost on the lower route is 0.9 < 1, and will transfer to the lower route. The equilibrium will be
achieved until the cost of the two links are identical, which means everyone will choose the lower
route.

Figure 2: Basic case

2.2 Augmented Network

Now reconsider the problem with one link added from C to D as in Fig 1.(b). There are now
three routes available {BCE,BDE,BCDE}. Suppose the unit of traffic on each route is x1, x2, x3
accordingly, the Nash solution in this new game is

Time on each route:


tBCE = 10(x1 + x3) + 50x1

tBDE = 10(x2 + x3) + 50x2

tBCDE = 10(x1 + x3) + 10(x2 + x3) + 10 + x3

tBCE = tBDE = tBCDE

x1 + x2 + x3 = 6
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=⇒ Equilibrium: x1 = x2 = x3 = 2

Total traveling time: T = 92× 3 = 276

Braess’ paradox is the observation that adding one or more roads to a road network can end up
impeding overall traffic flow through it. Apparently, in this case, adding the number of routes has
led to a worse result in total traveling time. Note that travelers acting selfishly without considering
overall performance is the cause of the paradox.

3 Correlated Equilibrium

3.1 Game of Chicken (Road Intersection Game)

Game of chicken can be thought of as two players walking towards each other in front of an
intersection. A player can choose to go (G) and pass through the intersection or yield (Y) and
stop. Both players are maximizers. The payoff matrix is given by

G Y
G (-10,-10) (5,0)
Y (0,5) (-1,-1)

There are two pure strategy Nash Equilibrium: (G, Y ) and (Y,G).

There is also a Nash Equilibrium in mixed strategies. Suppose the probabilities of choosing different
actions are P1 : (y, 1 − y), P2 : (z, 1 − z). The mixed strategy can be obtained by applying best
response.

BR1(z) =


[0, 1] z = 3

8

0 z > 3
8

1 z < 3
8

BR2(y) =


[0, 1] y = 3

8

0 y > 3
8

1 y < 3
8

The mixed strategy Nash Equilibrium is P1 : (38 ,
5
8), P2 : (38 ,

5
8) The four possible action profiles

have the following probability under this equilibrium.

G Y
G 9/64 15/64
Y 15/64 25/64

If we interpret this Nash Equilibrium as a recommendation, it doesn’t make sense in the way it
suggests the players get negative utilities (collision in this case) with probability 9

64 . A better
equilibrium which is fair without danger of collision could be the following

G Y
G 0 1/2
Y 1/2 0

However, the independent strategies of the players cannot lead to this solution. The above outcome
requires that players are somehow correlated with each other.
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3.2 Correlated Equilibrium

Definition Let π be a probability distribution over X1, X2, . . . , Xn. The correlated mixed strategy
π is a correlated equilibrium if∑

a−i

π(ai, a−i)Ui(ai, a−i) ≥
∑
a−i

π(ai, a−i)Ui(a
′
i, a−i) ∀i ∈ {1, 2, . . . , n},∀ai, a′i ∈ Xi (1)

Example Consider the game of chiken in the previous example. Assign probability to each action
profiles. The correlated equilibrium can be solved using (1).

G Y
G π11 π12
Y π21 π22

(1) Player 1 ∑
a2

π(a1, a2)(U1(a1, a2)− U1(a
′
1, a2)) ≥ 0

a1 = G:

π(G,G)(U1(G,G)− U1(Y,G)) + π(G, Y )(U1(G, Y )− U1(Y, Y )) ≥ 0

=⇒ −10π11 + 6π12 ≥ 0

a1 = Y :

π(Y,G)(U1(Y,G)− U1(G,G)) + π(Y, Y )(U1(Y, Y )− U1(G, Y )) ≥ 0

=⇒ 10π21 − 6π22 ≥ 0

(2) Player 2 follows the same logic∑
a1

π(a1, a2)(U2(a1, a2)− U2(a1, a
′
2)) ≥ 0

We can get a set of constraints over the probability that leads to a set of correlated equilibrium.

10π11 − 6π12 ≤ 0

−10π21 + 6π22 ≤ 0

10π11 − 6π21 ≤ 0

−10π12 + 6π22 ≤ 0

π11 + π12 + π21 + π22 = 1

πij ≥ 0 i, j = {1, 2}
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Remark

• Correlated equilibrium is a set of equilibrium.

• Solution examples:

π11 π12 π21 π22
1 0 0.55 0.4 0.05
2 0 0.5 0.5 0
3 0 0.7 0.3 0
4 9/64 15/64 15/64 25/64
5 0 1 0 0
6 0 0 1 0

Notice that pure strategies (5)(6) and mixed strategy (4) are in the set of correlated equilib-
rium.

• Solution is equivalent to feasibility of Linear Programming, could be solved using LP tech-
niques.

• ”Obedience”. Players have the incentive to obey correlated equilibrium.

• ”Signals”. The recommendation may not be direct. It could be a signal.

Fact Nash equilibrium always exists in mixed strategies, thus there always exists correlated equi-
librium. We have NE ⊆ CE.

4 No-Regret Learning [3] (Converge to a set of CE)

Consider the strategic form of the game: 〈N, (Si)i∈N , (ui)i∈N 〉, where N represents the players, S
is the collections of action space, and U is the collections of utility functions. The game is played
repeatedly through time t = 1, 2, . . . .

4.1 Learning Process

(1) At time t+1

Given a shared history of plays ht = (sτ )tτ=1, where sτ = {sτ1 , sτ2 , . . . , sτN} is the collection of
action profiles. Each player i ∈ N , choose action st+1

i ∈ Si according to ”some” probability
distribution.

(2) Player i: si = {k, j} ∈ Si.
If player i replace action j with action k at time τ (others remain the same).

Payoff

W τ
i (j, k) :=

{
ui(k, s

τ
−i) if sτi = j, change it to k

ui(s
τ
i ) otherwise, remain the same

(2)
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Accumulated chagne

Dt
i(j, k) :=

1

t

t∑
τ=1

W τ
i (j, k)− 1

t

t∑
τ=1

ui(s
τ ) (3)

Every time player i plays j, replace it with action k. This value D represents the difference
between the new accumulated average payoff and the original payoff up to time t. We can
multiply a discounting factor ατ in each term to give weights on history.

Regret

Rti(j, k) := max{Dt
i(j, k), 0} (4)

When Dt
i(j, k) is negative, there is no regret. When Dt

i(j, k) is positive, we can choose action
k instead of j with probability proportional to regret. Let j ∈ Si be the strategy last choosen
by player i, i.e. j = sti. Then the probability distribution used by i at time t+ 1 should be{

P t+1
i (k) = 1

µR
t
i(j, k) for all k 6= j

P t+1
i (j) = 1−

∑
k∈Si,k 6=j P

t+1
i (k)

(5)

where µ is a normalization factor.

4.2 Results

For every t, let zt ∈ ∆(S) be the empirical distribution of the N-tuples of strategies played up to
time t. That is, for every s ∈ S,

zt(s) :=
1

t
|{τ ≤ t : sτ = s}| (6)

Here |Q| is the number of elements of a finite set Q. (6) is the relative frequency that the N-tuple
s has been played in the first t periods.

Theorem[3] If every player plays according to the adaptive procedure in Sec.4.1, then the em-
pirical distributions of play zt converge almost surely as t→∞ to the set of correlated equilibrium
distributions of the game.

Remark

• Correlation in this learning process comes from the fact that players share the same his-
tory. The shared history correlates the players’ action choice even when the action picking is
independent by themselves.

• Correlated equilibrium can also be interpreted in ”Extensive Games”.
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5 Extensive Game

The games we’ve seen so far are strategic form games (normal-form games) with matrix representa-
tion. This kind of form does not capture the sequential nature of the play. The sequence of action
picking doesn’t matter (e.g. sealed bid auction). If we want to capture the sequence of actions, we
should look at the extensive form games with the tree structure.

Example: Model of Entry Suppose player A is a big company. Player B is trying to decide
whether he should enter or not enter A’s company. If B chooses to enter, A would decide whether
he should fight with B or accommodate B. The payoff is shown in Fig. 3. In this game, player A
can observe what B has done, and then choose action.

Figure 3: Model of Entry

Example: Chicken Game In Fig 4, we add a dotted line to represent that player 2 cannot
distinguish two states. In other words, player 2 does not know that player 1 has done. This game
then has the same information structure as the original chicken game in matrix form as in Sec. 3.1.

Figure 4: Chicken Game
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