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Lecture 2 — Sep. 13th, 2019

Prof. Quanyan Zhu Scribe: Zhiqi Chen

1 Overview

In the last lecture we introduced some basic games, i.e., the Prisoner Dilemma and the Battle of
Sex.

In this lecture we formalized finite two-person zero-sum games, introduced pure strategy, mixed
strategy, what is nash equilibrium under pure strategy and mixed strategy setting, and how to
compute nash equilibrium.

2 Non-cooperative Games

Non-cooperative games have 3 basic elements:

(i) Players:
Q: who are decision makers?
E.g., people, firms, organizations, governments, and so on.

(ii) Actions:
Q1: what can players do?
E.g., enter a bid in an auction, decide when to sell a stock, and so on.
Q2: what is the timing of actions? are actions taken simultaneously or sequentially?
The order of actions is important.

(iii) Payoffs: a function of actions.
Q: what motivates players? What are the payoffs to the various players as a result of the
actions?

There exist two different formulations for such games:

(i) Normal form (a.k.a matrix form, strategic form) lists what payoffs players get as a function
of their actions. This form constitutes a suitable representation of a zero-sum game when
each player’s information is static in nature, since it suppresses all the dynamic aspects of the
decision problem.

Ex: finite n-player normal form game < N,A, u >:

Player set: N = {1, 2, . . . , n}.
Action set Ai for player i: a = (a1, a2, . . . , an) ∈ A = A1 × A2 × · · · × An is an action

profile.

Utility function (or payoff function) for player i: ui : A 7→ R, u = (u1, u2, . . . , un) is a
profile of utility.
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(ii) Extensive form (tree) includes timing of moves. Players move sequentially. This form
displays explicitly the evolution of the game and the existing information exchanges between
the players.

3 Finite Two-person Zero-sum Games

Definition (Zero-sum game). A zero-sum game is one in which the sum of the individual payoffs
for each outcome sum to zero.

Games of pure competition is a class of games where players have exactly opposed interests.

• must be precisely 2 players.

• for all action profile a ∈ A, u1(a) + u2(a) = c for some constant c.
Zero-sum game is a special case when c = 0.

• thus, we only need to store a utility function for one player.

So, finite two-person zero-sum games can be defined as:

• Player set: N = {1, 2}.

• Action set Ai for player i:
a = (a1, a2) ∈ A = A1 ×A2, A1 and A2 are finite set.

• Utility function (or payoff function) for player i:
ui : A 7→ R
u = (u1, u2) such that u1(a) + u2(a) = 0 for all a ∈ A

3.1 Matrix Games

The most elementary types of 2-person zero-sum games are matrix games. There are two players,
P1 (row player) and P2 (column player), and an m×n-dimensional matrix A = {ai,j}. Each entry
ai,j of this matrix A is an outcome of the game, corresponding to P1 pick action i (ith row) and P2
picks action j (jth column). If ai,j is positive, P1 pays |ai,j | toP2; if ai,j is negative, P2 pays |ai,j |
to P1. Then, regarded as a rational decision maker, Pl will seek to minimize the outcome of the
game, while P2 will seek to maximize it, by independent decisions.

3.1.1 Security Strategy

P1’s strategy of playing this game is to secure his losses against any behavior of P2. Hence, P1
picks i∗ row which the largest loss is the smallest among all rows, that is the largest entry that is
smaller than the largest entry of any other row.

V , max
j

ai∗,j ≤ max
j

ai,j , i = 1, 2, . . . ,m (1)
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where V is called the loss ceiling of P1 (or upper value of the game, security level of P1), the strategy
”row i∗” is called a security strategy for P1.

Similarly, P2 will choose to secure his gains against any behavior of P1. Hence, P2 picks column
j∗ which smallest entry is greater than the smallest entry of any other row.

V , min
i

ai,j∗ ≥ min
i

ai,j , j = 1, 2, . . . , n (2)

where V is called the gain floor of P2 (or the lower value of the game, security level of P2). the
strategy ”column j∗” is called a security strategy for P2.

Theorem: In every matrix game A = {ai,j}:

(i) the security level of each player is unique,

(ii) there exists at least one security strategy for each player,

(iii) the security level of P1 (the minimizer) never falls below the security level of P2 (the maxi-
mizer), i.e.,

min
i

ai,j∗ = V ≤ V = max
j

ai∗,j (3)

where i∗ and j∗ denote security strategies for Pl and P2, respectively.

Proof: (i) and (ii) are obvious from (1) and (2). To prove (iii), note that mini ai,l ≤ ak,l ≤ maxj ak,j .
Let k = i∗ and l = j∗, then V = mini ai,j∗ ≤ ai∗,j∗ ≤ maxj ai∗,j = V . This complete the proof for
(iii). And it implies that the outcome of the game will always lie between V and V if played by
rational players.

3.1.2 Saddle Point Equilibrium

Suppose now that P2 is required to announce his choice before P1 makes his choice. In this case,
P2 has an advantage over P1. Then, the best play of P1 is to choose one of his security strategy
(say row i∗) to security the loss ceiling. Therefore, P2’s ”optimal” choice (column jo) would satisfiy

ai∗,jo = max
j

ai∗,j = V = min
i

max
j

ai,j (4)

with ”min max” operation designating the order of play in this decision process, which is P1 min-
imizes his loss ceiling then P2 maximizes his gain. Equation (4) implies that the outcome of the
game is equal to the upper value V , when P2 observes P1’s choice. So minimax strategy is to
minimize one’s own maximum loss.

Now, we exchange the order of two players, then P1 has an advantage over P2. Then, the best play
of P2 is to choose one of his security strategy (say column j∗) to security the gain floor. Therefore,
P1’s ”optimal” choice (column io) would satisfy

aio,j∗ = max
i

ai,j∗ = V = max
j

min
i

ai,j (5)
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with ”max min” symbol implying that the minimizer acts after the maximizer. Equation (5) indi-
cates that the outcome of the game is equal to the lower value V , when Pl observes P2’s choice.
So maximin strategy is to maximize one’s own minimum gain.

Definition: The pair (i∗, j∗) is a saddle point equilibrium (SPE) if ai∗,j ≤ ai∗,j∗ ≤ ai,j∗ is
satisfied for all i = 1, 2, . . . ,m and j = 1, 2, . . . , n.

Theorem: Let A = ai,j denote an m× n matrix game with V (A) = V (A). Then,

(i) A has a saddle point in pure strategy,

(ii) an ordered pair of strategies (i, j) provides a saddle point for A iff i is a security strategy for
Pl and j is a security strategy for P2,

(iii) V(A) is uniquely given by V (A) = V (A) = V (A).

Proof: Let i∗ denote a security strategy for Pl and j∗ denote a security strategy for P2, which
always exist by Thm. 2.1 (ii). Now, since V (A) = V (A), we have

ai∗,j ≤ max
j

ai∗,j = V = V = min
i

ai,j∗ ≤ ai,j∗

for all i = 1, 2, . . . ,m, j = 1, 2, . . . , n

Let i = i∗, j = j∗ in this inequality, we get

ai∗,j∗ = V = V = ai∗,j∗

So, ai∗,j ≤ ai∗,j∗ ≤ ai,j∗ . This complete (i) and the sufficiency part of (ii). Let row i∗, column j∗

be a saddle-point strategy pair. Then,

max
j

ai∗,j ≤ ai,j∗ ≤ maxjai,j , i = 1, 2, . . . ,m

Thus, row i∗ is a security strategy for P1. Similarly, we can prove column j∗ is a security strategy
for P2. This completes the proof of (ii). (iii) is obvious after proving (ii).

So, in a matrix game, the saddle point ai,j is some entry ai,j of the matrix A that has the property
that (1) ai,j is the maximum of the ith row and (2) ai,j is the minimum of the jth column. By
choosing row i, Player 1 can then keep her loss at most ai,j , and Player 2 can win at least ai,j by
choosing column j.

Note that existence of saddle point strategy in pure strategy is not necessary. For the case when
the security levels of the players do not coincide no such equilibrium solution can be found within
the class of (pure) strategies. Ex. matching point.
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3.1.3 Mixed Strategy and Saddle Point Equilibrium

Definition (Mixed strategy): A mixed strategy for a player is a probability distribution on the
space of his pure strategies.

We denote the strategies of Player 1 and Player 2 as p ∈ 41 and p ∈ 42 respectively, where 41

and 42 are some probability distribution sets,
41 = {p = (p1, . . . , pm)T : pi ≥ 0, for i = 1, . . . ,m and

∑m
i=1 pi = 1}

42 = {q = (q1, . . . , qn)T : qi ≥ 0, for i = 1, . . . ,m and
∑m

i=1 qi = 1}
Note that pure strategy is a special case of mixed strategy. For mixed strategy, we consider ex-
pected utility,
J(p, q) = pTAq
Player 1 would like to minimize the average payoff J(p, q), by choosing a probability distribution
vector p ∈ 41 properly, while Player 2 wishes to maximize J(p, q), by choosing a probability dis-
tribution vector q ∈ 42 properly.

Definition: A probability distribution vector p∗ ∈ 41 is called a mixed security strategy for
P1, in the matrix game A, if the following inequality holds for all p ∈ 41:

V m(A) , maxq∈42p
∗TAq ≤ maxq∈42p

TAq, for all p ∈ 41 (6)

Here, V m(A) is the average security level of P1 (or the average upper level of the game).
Analogously, a probability distribution vector q∗ ∈ 42 is called a mixed security strategy for
P2, in the matrix game A, if the following inequality holds for all 1 ∈ 42:

V m(A) , minp∈41pAq
∗ ≥ maxp∈41p

TAq, for all q ∈ 42 (7)

Here, V m(A) is the average security level of P2 (or the average lower level of the game).

Definition: A pair of strategies (p∗, q∗) is said to constitute a saddle point in mixed strategies,
if

p∗TAq ≤ p∗TAq∗ ≤ pTAq∗, for all p ∈ 41, q ∈ 42 (8)

Here Vm(A) = p∗TAq∗ is known as the saddle-point value, or the value of the game, in mixed
strategies.

Theorem: In mixed strategy matrix game A, the following properties hold:

(i) The average security level of each player is unique.

(ii) There exists at least one mixed security for each player.

(iii) The security level in pure and mixed strategies satisfy the following inequalities:

V (A) ≤ V m(A) ≤ V m(A) ≤ V (A) (9)

The middle inequality in (iii) is because the maximizer’s security level is lower than the minimizer’s
security level. The other two inequalities follows from the fact that pure secure strategies of the
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players are included in their mixed strategy space.

Corollary: In a mixed strategy matrix game, the upper value and the lower value of the game is
given, respectively, by

V m(A) = min
p

max
q

pTAq (10)

V m(A) = max
q

min
p

pTAq (11)

Theorem (The Minimax Theorem): In any matrix game A, the average security levels of the
palyers in mixed strategies coincides, that is

V m(A) = min
p

max
q

pTAq = max
q

min
p

pTAq = V m(A) (12)

This theorem is simply saying that every finite game has a value, and both players have minimax
strategies. This theorem states the existence of saddle-point equilibrium, but it does not guarantee
the uniqueness of saddle-point equilibrium.

Lemma (Invariance of minimax strategies) If A = {ai,j} and A′ = {a′i,j} are matrices with a′i,j =
cai,j + b, where c > 0, then the matrix game A has the same minimax strategies for Player 1 and
Player 2 as the game with matrix A’. Also, if V denotes the value of the matrix game A, then
V (A′) = cV (A) + b.

4 Computing SPE

4.1 Graphical Methods

From previous section, a possible way to obtain the mixed saddle-point solution of a matrix game
is to determine the mixed security strategies for each player.

Example: A 2× 2 matrix game:

P1
P2

A B

A 3 0

B -1 1

which has no SPE in pure strategy, since V = 1 and V = 0. Let p = (y1, y2)
′ = (y1, 1 − y1)

′ and
q = (z1, z2)

′ = (z1, 1− z1)
′ denote P1’s and P2’s strategies respectively.

Let’s consider the average security level for P1 first and fix P2’s choice. If P2 chooses A, J =
3y1 − (1 − y1). If P2 chooses B, J = 1 − y1. The average outcome of the game is shown in
Fig. ??. The bold line forms the upper envelope. The mixed strategy (y∗1 = 2/5, y∗2 = 3/5)
corresponding to the lowest point of the upper envelope is P1’s security strategy. By playing
strategy of (y∗1 = 2/5, y∗2 = 3/5), P1 can secure his worst loss no greater than 0.6, while P1 might
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loss more than 0.6 if he choose the other other point.

Figure 1: Mixed security strategy of P1 (directly cropped from [BO])

Now, let’s consider P2’s security strategy and fix P1’s choice. If P1 chooses A, J = 3z1. If P1
chooses B, J = −z1 + 1− z1. The average outcome of the game is shown in Fig. ??. The bold line
forms the lower envelope. The mixed strategy (z∗1 = 1/5, z∗2 = 4/5) corresponding to the highest
point of the lower envelope is P2’s security strategy. By playing strategy of (z∗1 = 1/5, z∗2 = 4/5),
P2 can secure his gain at least 0.6, while P2 might win less than 0.6 if he choose the other other
point.

Figure 2: Mixed security strategy of P2 (directly cropped from [BO])

So the SPE for this matrix game is (2/5, 3/5), (1/5, 4/5) and the value of the game is 0.6.

The computational technique discussed above is called the ”graphical solution” of matrix games.
The graphical method is practical not only for 2 × 2 matrix games but also for general 2 × n and
m× 2 matrix games. Graphical methods become less practical as m or n increases.

4.2 Linear Programming

An alternative to graphical solution when matrix dimensions are high is to convert the matrix game
into a linear programming (LP) problem.

Assume a m× n matrix game A = {ai,j}, ai,j > 0 for all i, j. Then , the average value of the game
in mixed strategies is

Vm(A) = min
p

max
q

pTAq = max
q

min
p

pTAq (13)
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Here, the first expression Vm(A) = minp maxq p
TAq can be viewed as first given a p ∈ 41, then

maximizing pTAq over q ∈ 42. So the choice of q depends on p. Therefore, we can rewrite the
”min max” expression as

min
p

V1(p) (14)

where V1(p) is a positive scalar valued function of p

V1(p) = max
q

pTAq ≥ pTAq ∀q ∈ 42 (15)

Pick q = (1, 0, . . . , 0)T , we can get V1(p)1n ≥ AT p, where 1n = (1, . . . , 1)T ∈ Rn

Further introducing the notation p̃ = p/V1(p) and recalling that the definition of p (
∑

pi = 1, pi >
0). Then, the optimization problem faced by P1 in determining his mixed strategy becomes

min
p

V1(p)

s.t. AT p̃ ≤ 1n

p̃ = p/V1(p)

p̃ ≥ 0

This is equivalent to the maximization problem

max p̃1m

s.t. AT p̃ ≤ 1n

p̃ ≥ 0

which is a standard linear programming problem, which solution gives the mixed security strategy
of P1, normalized by the average value of the game. If p∗ is P1’s mixed saddle-point strategy, then
p̃∗ = p∗/Vm(A) solves the LP problem and the value of the LP problem is given by V = 1/Vm(A).

For ”max min” expression, similarly, we can rewrite as

min
q

V2(q) (16)

where V2(q) is a positive scalar valued function of q

V2(q) = min
p

pTAq ≤ pTAq ∀p ∈ 41 (17)

By introducing q̃ = q/V2(q), we can rewrite the optimization problem as

min q̃1n

s.t. AT q̃ ≥ 1m

q̃ ≥ 0
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In conclusion, we show that for every positive matrix game, there exist two dual LP problems
whose solutions yields the saddle-point solution of the game in mixed strategy. Then, we can use
efficient linear programming algorithms, e.g., simplex methods and interior methods, to solve high-
dimensional matrix games. From Lemma (Invariance of minimax strategies) we discussed in last
section, the positivity here is not restrictive.

Lemma Let A and B be 2 m × n matrices related to each other by A = B + c1m1Tn for some
constant c. Then,

(i) every mixed saddle-point strategy for matrix A also constitute to mixed saddle-point strategy
solution for matrix B,

(ii) Vm(A) = Vm(B) + c

4.3 Learning

So far, the graphical method and linear programming method are both offline methods. We can
find saddle-point equilibrium by online methods as well, e.g. Fictitious play.

5 N-person Nonzero-sum Games

A general finite N-person nonzero-sum game in normal form can be defined as:

1. N players denoted by P1, P2, . . . , PN.

2. Each player Pi has finite pure strategies Xi, with the element of Xi denoted as xi. For mixed
strategy, the strategy profile P = (pi, p−i) constitutes of mixed strategy pi ∈ 4i(xi) for each
player.

3. The outcome of the game is a vector of payoffs of all players, aixi,x−i
= ui(xi, x−i). For mixed

strategies, the outcome of the game is a vector of payoffs of all players, aipi,pi = ui(pi, p−i)

4. Players make their own decision independently.

Definition An N-tuple of strategies n∗1, . . . , n
∗
N , with n∗i ∈ Mi, i ∈ N , is said to constitute a

noncooperative (Nash) equilibrium solution for an N-person nonzero-sum static finite game in
normal form, as formulated above, if the following inequality are satisfied for all xi ∈ Xi, i ∈ N :

ai∗ , aix∗
i ,x

∗
−i
≤ aixi,x∗

−i

In mixed strategy, a strategy profile (p∗i , p
∗
−i) is a Nash equilibrium if the following inequality are

satisfied for all pi ∈ 4(xi), i ∈ N :

ai∗ , ui(p∗i , p
∗
−i) ≤ ui(pi, p

∗
−i)

Theorem Every N-person static finite game in normal form admits a Nash equilibrium solution in
mixed strategies.
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Here’s the same equation but that can be referenced:

a2 + b2 + c2 (18)

Equation ?? has been known for a long time. Sometimes you might want to align equations:

(x + y)2 − (x− y)2 = (x2 + 2xy + y2)− (x2 − 2xy − y2)

= 4xy

or align them with numbers to be referenced:

(x + y)2 − (x− y)2 = (x2 + 2xy + y2)− (x2 − 2xy − y2) (19)

= 4xy (20)

or where only some of them can be easily referenced:

(x + y)2 − (x− y)2 = (x2 + 2xy + y2)− (x2 − 2xy − y2)

= 4xy (21)
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