ECE-GY 6263 Game Theory

Fall 2019

Lecture 3 — September 20, 2019

Prof. Quanyan Zhu

Scribe: Qian Xie

1 Overview

In the last lecture we introduced two-person zero-sum games and non-zero sum games including a Second Price Auction example, computational methods (graphical methods and algorithms) for finding saddle point equilibrium and a paradox (Prisoner's Dilemma).

In this lecture we will look at N-person non-zero sum game.

General Model $\mathbf{2}$

Definition 1. For each player i, we can define a finite or infinite set of actions X_i . Player i can play a pure strategy $x_i \in X_i$ or a mixed strategy $p_i \in \Delta_i(X_i)$, which is a probability distribution over actions. In the reality, the mixed strategy can be made with the aid of a random device such as a coin or a die.

Definition 2. Denote x_{-i} as all players excluding player i, then we can define **utility function** as $u_i(x_i, x_{-i}) : \Pi_i X_i \to \mathbb{R}$. The **expected utility** is denoted as $\tilde{u}_i(p_i, p_{-i}) \equiv \mathbb{E}_{p_i, p-i} u_i(x_i, x_{-i})$

Question: Nash Equilibrium as a solution concept.

- What is Nash Equilibrium
- Why we use Nash Equilibrium?

Definition 3. (p_i^*, p_{-i}^*) is a Nash Equilibrium in mixed strategies if

$$\tilde{u}_i(p_i^*, p_{-i}^*) \ge \tilde{u}_i(p_i, p_{-i}^*)$$
 (1)

for all admissible $p_i \in \Delta(X_i)$ and for all $i \in N$, which is equivalent to

$$p_i^* \in \underset{p_i \in \Delta(X_i)}{\arg \max} \tilde{u}_i(p_i, p_{-i}^*) \quad \forall i$$
 (2)

Note that sometimes $p_i \in \Delta(X_i) \subset \Delta(X_i)$.

Thought Experiment For two-person non-zero sum game, we have

$$p_1^* \in \underset{p_1}{\operatorname{arg max}} \tilde{u}_1(p_1, p_2^*)$$

$$p_1^* \in \underset{p_2}{\operatorname{arg max}} \tilde{u}_2(p_1^*, p_2^*)$$

$$p_2^* \in \arg\max_{p_2} \tilde{u}_2(p_1^*, p_2)$$

Solving p_1^*, p_2^* depend on each other.

3 Analytical Methods for Characteristic Nash Equilibrium

3.1 Best response functions

Definition 4. Consider the following **best response** for Player i.

Given $p_{-i} \in \Pi_{j \neq i} \Delta(X_j)$ (note that $p_{-i}^* \in \Pi_{j \neq i} \Delta(X_j)$ is a point on the space),

$$BR_i(p_{-i}) \equiv \underset{p_i \in \Delta(X_i)}{\arg \max} \tilde{u}_i(p_i, p_{-i})$$

Fix p_{-i} and choose p_i , then BR_i is correspondence, a point-to-set mapping.

Remark:

- 1. $\tilde{u}_i(p_i, p_{-i})$ is continuous in p_i , linear in p_i , and $\Delta_i(X_i)$ is a compact set (according to the property of expectation).
- 2. Based on Weierstrass's Theorem and property of convexity, we have
 - $BR_i(p_{-i})$ is a convex set.
 - $BR_i(p_{-i})$ is non-empty.
- 3. Point-to-set mapping. BR_i is "continuous" or not?

Definition 5. (Upper semi-continuity) Pick a sequence $p_{-i}^{(n)} \to p_{-i}$ and a sequence $p_i^{(n)} \to BR_i(p_{-i}^{(n)})$ and $p_i^{(n)} \to p_i$ and $p_i \in BR_i(p_{-i})$. If this is true for all p_{-i} , then this mapping is called **Upper semi-continuity**. [1]

- 4. BR_i is an Upper semi-continuity.
- 5. The set p_{-i} is a convex compact set.

4 The existence of Nash Equilibrium

For two-person non-zero sum game, we have $p_1 \in BR_1(p_2)$ and $p_2 \in BR_2(p_1)$. For N-person non-zero sum game, consider

$$p : \begin{pmatrix} p_1 \\ p_2 \\ \vdots \\ p_N \end{pmatrix} \quad BR(p) = \begin{pmatrix} BR_1(p) \\ BR_2(p) \\ \vdots \\ BR_N(p) \end{pmatrix}$$

we have $p \in BR(p)$, solving this is actually a fixed point problem!

Theorem 6. (Kakutani's Theorem) Let S be a compact and convex subset of \mathbb{R}^n , and let f be an upper semi-continuous function which assigns to each $X \in S$ a closed subset of S. Then there exists some $X \in S$ such that $x \in f(x)$.

Remark: Since $S: \prod_{i=1}^{N} \Delta(X_i)$ is closed and convex, we can derive the existence of Nash Equilibrium in mixed strategies for finite games.

Thought Experiment: What can go wrong if the game is not finite? e.g. $X_i \equiv [0, 1]$. Use Fixed Point Theorem [1]!

Theorem 7. (Brower's Fixed Point Theorem) If S is a compact and convex subset of \mathbb{R}^n , f is a continuous function mapping S into itself, then there exists at least one $x \in S$ such that f(x) = x.

Example: If $f:[0,1] \to [0,1]$ is a continuous function, then $\exists x: x = f(x)$.

By Kakutani's argument, we have a point p^* such that $p^* \in BR(p^*)$.

Question: Is p^* a Nash Equilibrium? Yes!

Rough idea: $p_i^* \in BR_i(p_{-i}^*) \ \forall i \Rightarrow (2) \Rightarrow (1)$

Remark: Read the book on John Nash's proof (on Matrix Game)!

- Mixed strategy Nash Equilibrium existence
- Reason to find it
- How to find it
 - Fixed point method
 - Algorithms
 - Learning method

5 Computational method

Example: Battle of Sexes problem (B, B) and (S, S) are two pure Nash Equilibriums. Let $x : \mathbb{P}(P_1 \to B), y : \mathbb{P}(P_2 \to B)$, denote the utility functions of two players as $u_i(x, y)$ i = 1, 2. Then for P_1 , $\tilde{u}_1 = xy + 2(1-x)(1-y) = x(3y-2) + (2-2y)$, his best response strategy is

$$BR_1(y) = \begin{cases} 0, & y < \frac{2}{3} \\ 1, & y > \frac{2}{3} \\ [0, 1], & y = \frac{2}{3} \end{cases}$$

Note this is a point-to-set mapping which is upper semi-continuity.

Similarly for P_2 we have $\tilde{u}_2 = 2xy + (1-x)(1-y) = y(3x-1) + (1-x)$, his best response strategy is

$$BR_2(x) = \begin{cases} [0,1], x = \frac{1}{3} \\ 0, x < \frac{1}{3} \\ 1, x > \frac{1}{3} \end{cases}$$

x, y should satisfy $y \in BR_2(x)$ and $x \in BR_1(x)$. We can solve this using graphical method.

Thought Experiment A: What if the utility functions are non-linear?

Thought Experiment B: Using Indifference Principle for inner solutions!

Thought Experiment C: Perturbations, Equilibrium Selection and Refinements of Nash Equilibrium. Related to "trembling hand", whenever there are errors/mistakes, it eventually will back to saddle points.

Best-response Dynamics: $P_i^{(n+1)} \in BR_i(P_{-i}^{(n)})$ at round n, if it goes to steady state then $p^* \in BR(p^*)$.

6 Fictitious-Play Learning Algorithm

Consider 2-player problem:

$$\begin{array}{c|cc} & L & R \\ U & (3, 3) & (0, 0) \\ D & (4, 0) & (1, 1) \end{array}$$

- (1) The 2 players choose $x_i \in X_i$ at time $t = 1, 2, \cdots$ where $X_1 = \{U, D\}, X_2 = \{L, R\}.$
- (2) Define $\eta_i^t: S_{-i} \to N$ as the number of times player i observed the action S_{-i} played before time t.
 - $\eta_1^0 = (3,0)$
 - $\eta_2^0 = (1, 2.5)$
- (3) Players form a prediction on other players' strategies

$$\mu_i^t(x_i) = \frac{\eta_i^t(x_i)}{\sum\limits_{x_i' \in X_i} \eta_i^t(x_i')}$$

- $\mu_1^0 = (1,0)$
- $\mu_2^0 = (\frac{1}{3.5}, \frac{1}{2.5})$
- (4) Player $i: x_i \in \underset{x_i \in X_i}{\arg\max} \underset{\mu_i^t}{\mathbb{E}}(x_i, x_{-i})$ at time t

Example:

- Round 1: $\mu_1^0 = (1,0), \, \mu_2^0 = (\frac{1}{3.5}, \frac{1}{2.5}), \, \text{P1: D, P2: L}$
- Round 2: $\eta_1^1 = (4,0), \, \mu_1^1 = (1,0), \, \mu_2^1 = (\frac{1}{4.5}, \frac{3.5}{4.5}), \, \text{P1: D, P2: R}$
- \bullet Round 3: converges to $\mu_1^t \to p_2^*,\, \mu_2^t \to p_1^*$ (equilibrium)

Example: IBM robots play rock-and-scissors

Thought Experiment:

- 1. Fictitious play can be viewed as a interpretation as a learning process approaches to equilibrium. Outcome of rational learning should not change over times or over place. Prediction should be stationary.
- 2. Using arbitration or recommendation for players to avoid "Prisoners' Dilemma".

References

[1] Basar, Tamer, and Geert Jan Olsder. Dynamic noncooperative game theory. Vol. 23. Siam, 1999.