
ECE-GY 6263 Game Theory Fall 2019

Lecture 8 — Oct 25, 2019

Prof. Quanyan Zhu Scribe: Shutian Liu

1 Overview

In the last lecture we talked about Folk’s theorem, continuous kernel games, and gave an example
on economics application.

In this lecture we will continue the part on continuous kernel games, and talk about convergence
of Gauss-Seidel algorithms, and then we will introduce robust estimation problems.

2 Continuous Kernel Games

First we restate the payoff function of a continuous kernel game:

J i(ui, µ−i) =
1

2

N∑
j=1

N∑
i=1

uTj R
(i)
jkµk +

N∑
j=1

u
(i)T
j aj + ci, (1)

where µi is player j′s strategy vector, R
(i)
jk are constant matrices, r

(i)
j and cj are constant matrices.

By:
∂J i

∂ui
= 0, (2)

we get:

Riiiu
i +
∑
j 6=i

Riiju
j + rii = 0, (3)

which is equivalent to Ru = −r in the matrix form.

Consider a 2-person game, where matrix R =

[
R1

11 R1
12

R2
21 R2

22

]
, u = (u1, u2)

T , and r = (r11, r
2
2)T .

Question: Does the solution of the system exist? And if it exists, is it unique?
We construct best-response dynamics to answer the question.

u1(k + 1) = C1u
2(k) + d1, (4)

u2(k + 1) = C2u
1(k) + d2, (5)

where C1 = −(R1
11)
−1R1

12, d1 = −(R1
11)
−1r11, C2 = −(R1

22)
−1R1

21, d1 = −(R1
22)
−1r22, updates in for

pattern of (4)and (5) are called Gauss-Seidel iteration.
By plugging (5) into (4), we can get a linear dynamic system. We combine (4) and (5):

u(k + 1) = Cu(k) + d, (6)
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where u =

[
u1(k + 1)
u2(k + 1)

]
, C =

[
0 C1

C2 0

]
, d =

[
d1
d2

]
.

If the algorithm converges, denote the solution by u∗, then we must have:

u∗ = Cu∗ + d, (7)

which is:
(I − C)u∗ = d, (8)

which gives the Nash Equilibrium. For when the algorithm will converge, we investigate:

u1(k + 1) = C1C2u
1(k − 1) + c1d2 + d1, (9)

and from linear system theory we know that the necessary and sufficient condition for the above
iterates to converge is:

ρ(C1C2) < 1, (10)

where ρ(A) denotes the largest eigenvalue of matrix A.

Example: (Mixed Strategies) Consider the following ZS game on the unit square. x1 ∈ [0, 1],
x2 ∈ [0, 1], and P1 is a maximizer and P2 is a minimizer. The utility function is u(x1, x2) =
x31 − 3x1x2 + x32. People can verify by taking the second derivatives that the utility funciton is
convex in both players’ decisions. Since P1 is a maximizer, then x∗1 = 0 or x∗1 = 1, and we get
u(0, x2) = x32, and u(1, x2) = 1− 3x2 + x32.
Pick 0: u(0, x2) > u(1, x2) we get x2 >

1
3 , which gives:

x∗1 = 1, if x2 <
1

3

x∗1 = 0, if x2 >
1

3

x∗1 ∈ {0, 1}, if x2 =
1

3

(11)

P2 is a minimizer, convexity of utility function tells us to use the first-order conditions to find the
optimal point. By taking derivative and set to 0, we get x2 =

√
x1.

Now if you plot x∗1 and x∗2 on the same figure, you will find that the two curves does not intersect,
since one of them is not continuous. This tells us that there is no pure strategy saddle point.
Then, how about mixed strategies?
P1: she can randomizes between x∗1 = 0 and x∗2 = 1. Then the expected utility:

Eα(u) = αx32 + (1− α)(1− 3x2 + x32). (12)

What can P2 do?

Eα(u)

∂x2
= 3x22 − 3(1− α) = 0, (13)

which gives us x∗2 =
√

1− α. P1 best response has to make 0 and 1 indifferent: u(0, x∗2) = u(1, x∗2),
by some calculation we get x2 = 0 w.p. 8

9 and x2 = 1 w.p. 1
9 .

The topic of continuous kernel games is discussed in details in Chapter 4 of [2].
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3 Robust Estimation

Let’s first give an example.

Example: Robust estimation with Gaussians. y = Ax + w is our model, where y is the ob-
servation, x is the truth, A is a known matrix, and w is noise. We assume x ∼ N(0,Σx), and
w ∼ N(0,Σw).
The estimator x̂ = µ(y) is a function of the observation. And our target is to minimize the expected
error of the estimation and the truth, given by the next problem:

minE(||x− x̂||2), (14)

whose solution is given by the conditional expectation of the truth given the observation un-
der Gaussians, x̂ = E(x|y) = (Σw + ATΣxA)−1AT y. Interested people can check materials on
MMSE(minimum min squared error).

Let’s come back to the contents of this lecture. Consider the following robust estimation problem:

min
µ

[max
w,x

||x− µ(y)||2

||x||2 + ||w||2
], (15)

where our model is the same as in the example, but we don’t have the assumptions of Gaussians
anymore, here w ∈ (−∞,+∞). The above problem is a fractional programming problem, for
detailed derivation people can read materials on Dinkelback algorithms.
We proceed by forming an associated problem, introducing a parameter γ:

min
µ

max
x,w
||x− µ(y)||2 − γ2(||x||2 + ||w||2). (16)

Under the optimal solutions µ∗, x∗, w∗, we must have the objective equals to 0. Use the model
w = y −Ax, then the above formulation becomes:

min
µ

max
x,y
||x− µ(y)||2 − γ2(||x||2 + ||y −Ax||2), (17)

here the maximization over x and y can be done separately, denote:

L(µ(y), y) = max
x
||x− µ(y)||2 − γ2(||x||2 + ||y −Ax||2), (18)

hence our probelm becomes:
min
µ

max
y
L(µ(y), y). (19)

Now we make an important claim:

min
µ

max
y
L(µ(y), y) = max

y
min
u
L(u, y), (20)

note here that u ∈ Rn, while µ(·) is a function.

Proof.
max
y

min
u
L(u, y) = max

y
L(µ∗(y), y) ≥ min

µ
max
y
L(µ(y), y). (21)

At the same time, we also have:

min
µ

max
y
L(µ(y), y) ≥ max

y
min
µ
L(µ(y), y) = max

y
min
u
L(u, y). (22)

Together proves the claim.
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The power of this claim is obvious, since the difficulty of finding the best functions is much larger
than of finding the best vectors. Note that Problem 15 of HW3 tells a similar thing. The proof can
be stated in a similar way.
Now with the help of (20), our robust estimation problem becomes:

max
y

min
u

max
x
||x− u||2 − γ2(||x||2 + ||y −Ax||2), (23)

denote the objective by J(u, x).
Since we have minu maxx J(u, x), we will want to exchange the order of min and max so that the
two max operations can be grouped. To do this, we need J(u, x) to be strictly convex in u and
strictly concave in x, which is equivalent to:

I − γ2I − γ2ATA < 0, (24)

which requires all the eigenvalues of γ2ATA+ γ2I − I > 0.

We claim that if λ is an eigenvalue of γ2ATA+ γ2I − I, then ν = λ−γ2+1
γ2

is an eigenvalue of ATA.

Proof. If λx = (γ2ATA + γ2I − I)x for some x6= 0, thenequivalenty,(λ − γ2 + 1)x
γ2=ATAx

, i.e.
(λ−γ2+1)x

γ2
is an eigenvalue of ATA.

If λ > 0, we have equivalently γ2ν+γ2−1 > 0, same as γ2 > 1
1+ν , which is same as γ2 > 1

1+λmin(ATA)
.

Suppose that γ2 < 1
1+λmin(ATA)

, then γ2ATA+ γ2I − I has at least one eigenvalue that is negative.

Then the problem maxx1,x2 x
2
1 − x22 − 4x1x2 has no solution.

Suppose the opposite, then J(u, x) is indeed strictly convex in u and strictly concave in x, then
maxx minu J(u, x) = minu maxx J(u, x). And we have that u∗ = x. Then the problem reduces to:

max
x

J(x, u = x) = −γ2(||x||2 + ||y||2 + xTATAx− 2yTAx). (25)

First order condition gives x = (I + ATA)−1AT y. Then J(x = x∗, u = x) = −γ2(||x||2 + ||y −
Ax||2) ≤ 0, so when y = 0, we have J(u, x) = 0, which is maxy minu maxx J = 0.
Next we give theorems on the existence of solutions of the robust estimation problems, and the
proofs can be found in the last chapter of [1].

Theorem 1. Let γ∗ =
√

1
1+λmin(ATA)

, then if γ > γ∗, minµ maxx,w ||µ(y)−x||2−γ2(||x||2+||w||2) =

0, and µ∗(y) = (I +ATA)−1AT y; if γ < γ2, then the problem has no solution.

Theorem 2. If γ > γ∗, then under µ∗, ||µ∗(y) − x||2 − γ2(||x||2 + ||w||2) ≤ 0, for ∀x,w, which
gives ||µ

∗(y)−x||2
||x||2+||w||2 ≤ γ

2, ∀x,w.
If γ < γ∗, it is not possible to derive the results.

Note, under the case of Gaussians, the procedure introduced above gives exactly the same result
as the conditional expectation.
More interesting materials are covered in [1], and topics like robust filtering and Kalman filter are
also recommended.

Next lecture: we will talk about auction design and Bayesian games.

4



References
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