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1 Overview

In the last lecture we covered multistage games and Perfect Subgame Nash Equilibrium.

In this lecture we cover Stackelberg equilibrium in mixed strategies, Multistage Games, and Con-
tinuous Kernel Games.

2 Stackelberg Games

Take the following matrix game

A =

[
1, 1

2 0, 1
0, 1 1, 1

3

]
If we say the row player P1 is the leader and the column player P2 is the follower. With both
minimizers P2’s best response is as follows. If P1 chooses row 1, P2 chooses column 1. If P1
chooses row 2, P2 chooses column 2. This is the pure strategy equilibrium. For a finding a mixed
strategy equilibrium.

y = (y1, 1− y1), z = (z1, 1− z1)T

with the objective

J̄z(y, z) = yTBz = (−7

6
y1 +

2

3
)z1 +

2

3
y1 +

1

3

for z with

B =

[
1
2 1
1 1

3

]

R̄z =


z1 = 1 y1 >

4
7

z1 = 0 y1 <
4
7

z1 = [0, 1] y1 = 4
7

• If y1 >
4
7 then J̄1 = y1

1



Figure 1: Extensive Form

• If y1 <
4
7 then J̄1 = 1− y1

• If y1 = 4
7 then J̄1 = 3

7 + 1
7z1 with worst case 4

7

There is no Stackelberg equilibrium in mixed strategies for this game as there are no point where
each strategy is a best response. There is a equilibrium in pure strategies. This highlights the fact
that there is always a equilibrium in pure strategies for Stackelberg games but not necessarily in
mixed strategies.

3 Multistage

Consider repeated game

A =

[
3, 3 −1, 5

5,−1 0, 0

]
With both players maximizing and the game is played twice and the objective is the summation
of the games. The extensive form of this game is shown in figure 1. There are 2 subgames. The
probability of a path can be calculated and therefore the expected value given player strategies.

µi(t, ht) = ai(t)

ai(t) ∈ Ai(t, ht)

Ji(µi, µ−i) =
T∑
t=0

ui(t, µi(t, ht), µ−i(t, ht))
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max
µi∈Γi

Ji(µi, µ−i)

Definition: A strategy profile {µ∗i }Ni=1 is a Subgame Perfect Nash Equilibrium if for every K, and
its associated history hk ∈ H the rest of {µγi }Ni=1 to the

SPNE can be found using dynamic programming and checked with the One-stage Deviation prin-
ciple. [1]

Definition: A strategy profile {µ∗i }Ni=1 satisfies One-stage Deviation Condition if no player can
gain by deviating at one stage and one history.

Example: Repeated Prisoners Dilemma

A =

[
3, 3 −1, 5

5,−1 0, 0

]
Played infinite times

J
(k)
i =

∞∑
t=k

µi(t, µi(t, ht), µ−i(t, ht)) =

∞∑
t=k

αkui(t, µi, µ−i)

with
α ∈ (0, 1)

Consider a trigger strategy, Play C if D does not appear in history and Play D if D appears in
history.

J
(k)
i =

∞∑
t=k

3αt = 3
αk

1− α

J
(k)
i =

k′−1∑
t=k

+5αk
′
+

∞∑
t=k′

0

One-stage deviation condition

k′−1∑
t=k

+5αk
′ ≤

∞∑
t=k

3αt

5αk
′ ≤

∞∑
t=k′

3αt

5αk
′ ≤ 3

αk
′

1− α
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this is satisfied for

2

5
≤ α ≤ 1

4 Constraints

There may be constraints on player actions

Thought Experiment: Player 1 and 2 have actions 0,1 and 2 with the constraint that the sum
of there actions must be less than or equal to 2.

5 Continuous Games

Before the action space was finite ui = 0, 1 but we will now consider infinite action spaces ui = [0, 1]
or continuous action spaces. In addition there may be constraints. Unlike finite games a equilibrium
is not guaranteed.

Example: An infinite game without an equilibrium is a single player game with objective e−x

and constraint x > 0 with the player being a minimizer. The optimal value of 0 cannot be achieved.
Instead though we can get within ε of the optimal value

Definition: For a given ε ≥ 0 an N-tuple (u1∗
ε , . . . , u

n∗
ε ) with uiε ∈ U, i ∈ N , is called a (pure)

ε-Nash equilibrium solution for an N-person games if

J i(u1∗
ε , . . . , u

n∗
ε ) ≤ inf

ui
(u1∗
ε , . . . , u

i, . . . , un∗ε ),∀i ∈ N

with ε = 0 being the Nash equilibrium.

Example: Cournot Duopoly with 2 firms. This problem represents companies problem of how
much product to produce. Two companies wish to maximize their profit with a simple model of
supply and demand. Each company produces a quantity q1, q2 That the price and ultimately their
profit is determined by.

Ui(q1, q2) = qi(a− q1 − q2)− cqi

where a is a given constant related to the supply demand function that sets the price and c is a
given constant representing the cost to produce one unit of the product. This function of utility is
a concave quadratic. The best response for a player can be found by applying first order conditions
for optimality.

∂U1

∂q1
= 0 = a− c− q2 − 2q1
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q1 =
a− c− q2

2

q2 =
a− c− q1

2

therefore the Nash Equilibrium is

q∗1 = q∗2 =
a− c

3

Now consider a monopoly where there is only one play who decides the quantity. The new objective
function is

U(q) = q(a− q)− cq

with maximum

q =
a− c

2

The total quantity in the monopoly is less than the case where there are two firms. The profit is
greater as well

(a− c)2

4

with the profit for two firms being
(a− c)2

9

This can also be turned into a repeated game where the firms maximize total profit. We can
investigate if a trigger strategy is an equilibrium again. The two strategies are to play as a monopoly
or to play the one shot optimal value.

[
a−c

4 , a−c4
a−c

4 , ∗
∗, a−c4

a−c
3 , a−c3

]
Suppose P1 deviates at t

JD =

t−1∑
k=t′

(a− c)2

8
αk +

∞∑
k=t′+1

αk
(a− c)2

9
+ q1(t)

δJ = JD − J ′ = q1(t)[
3

4
(a− c)− q1(t)]αt − (a− c)

8
αt +

∞∑
k=t+1

αk(a− c)2(
1

9
− 1

8
) ≤ 0

α ≥ 9

17

[2]
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